mbed os with nrf51 internal bandgap enabled to read battery level
Dependents: BLE_file_test BLE_Blink ExternalEncoder
targets/TARGET_NXP/TARGET_LPC82X/analogin_api.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "analogin_api.h" #include "cmsis.h" #include "pinmap.h" #include "PeripheralNames.h" #if DEVICE_ANALOGIN #define ANALOGIN_MEDIAN_FILTER 1 #define ADC_RANGE 0xFFF static const PinMap PinMap_ADC[] = { {P0_7 , ADC_0, 0}, {P0_6 , ADC_1, 0}, {P0_14, ADC_2, 0}, {P0_23, ADC_3, 0}, {P0_22, ADC_4, 0}, {P0_21, ADC_5, 0}, {P0_20, ADC_6, 0}, {P0_19, ADC_7, 0}, {P0_18, ADC_8, 0}, {P0_17, ADC_9, 0}, {P0_13, ADC_10,0}, {P0_4 , ADC_11,0}, }; void analogin_init(analogin_t *obj, PinName pin) { obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); MBED_ASSERT(obj->adc != (ADCName)NC); LPC_SYSCON->SYSAHBCLKCTRL |= (1UL << 6); // pin enable LPC_SWM->PINENABLE0 &= ~(1UL << (13 + obj->adc)); // configure GPIO as input LPC_GPIO_PORT->DIR0 &= ~(1UL << (pin >> PIN_SHIFT)); LPC_SYSCON->PDRUNCFG &= ~(1 << 4); LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 24); __IO LPC_ADC_Type *adc_reg = LPC_ADC; // determine the system clock divider for a 500kHz ADC clock during calibration uint32_t clkdiv = (SystemCoreClock / 500000) - 1; // perform a self-calibration adc_reg->CTRL = (1UL << 30) | (clkdiv & 0xFF); while ((adc_reg->CTRL & (1UL << 30)) != 0); } static inline uint32_t adc_read(analogin_t *obj) { uint32_t channels; __IO LPC_ADC_Type *adc_reg = LPC_ADC; channels = (obj->adc & 0x1F); // select channel adc_reg->SEQA_CTRL &= ~(0xFFF); adc_reg->SEQA_CTRL |= (1UL << channels); // start conversion and sequence enable adc_reg->SEQA_CTRL |= ((1UL << 26) | (1UL << 31)); // Repeatedly get the sample data until DONE bit volatile uint32_t data; do { data = adc_reg->SEQA_GDAT; } while ((data & (1UL << 31)) == 0); // Stop conversion adc_reg->SEQA_CTRL &= ~(1UL << 31); return ((data >> 4) & ADC_RANGE); } static inline void order(uint32_t *a, uint32_t *b) { if (*a > *b) { uint32_t t = *a; *a = *b; *b = t; } } static inline uint32_t adc_read_u32(analogin_t *obj) { uint32_t value; #if ANALOGIN_MEDIAN_FILTER uint32_t v1 = adc_read(obj); uint32_t v2 = adc_read(obj); uint32_t v3 = adc_read(obj); order(&v1, &v2); order(&v2, &v3); order(&v1, &v2); value = v2; #else value = adc_read(obj); #endif return value; } uint16_t analogin_read_u16(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (value << 4) | ((value >> 8) & 0x000F); // 12 bit } float analogin_read(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (float)value * (1.0f / (float)ADC_RANGE); } #endif