mbed os with nrf51 internal bandgap enabled to read battery level
Dependents: BLE_file_test BLE_Blink ExternalEncoder
targets/TARGET_NXP/TARGET_LPC11U6X/pwmout_api.c
- Committer:
- elessair
- Date:
- 2016-10-23
- Revision:
- 0:f269e3021894
File content as of revision 0:f269e3021894:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pwmout_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #if DEVICE_PWMOUT #define SCT_CHANNELS 2 static const PinMap PinMap_PWM[] = { {P1_19, SCT0_0, 2}, {P2_2 , SCT0_1, 3}, {P2_7 , SCT0_2, 2}, {P1_13, SCT0_3, 2}, {P2_16, SCT1_0, 1}, {P2_17, SCT1_1, 1}, {P2_18, SCT1_2, 1}, {P2_19, SCT1_3, 1}, {NC , NC ,0} }; static LPC_SCT0_Type *SCTs[SCT_CHANNELS] = { (LPC_SCT0_Type*)LPC_SCT0, (LPC_SCT0_Type*)LPC_SCT1, }; // bit flags for used SCTs static unsigned char sct_used = 0; static int get_available_sct(void) { int i; for (i=0; i<SCT_CHANNELS; i++) { if ((sct_used & (1 << i)) == 0) return i; } return -1; } void pwmout_init(pwmout_t* obj, PinName pin) { // determine the SPI to use PWMName pwm_mapped = (PWMName)pinmap_peripheral(pin, PinMap_PWM); if (pwm_mapped == (PWMName)NC) { error("PwmOut pin mapping failed"); } int sct_n = get_available_sct(); if (sct_n == -1) { error("No available SCT"); } sct_used |= (1 << sct_n); obj->pwm = SCTs[sct_n]; obj->pwm_ch = sct_n; // Enable the SCT clock LPC_SYSCON->SYSAHBCLKCTRL |= (1UL << 31); // Clear peripheral reset the SCT: LPC_SYSCON->PRESETCTRL |= (1 << (obj->pwm_ch + 9)); pinmap_pinout(pin, PinMap_PWM); LPC_SCT0_Type* pwm = obj->pwm; // Unified 32-bit counter, autolimit pwm->CONFIG |= ((0x3 << 17) | 0x01); // halt and clear the counter pwm->CTRL |= (1 << 2) | (1 << 3); switch(pwm_mapped) { case SCT0_0: case SCT1_0: pwm->OUT0_SET = (1 << 0); // event 0 pwm->OUT0_CLR = (1 << 1); // event 1 break; case SCT0_1: case SCT1_1: pwm->OUT1_SET = (1 << 0); // event 0 pwm->OUT1_CLR = (1 << 1); // event 1 break; case SCT0_2: case SCT1_2: pwm->OUT2_SET = (1 << 0); // event 0 pwm->OUT2_CLR = (1 << 1); // event 1 break; case SCT0_3: case SCT1_3: pwm->OUT3_SET = (1 << 0); // event 0 pwm->OUT3_CLR = (1 << 1); // event 1 break; default: break; } // Event 0 : MATCH and MATCHSEL=0 pwm->EV0_CTRL = (1 << 12); pwm->EV0_STATE = 0xFFFFFFFF; // Event 1 : MATCH and MATCHSEL=1 pwm->EV1_CTRL = (1 << 12) | (1 << 0); pwm->EV1_STATE = 0xFFFFFFFF; // default to 20ms: standard for servos, and fine for e.g. brightness control pwmout_period_ms(obj, 20); pwmout_write (obj, 0); } void pwmout_free(pwmout_t* obj) { sct_used &= ~(1 << obj->pwm_ch); if (sct_used == 0) { // Disable the SCT clock LPC_SYSCON->SYSAHBCLKCTRL &= ~(1UL << 31); } } void pwmout_write(pwmout_t* obj, float value) { LPC_SCT0_Type* pwm = obj->pwm; if (value < 0.0f) { value = 0.0; } else if (value > 1.0f) { value = 1.0; } uint32_t t_on = (uint32_t)((float)(pwm->MATCHREL0 + 1) * value); if (t_on > 0) { pwm->MATCHREL1 = t_on - 1; // Un-halt the timer and ensure the new pulse-width takes immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; } } float pwmout_read(pwmout_t* obj) { LPC_SCT0_Type* pwm = obj->pwm; uint32_t t_off = pwm->MATCHREL0 + 1; uint32_t t_on = (!(pwm->CTRL & (1 << 2))) ? pwm->MATCHREL1 + 1 : 0; float v = (float)t_on/(float)t_off; return (v > 1.0f) ? (1.0f) : (v); } void pwmout_period(pwmout_t* obj, float seconds) { pwmout_period_us(obj, seconds * 1000000.0f); } void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } // Set the PWM period, keeping the duty cycle the same. void pwmout_period_us(pwmout_t* obj, int us) { LPC_SCT0_Type* pwm = obj->pwm; uint32_t t_off = pwm->MATCHREL0 + 1; uint32_t t_on = (!(pwm->CTRL & (1 << 2))) ? pwm->MATCHREL1 + 1 : 0; float v = (float)t_on/(float)t_off; uint32_t period_ticks = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000); uint32_t pulsewidth_ticks = period_ticks * v; pwm->MATCHREL0 = period_ticks - 1; if (pulsewidth_ticks > 0) { pwm->MATCHREL1 = pulsewidth_ticks - 1; // Un-halt the timer and ensure the new period & pulse-width take immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH0 = pwm->MATCHREL0; pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; // Ensure the new period will take immediate effect when the timer is un-halted pwm->MATCH0 = pwm->MATCHREL0; } } void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t* obj, int us) { LPC_SCT0_Type* pwm = obj->pwm; if (us > 0) { pwm->MATCHREL1 = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000) - 1; // Un-halt the timer and ensure the new pulse-width takes immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; } } #endif