Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ExperimentServer MotorShield QEI_pmw
main.cpp
- Committer:
- kaymies
- Date:
- 2022-11-28
- Revision:
- 0:f7e7848048d5
- Child:
- 1:c4fa1bfe7672
File content as of revision 0:f7e7848048d5:
#include "mbed.h" #include "rtos.h" #include "EthernetInterface.h" #include "ExperimentServer.h" #include "QEI.h" #include "BezierCurve.h" #include "MotorShield.h" #include "HardwareSetup.h" #define BEZIER_ORDER_FOOT 7 #define NUM_INPUTS (12 + 2*(BEZIER_ORDER_FOOT+1)) #define NUM_OUTPUTS 19 #define PULSE_TO_RAD (2.0f*3.14159f / 1200.0f) # define PI 3.14159265358979323846 /* pi */ // Initializations Serial pc(USBTX, USBRX); // USB Serial Terminal ExperimentServer server; // Object that lets us communicate with MATLAB Timer t; // Timer to measure elapsed time of experiment QEI encoderA(PE_9,PE_11, NC, 1200, QEI::X4_ENCODING); // MOTOR A ENCODER (no index, 1200 counts/rev, Quadrature encoding) QEI encoderB(PA_5, PB_3, NC, 1200, QEI::X4_ENCODING); // MOTOR B ENCODER (no index, 1200 counts/rev, Quadrature encoding) QEI encoderC(PC_6, PC_7, NC, 1200, QEI::X4_ENCODING); // MOTOR C ENCODER (no index, 1200 counts/rev, Quadrature encoding) QEI encoderD(PD_12, PD_13, NC, 1200, QEI::X4_ENCODING);// MOTOR D ENCODER (no index, 1200 counts/rev, Quadrature encoding) MotorShield motorShield(24000); //initialize the motor shield with a period of 24000 ticks or ~10kHZ Ticker currentLoop; // Variables for q1 float current1; float current_des1 = 0; float prev_current_des1 = 0; float current_int1 = 0; float angle1; float velocity1; float duty_cycle1; float angle1_init; // Variables for q2 float current2; float current_des2 = 0; float prev_current_des2 = 0; float current_int2 = 0; float angle2; float velocity2; float duty_cycle2; float angle2_init; // Fixed kinematic parameters //const float l_OA=.011; //const float l_OB=.042; //const float l_AC=.096; //const float l_DE=.091; const float l_OA= 0.0; const float l_OB=0.0; // our l3 const float l_AC=.096; // our l2, same as l1 const float l_DE=.091; // our l1 const float ls= 0.0548; const float l3 = 0.05584; // Timing parameters float current_control_period_us = 200.0f; // 5kHz current control loop float impedance_control_period_us = 1000.0f; // 1kHz impedance control loop float start_period, traj_period, end_period; // Control parameters float current_Kp = 4.0f; float current_Ki = 0.4f; float current_int_max = 3.0f; float duty_max; float K_xx; float K_yy; float K_xy; float D_xx; float D_xy; float D_yy; float tih; float tis; float tipre; float thpre; float th2_limu; float tihend; bool jumped = false; //float K_1; //float D_1; // Model parameters float supply_voltage = 12; // motor supply voltage float R = 2.0f; // motor resistance float k_t = 0.18f; // motor torque constant float nu = 0.0005; // motor viscous friction float max_torque = 0.82; // Nm // Current control interrupt function void CurrentLoop() { // This loop sets the motor voltage commands using PI current controllers with feedforward terms. //use the motor shield as follows: //motorShield.motorAWrite(DUTY CYCLE, DIRECTION), DIRECTION = 0 is forward, DIRECTION =1 is backwards. current1 = -(((float(motorShield.readCurrentA())/65536.0f)*30.0f)-15.0f); // measure current velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; // measure velocity float err_c1 = current_des1 - current1; // current errror current_int1 += err_c1; // integrate error current_int1 = fmaxf( fminf(current_int1, current_int_max), -current_int_max); // anti-windup float ff1 = R*current_des1 + k_t*velocity1; // feedforward terms duty_cycle1 = (ff1 + current_Kp*err_c1 + current_Ki*current_int1)/supply_voltage; // PI current controller float absDuty1 = abs(duty_cycle1); if (absDuty1 > duty_max) { duty_cycle1 *= duty_max / absDuty1; absDuty1 = duty_max; } if (duty_cycle1 < 0) { // backwards motorShield.motorAWrite(absDuty1, 1); } else { // forwards motorShield.motorAWrite(absDuty1, 0); } prev_current_des1 = current_des1; current2 = -(((float(motorShield.readCurrentB())/65536.0f)*30.0f)-15.0f); // measure current velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; // measure velocity float err_c2 = current_des2 - current2; // current error current_int2 += err_c2; // integrate error current_int2 = fmaxf( fminf(current_int2, current_int_max), -current_int_max); // anti-windup float ff2 = R*current_des2 + k_t*velocity2; // feedforward terms duty_cycle2 = (ff2 + current_Kp*err_c2 + current_Ki*current_int2)/supply_voltage; // PI current controller float absDuty2 = abs(duty_cycle2); if (absDuty2 > duty_max) { duty_cycle2 *= duty_max / absDuty2; absDuty2 = duty_max; } if (duty_cycle2 < 0) { // backwards motorShield.motorBWrite(absDuty2, 1); } else { // forwards motorShield.motorBWrite(absDuty2, 0); } prev_current_des2 = current_des2; } int main (void) { // Object for 7th order Cartesian foot trajectory BezierCurve rDesFoot_bez(2,BEZIER_ORDER_FOOT); // Link the terminal with our server and start it up server.attachTerminal(pc); server.init(); // Continually get input from MATLAB and run experiments float input_params[NUM_INPUTS]; pc.printf("%f",input_params[0]); while(1) { // If there are new inputs, this code will run if (server.getParams(input_params,NUM_INPUTS)) { // Get inputs from MATLAB start_period = input_params[0]; // First buffer time, before trajectory traj_period = input_params[1]; // Trajectory time/length end_period = input_params[2]; // Second buffer time, after trajectory angle1_init = input_params[3]; // Initial angle for q1 (rad) angle2_init = input_params[4]; // Initial angle for q2 (rad) K_xx = input_params[5]; // Foot stiffness N/m K_yy = input_params[6]; // Foot stiffness N/m K_xy = input_params[7]; // Foot stiffness N/m D_xx = input_params[8]; // Foot damping N/(m/s) D_yy = input_params[9]; // Foot damping N/(m/s) D_xy = input_params[10]; // Foot damping N/(m/s) duty_max = input_params[11]; // Maximum duty factor tis = input_params[12]; // Start of shoulder trajectory tih = input_params[13]; // Start of hip trajectory tipre = input_params[14]; // Start preload time thpre = input_params[15]; // Preload angle th2_limu = input_params[16]; // Hip max angle tihend = input_params[17]; //hip end time // Get foot trajectory points float foot_pts[2*(BEZIER_ORDER_FOOT+1)]; for(int i = 0; i<2*(BEZIER_ORDER_FOOT+1);i++) { foot_pts[i] = input_params[18+i]; } rDesFoot_bez.setPoints(foot_pts); // Attach current loop interrupt currentLoop.attach_us(CurrentLoop,current_control_period_us); // Setup experiment t.reset(); t.start(); encoderA.reset(); encoderB.reset(); encoderC.reset(); encoderD.reset(); motorShield.motorAWrite(0, 0); //turn motor A off motorShield.motorBWrite(0, 0); //turn motor B off // Run experiment while( t.read() < start_period + traj_period + end_period) { // Read encoders to get motor states angle1 = encoderA.getPulses() *PULSE_TO_RAD + angle1_init; velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; angle2 = encoderB.getPulses() * PULSE_TO_RAD + angle2_init; velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; const float th1 = angle1; const float th2 = angle2; const float dth1= velocity1; const float dth2= velocity2; // Calculate the Jacobian // float Jx_th1 = l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1); // float Jx_th2 = l_AC*cos(th1 + th2); // float Jy_th1 = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1); // float Jy_th2 = l_AC*sin(th1 + th2); float Jx_th1 = ls*cos(th1); float Jy_th1 = ls*sin(th1); // Calculate the forward kinematics (position and velocity) //float xFoot = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1); // float yFoot = -l_AC*cos(th1 + th2) - l_DE*cos(th1) - l_OB*cos(th1); // float dxFoot = Jx_th1*dth1 + Jx_th2*dth2; // float dyFoot = Jy_th1*dth1 + Jy_th2*dth2; float xFoot = ls*sin(th1); // float yFinger = y + l3 - ls*cos(th1); // CHECK, how get y since not calculating float dxFoot = Jx_th1*dth1; // float dyFinger = Jy_th1*dth1; // Set gains based on buffer and traj times, then calculate desired x,y from Bezier trajectory at current time if necessary float teff = 0; float vMult = 0; if( t < start_period) { if (K_xx > 0 || K_yy > 0) { K_xx = 1; // for joint space control, set this to 1; for Cartesian space control, set this to 50 K_yy = 1; // for joint space control, set this to 1; for Cartesian space control, set this to 50 D_xx = 0.1; // for joint space control, set this to 0.1; for Cartesian space control, set this to 2 D_yy = 0.1; // for joint space control, set this to 0.1; for Cartesian space control, set this to 2 K_xy = 0; D_xy = 0; } teff = 0; } else if (t < start_period + traj_period) { K_xx = input_params[5]; // Foot stiffness N/m K_yy = input_params[6]; // Foot stiffness N/m K_xy = input_params[7]; // Foot stiffness N/m D_xx = input_params[8]; // Foot damping N/(m/s) D_yy = input_params[9]; // Foot damping N/(m/s) D_xy = input_params[10]; // Foot damping N/(m/s) teff = (t-start_period); vMult = 1; } else { teff = traj_period; vMult = 0; } // Get desired foot positions and velocities float rDesFoot[2] , vDesFoot[2]; rDesFoot_bez.evaluate(teff/traj_period,rDesFoot); rDesFoot_bez.evaluateDerivative(teff/traj_period,vDesFoot); vDesFoot[0]/=traj_period; vDesFoot[1]/=traj_period; vDesFoot[0]*=vMult; vDesFoot[1]*=vMult; // Calculate the inverse kinematics (joint positions and velocities) for desired joint angles float xFoot_inv = -rDesFoot[0]; float yFoot_inv = rDesFoot[1]; float l_OE = sqrt( (pow(xFoot_inv,2) + pow(yFoot_inv,2)) ); float alpha = abs(acos( (pow(l_OE,2) - pow(l_AC,2) - pow((l_OB+l_DE),2))/(-2.0f*l_AC*(l_OB+l_DE)) )); // float th1_des = -((3.14159f/2.0f) + atan2(yFoot_inv,xFoot_inv) - abs(asin( (l_AC/l_OE)*sin(alpha) ))); // float th2_des = -(3.14159f - alpha); float th1_des = acos(xFoot_inv/ls); //float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1); // float dth1_des = (1.0f/dd) * ( Jy_th2*vDesFoot[0] - Jx_th2*vDesFoot[1] ); // float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] ); // float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1); float dth1_des = vDesFoot[0]/Jx_th1; // float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] ); // Calculate error variables float e_x = rDesFoot[0] - xFoot; // float e_y = rDesFoot[1] - yFoot; float de_x = vDesFoot[0] - dxFoot; // float de_y = vDesFoot[1] - dyFoot; // Calculate virtual force on foot //float fx = K_xx*e_x + K_xy*e_y + D_xx*de_x + D_xy*de_y; // float fy = K_xy*e_x + K_yy*e_y + D_xy*de_x + D_yy*de_y; // Set desired currents // current_des1 = (-K_xx*th1 - D_xx*dth1)/k_t; // current_des2 = 0; // current_des1 = 0; // current_des2 = (-K_yy*th2 - D_yy*dth2)/k_t; // current_des1 = 0; // current_des2 = 0; // Joint impedance // sub Kxx for K1, Dxx for D1, Kyy for K2, Dyy for D2 // Note: Be careful with signs now that you have non-zero desired angles! // Your equations should be of the form i_d = K1*(q1_d - q1) + D1*(dq1_d - dq1) th1_des = PI; dth1_des = 0; // pc.printf("jumped %d \n\r", jumped); if (t.read() >= tis) { current_des1 = (-K_xx*(th1 - th1_des) - D_xx*(dth1 - dth1_des))/k_t; } else { current_des1 = 0.0; } // current_des2 = (-K_yy*(th2 - th2_des) - D_yy*(dth2 - dth2_des))/k_t; if (t.read() >= tipre && t.read() <= tih) { current_des2 = -1*(-K_yy*(th2 - thpre) - D_yy*(dth2))/k_t; // negative sign so goes clockwise } else if (t.read() >= tih && jumped == false) { //&& th2 > th2_limu current_des2 = -max_torque/k_t; // pc.printf("im here"); // pc.printf("currentdes2: %f \n\r", current_des2); // current_des2 = 0; if (th2 <= th2_limu) { jumped = true; // pc.printf("got here"); } // pc.printf("th2: %f, th2_limu: %f \n\r", th2, th2_limu); } else { current_des2 = 0.0; } if (t.read() >= tihend) { current_des2 = 0.0; } // Cartesian impedance // Note: As with the joint space laws, be careful with signs! // current_des1 = (Jx_th1*fx + Jy_th1*fy)/k_t; // current_des2 = (Jx_th2*fx + Jy_th2*fy)/k_t; // Form output to send to MATLAB float output_data[NUM_OUTPUTS]; // current time output_data[0] = t.read(); // motor 1 state output_data[1] = angle1; output_data[2] = velocity1; output_data[3] = current1; output_data[4] = current_des1; output_data[5] = duty_cycle1; // motor 2 state output_data[6] = angle2; output_data[7] = velocity2; output_data[8] = current2; output_data[9] = current_des2; output_data[10]= duty_cycle2; // foot state output_data[11] = xFoot; output_data[12] = 0.0; // CHECK - FIX LATER used to be yFoot output_data[13] = dxFoot; output_data[14] = 0.0; // CHECK - FIX LATER used to be dyFoot output_data[15] = rDesFoot[0]; output_data[16] = rDesFoot[1]; output_data[17] = vDesFoot[0]; output_data[18] = vDesFoot[1]; // Send data to MATLAB server.sendData(output_data,NUM_OUTPUTS); wait_us(impedance_control_period_us); } // Cleanup after experiment server.setExperimentComplete(); currentLoop.detach(); motorShield.motorAWrite(0, 0); //turn motor A off motorShield.motorBWrite(0, 0); //turn motor B off } // end if } // end while } // end main