Port of lowpowerlab RFM69 Packet radio library for HopeRF RFM69H with hacks from debugging with a FRDM-KL25Z

Dependents:   chuk

Fork of RFM69 by B Rey

Committer:
eisd
Date:
Mon Jun 08 20:53:46 2015 +0000
Revision:
2:574f229e8182
Parent:
1:b6d925d3740d
Child:
3:9d44479041c3
stupid operator precedence gaffe eventually discovered

Who changed what in which revision?

UserRevisionLine numberNew contents of line
br549 0:db6e4ce9dc02 1 //Port of RFM69 from lowpowerlab
br549 0:db6e4ce9dc02 2 //Sync'd Feb. 6, 2015
br549 0:db6e4ce9dc02 3 //spi register read/write routines from Karl Zweimuller's RF22
br549 0:db6e4ce9dc02 4 //
br549 0:db6e4ce9dc02 5 //
br549 0:db6e4ce9dc02 6 //
br549 0:db6e4ce9dc02 7 // **********************************************************************************
br549 0:db6e4ce9dc02 8 // Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H
br549 0:db6e4ce9dc02 9 // **********************************************************************************
br549 0:db6e4ce9dc02 10 // Copyright Felix Rusu (2014), felix@lowpowerlab.com
br549 0:db6e4ce9dc02 11 // http://lowpowerlab.com/
br549 0:db6e4ce9dc02 12 // **********************************************************************************
br549 0:db6e4ce9dc02 13 // License
br549 0:db6e4ce9dc02 14 // **********************************************************************************
br549 0:db6e4ce9dc02 15 // This program is free software; you can redistribute it
br549 0:db6e4ce9dc02 16 // and/or modify it under the terms of the GNU General
br549 0:db6e4ce9dc02 17 // Public License as published by the Free Software
br549 0:db6e4ce9dc02 18 // Foundation; either version 3 of the License, or
br549 0:db6e4ce9dc02 19 // (at your option) any later version.
br549 0:db6e4ce9dc02 20 //
br549 0:db6e4ce9dc02 21 // This program is distributed in the hope that it will
br549 0:db6e4ce9dc02 22 // be useful, but WITHOUT ANY WARRANTY; without even the
br549 0:db6e4ce9dc02 23 // implied warranty of MERCHANTABILITY or FITNESS FOR A
br549 0:db6e4ce9dc02 24 // PARTICULAR PURPOSE. See the GNU General Public
br549 0:db6e4ce9dc02 25 // License for more details.
br549 0:db6e4ce9dc02 26 //
br549 0:db6e4ce9dc02 27 // You should have received a copy of the GNU General
br549 0:db6e4ce9dc02 28 // Public License along with this program.
br549 0:db6e4ce9dc02 29 // If not, see <http://www.gnu.org/licenses/>.
br549 0:db6e4ce9dc02 30 //
br549 0:db6e4ce9dc02 31 // Licence can be viewed at
br549 0:db6e4ce9dc02 32 // http://www.gnu.org/licenses/gpl-3.0.txt
br549 0:db6e4ce9dc02 33 //
br549 0:db6e4ce9dc02 34 // Please maintain this license information along with authorship
br549 0:db6e4ce9dc02 35 // and copyright notices in any redistribution of this code
br549 0:db6e4ce9dc02 36 // **********************************************************************************// RF22.cpp
br549 0:db6e4ce9dc02 37 //
br549 0:db6e4ce9dc02 38 // Copyright (C) 2011 Mike McCauley
br549 0:db6e4ce9dc02 39 // $Id: RF22.cpp,v 1.17 2013/02/06 21:33:56 mikem Exp mikem $
br549 0:db6e4ce9dc02 40 // ported to mbed by Karl Zweimueller
br549 0:db6e4ce9dc02 41
br549 0:db6e4ce9dc02 42
br549 0:db6e4ce9dc02 43 #include "mbed.h"
br549 0:db6e4ce9dc02 44 #include "RFM69.h"
br549 0:db6e4ce9dc02 45 #include <RFM69registers.h>
br549 0:db6e4ce9dc02 46 #include <SPI.h>
br549 0:db6e4ce9dc02 47
eisd 2:574f229e8182 48 extern Serial pc;
br549 0:db6e4ce9dc02 49 volatile uint8_t RFM69::DATA[RF69_MAX_DATA_LEN];
br549 0:db6e4ce9dc02 50 volatile uint8_t RFM69::_mode; // current transceiver state
br549 0:db6e4ce9dc02 51 volatile uint8_t RFM69::DATALEN;
br549 0:db6e4ce9dc02 52 volatile uint8_t RFM69::SENDERID;
br549 0:db6e4ce9dc02 53 volatile uint8_t RFM69::TARGETID; // should match _address
br549 0:db6e4ce9dc02 54 volatile uint8_t RFM69::PAYLOADLEN;
br549 0:db6e4ce9dc02 55 volatile uint8_t RFM69::ACK_REQUESTED;
br549 0:db6e4ce9dc02 56 volatile uint8_t RFM69::ACK_RECEIVED; // should be polled immediately after sending a packet with ACK request
br549 0:db6e4ce9dc02 57 volatile int16_t RFM69::RSSI; // most accurate RSSI during reception (closest to the reception)
br549 0:db6e4ce9dc02 58
br549 0:db6e4ce9dc02 59 RFM69::RFM69(PinName mosi, PinName miso, PinName sclk, PinName slaveSelectPin, PinName interrupt):
eisd 1:b6d925d3740d 60 _slaveSelectPin(slaveSelectPin) , _spi(mosi, miso, sclk)/*, _interrupt(interrupt)*/ {
br549 0:db6e4ce9dc02 61
br549 0:db6e4ce9dc02 62 // Setup the spi for 8 bit data, high steady state clock,
br549 0:db6e4ce9dc02 63 // second edge capture, with a 1MHz clock rate
br549 0:db6e4ce9dc02 64 _spi.format(8,0);
eisd 1:b6d925d3740d 65 _spi.frequency(1000000);
br549 0:db6e4ce9dc02 66 _mode = RF69_MODE_STANDBY;
br549 0:db6e4ce9dc02 67 _promiscuousMode = false;
br549 0:db6e4ce9dc02 68 _powerLevel = 31;
br549 0:db6e4ce9dc02 69 }
br549 0:db6e4ce9dc02 70
br549 0:db6e4ce9dc02 71 bool RFM69::initialize(uint8_t freqBand, uint8_t nodeID, uint8_t networkID)
br549 0:db6e4ce9dc02 72 {
br549 0:db6e4ce9dc02 73 unsigned long start_to;
br549 0:db6e4ce9dc02 74 const uint8_t CONFIG[][2] =
br549 0:db6e4ce9dc02 75 {
br549 0:db6e4ce9dc02 76 /* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY },
br549 0:db6e4ce9dc02 77 /* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping
br549 0:db6e4ce9dc02 78 /* 0x03 */ { REG_BITRATEMSB, RF_BITRATEMSB_55555}, // default: 4.8 KBPS
br549 0:db6e4ce9dc02 79 /* 0x04 */ { REG_BITRATELSB, RF_BITRATELSB_55555},
br549 0:db6e4ce9dc02 80 /* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_50000}, // default: 5KHz, (FDEV + BitRate / 2 <= 500KHz)
br549 0:db6e4ce9dc02 81 /* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_50000},
br549 0:db6e4ce9dc02 82
br549 0:db6e4ce9dc02 83 /* 0x07 */ { REG_FRFMSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMSB_315 : (freqBand==RF69_433MHZ ? RF_FRFMSB_433 : (freqBand==RF69_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) },
br549 0:db6e4ce9dc02 84 /* 0x08 */ { REG_FRFMID, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMID_315 : (freqBand==RF69_433MHZ ? RF_FRFMID_433 : (freqBand==RF69_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) },
br549 0:db6e4ce9dc02 85 /* 0x09 */ { REG_FRFLSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFLSB_315 : (freqBand==RF69_433MHZ ? RF_FRFLSB_433 : (freqBand==RF69_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) },
br549 0:db6e4ce9dc02 86
br549 0:db6e4ce9dc02 87 // looks like PA1 and PA2 are not implemented on RFM69W, hence the max output power is 13dBm
br549 0:db6e4ce9dc02 88 // +17dBm and +20dBm are possible on RFM69HW
br549 0:db6e4ce9dc02 89 // +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**)
br549 0:db6e4ce9dc02 90 // +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)**
br549 0:db6e4ce9dc02 91 // +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet)
eisd 1:b6d925d3740d 92 /* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON | RF_PALEVEL_OUTPUTPOWER_11111},
eisd 1:b6d925d3740d 93 /* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, // over current protection (default is 95mA)
br549 0:db6e4ce9dc02 94
br549 0:db6e4ce9dc02 95 // RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4KHz)
br549 0:db6e4ce9dc02 96 /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, // (BitRate < 2 * RxBw)
br549 0:db6e4ce9dc02 97 //for BR-19200: /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 },
eisd 2:574f229e8182 98 ///* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 }, // DIO0 is the only IRQ we're using
eisd 1:b6d925d3740d 99 ///* 0x26 */ { REG_DIOMAPPING2, RF_DIOMAPPING2_CLKOUT_OFF }, // DIO5 ClkOut disable for power saving
eisd 2:574f229e8182 100 ///* 0x28 */ { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN }, // writing to this bit ensures that the FIFO & status flags are reset
br549 0:db6e4ce9dc02 101 /* 0x29 */ { REG_RSSITHRESH, 220 }, // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm
eisd 2:574f229e8182 102 /* 0x2D */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE }, // default 3 preamble bytes 0xAAAAAA
br549 0:db6e4ce9dc02 103 /* 0x2E */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_2 | RF_SYNC_TOL_0 },
br549 0:db6e4ce9dc02 104 /* 0x2F */ { REG_SYNCVALUE1, 0x2D }, // attempt to make this compatible with sync1 byte of RFM12B lib
br549 0:db6e4ce9dc02 105 /* 0x30 */ { REG_SYNCVALUE2, networkID }, // NETWORK ID
eisd 2:574f229e8182 106 /* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE | RF_PACKET1_DCFREE_WHITENING | RF_PACKET1_CRC_ON | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF },
br549 0:db6e4ce9dc02 107 /* 0x38 */ { REG_PAYLOADLENGTH, 66 }, // in variable length mode: the max frame size, not used in TX
br549 0:db6e4ce9dc02 108 ///* 0x39 */ { REG_NODEADRS, nodeID }, // turned off because we're not using address filtering
br549 0:db6e4ce9dc02 109 /* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty
br549 0:db6e4ce9dc02 110 /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
br549 0:db6e4ce9dc02 111 //for BR-19200: /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
br549 0:db6e4ce9dc02 112 /* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 }, // run DAGC continuously in RX mode for Fading Margin Improvement, recommended default for AfcLowBetaOn=0
br549 0:db6e4ce9dc02 113 {255, 0}
br549 0:db6e4ce9dc02 114 };
br549 0:db6e4ce9dc02 115 // Timer for ms waits
br549 0:db6e4ce9dc02 116 t.start();
br549 0:db6e4ce9dc02 117 _slaveSelectPin = 1;
br549 0:db6e4ce9dc02 118
br549 0:db6e4ce9dc02 119 // Setup the spi for 8 bit data : 1RW-bit 7 adressbit and 8 databit
br549 0:db6e4ce9dc02 120 // second edge capture, with a 10MHz clock rate
eisd 2:574f229e8182 121 _spi.format(8,0);
eisd 2:574f229e8182 122 _spi.frequency(1000000);
br549 0:db6e4ce9dc02 123
br549 0:db6e4ce9dc02 124 #define TIME_OUT 50
br549 0:db6e4ce9dc02 125
br549 0:db6e4ce9dc02 126 start_to = t.read_ms() ;
br549 0:db6e4ce9dc02 127
eisd 1:b6d925d3740d 128 do writeReg(REG_SYNCVALUE1, 0xaa); while (readReg(REG_SYNCVALUE1) != 0xaa);// && t.read_ms()-start_to < TIME_OUT);
br549 0:db6e4ce9dc02 129 if (t.read_ms()-start_to >= TIME_OUT) return (false);
br549 0:db6e4ce9dc02 130
br549 0:db6e4ce9dc02 131 // Set time out
br549 0:db6e4ce9dc02 132 start_to = t.read_ms() ;
eisd 1:b6d925d3740d 133 do writeReg(REG_SYNCVALUE1, 0x55); while (readReg(REG_SYNCVALUE1) != 0x55);// && t.read_ms()-start_to < TIME_OUT);
br549 0:db6e4ce9dc02 134 if (t.read_ms()-start_to >= TIME_OUT) return (false);
br549 0:db6e4ce9dc02 135 for (uint8_t i = 0; CONFIG[i][0] != 255; i++)
br549 0:db6e4ce9dc02 136 writeReg(CONFIG[i][0], CONFIG[i][1]);
br549 0:db6e4ce9dc02 137
br549 0:db6e4ce9dc02 138 // Encryption is persistent between resets and can trip you up during debugging.
br549 0:db6e4ce9dc02 139 // Disable it during initialization so we always start from a known state.
br549 0:db6e4ce9dc02 140 encrypt(0);
br549 0:db6e4ce9dc02 141
eisd 1:b6d925d3740d 142 //setHighPower(_isRFM69HW); // called regardless if it's a RFM69W or RFM69HW
br549 0:db6e4ce9dc02 143 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 144 // Set up interrupt handler
br549 0:db6e4ce9dc02 145 start_to = t.read_ms() ;
eisd 1:b6d925d3740d 146 while (((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00));// && t.read_ms()-start_to < TIME_OUT); // Wait for ModeReady
br549 0:db6e4ce9dc02 147 if (t.read_ms()-start_to >= TIME_OUT) return (false);
br549 0:db6e4ce9dc02 148
eisd 1:b6d925d3740d 149 //_interrupt.rise(this, &RFM69::isr0);
br549 0:db6e4ce9dc02 150
br549 0:db6e4ce9dc02 151 _address = nodeID;
br549 0:db6e4ce9dc02 152 return true;
br549 0:db6e4ce9dc02 153 }
br549 0:db6e4ce9dc02 154 // return the frequency (in Hz)
br549 0:db6e4ce9dc02 155 uint32_t RFM69::getFrequency()
br549 0:db6e4ce9dc02 156 {
br549 0:db6e4ce9dc02 157 return RF69_FSTEP * (((uint32_t) readReg(REG_FRFMSB) << 16) + ((uint16_t) readReg(REG_FRFMID) << 8) + readReg(REG_FRFLSB));
br549 0:db6e4ce9dc02 158 }
br549 0:db6e4ce9dc02 159
br549 0:db6e4ce9dc02 160 // set the frequency (in Hz)
br549 0:db6e4ce9dc02 161 void RFM69::setFrequency(uint32_t freqHz)
br549 0:db6e4ce9dc02 162 {
br549 0:db6e4ce9dc02 163 uint8_t oldMode = _mode;
br549 0:db6e4ce9dc02 164 if (oldMode == RF69_MODE_TX) {
br549 0:db6e4ce9dc02 165 setMode(RF69_MODE_RX);
br549 0:db6e4ce9dc02 166 }
br549 0:db6e4ce9dc02 167 freqHz /= RF69_FSTEP; // divide down by FSTEP to get FRF
br549 0:db6e4ce9dc02 168 writeReg(REG_FRFMSB, freqHz >> 16);
br549 0:db6e4ce9dc02 169 writeReg(REG_FRFMID, freqHz >> 8);
br549 0:db6e4ce9dc02 170 writeReg(REG_FRFLSB, freqHz);
br549 0:db6e4ce9dc02 171 if (oldMode == RF69_MODE_RX) {
br549 0:db6e4ce9dc02 172 setMode(RF69_MODE_SYNTH);
br549 0:db6e4ce9dc02 173 }
br549 0:db6e4ce9dc02 174 setMode(oldMode);
br549 0:db6e4ce9dc02 175 }
br549 0:db6e4ce9dc02 176
br549 0:db6e4ce9dc02 177 void RFM69::setMode(uint8_t newMode)
br549 0:db6e4ce9dc02 178 {
br549 0:db6e4ce9dc02 179 if (newMode == _mode)
br549 0:db6e4ce9dc02 180 return;
br549 0:db6e4ce9dc02 181
br549 0:db6e4ce9dc02 182 switch (newMode) {
br549 0:db6e4ce9dc02 183 case RF69_MODE_TX:
br549 0:db6e4ce9dc02 184 writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER);
br549 0:db6e4ce9dc02 185 if (_isRFM69HW) setHighPowerRegs(true);
br549 0:db6e4ce9dc02 186 break;
br549 0:db6e4ce9dc02 187 case RF69_MODE_RX:
br549 0:db6e4ce9dc02 188 writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER);
br549 0:db6e4ce9dc02 189 if (_isRFM69HW) setHighPowerRegs(false);
br549 0:db6e4ce9dc02 190 break;
br549 0:db6e4ce9dc02 191 case RF69_MODE_SYNTH:
br549 0:db6e4ce9dc02 192 writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER);
br549 0:db6e4ce9dc02 193 break;
br549 0:db6e4ce9dc02 194 case RF69_MODE_STANDBY:
br549 0:db6e4ce9dc02 195 writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY);
br549 0:db6e4ce9dc02 196 break;
br549 0:db6e4ce9dc02 197 case RF69_MODE_SLEEP:
br549 0:db6e4ce9dc02 198 writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP);
br549 0:db6e4ce9dc02 199 break;
br549 0:db6e4ce9dc02 200 default:
br549 0:db6e4ce9dc02 201 return;
br549 0:db6e4ce9dc02 202 }
br549 0:db6e4ce9dc02 203
br549 0:db6e4ce9dc02 204 // we are using packet mode, so this check is not really needed
br549 0:db6e4ce9dc02 205 // but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode
br549 0:db6e4ce9dc02 206 while (_mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
br549 0:db6e4ce9dc02 207 _mode = newMode;
br549 0:db6e4ce9dc02 208 }
br549 0:db6e4ce9dc02 209
br549 0:db6e4ce9dc02 210 void RFM69::sleep() {
br549 0:db6e4ce9dc02 211 setMode(RF69_MODE_SLEEP);
br549 0:db6e4ce9dc02 212 }
br549 0:db6e4ce9dc02 213
br549 0:db6e4ce9dc02 214 void RFM69::setAddress(uint8_t addr)
br549 0:db6e4ce9dc02 215 {
br549 0:db6e4ce9dc02 216 _address = addr;
br549 0:db6e4ce9dc02 217 writeReg(REG_NODEADRS, _address);
br549 0:db6e4ce9dc02 218 }
br549 0:db6e4ce9dc02 219
br549 0:db6e4ce9dc02 220 void RFM69::setNetwork(uint8_t networkID)
br549 0:db6e4ce9dc02 221 {
br549 0:db6e4ce9dc02 222 writeReg(REG_SYNCVALUE2, networkID);
br549 0:db6e4ce9dc02 223 }
br549 0:db6e4ce9dc02 224
br549 0:db6e4ce9dc02 225 // set output power: 0 = min, 31 = max
br549 0:db6e4ce9dc02 226 // this results in a "weaker" transmitted signal, and directly results in a lower RSSI at the receiver
br549 0:db6e4ce9dc02 227 void RFM69::setPowerLevel(uint8_t powerLevel)
br549 0:db6e4ce9dc02 228 {
br549 0:db6e4ce9dc02 229 _powerLevel = powerLevel;
br549 0:db6e4ce9dc02 230 writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0xE0) | (_powerLevel > 31 ? 31 : _powerLevel));
br549 0:db6e4ce9dc02 231 }
br549 0:db6e4ce9dc02 232
br549 0:db6e4ce9dc02 233 bool RFM69::canSend()
br549 0:db6e4ce9dc02 234 {
br549 0:db6e4ce9dc02 235 if (_mode == RF69_MODE_RX && PAYLOADLEN == 0 && readRSSI() < CSMA_LIMIT) // if signal stronger than -100dBm is detected assume channel activity
br549 0:db6e4ce9dc02 236 {
br549 0:db6e4ce9dc02 237 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 238 return true;
br549 0:db6e4ce9dc02 239 }
br549 0:db6e4ce9dc02 240 return false;
br549 0:db6e4ce9dc02 241 }
br549 0:db6e4ce9dc02 242
br549 0:db6e4ce9dc02 243 void RFM69::send(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK)
br549 0:db6e4ce9dc02 244 {
br549 0:db6e4ce9dc02 245 writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
eisd 1:b6d925d3740d 246 //uint32_t now = t.read_ms();
eisd 1:b6d925d3740d 247 //while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone();
br549 0:db6e4ce9dc02 248 sendFrame(toAddress, buffer, bufferSize, requestACK, false);
br549 0:db6e4ce9dc02 249 }
br549 0:db6e4ce9dc02 250
br549 0:db6e4ce9dc02 251 // to increase the chance of getting a packet across, call this function instead of send
br549 0:db6e4ce9dc02 252 // and it handles all the ACK requesting/retrying for you :)
br549 0:db6e4ce9dc02 253 // The only twist is that you have to manually listen to ACK requests on the other side and send back the ACKs
br549 0:db6e4ce9dc02 254 // The reason for the semi-automaton is that the lib is interrupt driven and
br549 0:db6e4ce9dc02 255 // requires user action to read the received data and decide what to do with it
br549 0:db6e4ce9dc02 256 // replies usually take only 5..8ms at 50kbps@915MHz
br549 0:db6e4ce9dc02 257 bool RFM69::sendWithRetry(uint8_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t retries, uint8_t retryWaitTime) {
br549 0:db6e4ce9dc02 258 uint32_t sentTime;
br549 0:db6e4ce9dc02 259 for (uint8_t i = 0; i <= retries; i++)
br549 0:db6e4ce9dc02 260 {
br549 0:db6e4ce9dc02 261 send(toAddress, buffer, bufferSize, true);
br549 0:db6e4ce9dc02 262 sentTime = t.read_ms();
br549 0:db6e4ce9dc02 263 while (t.read_ms() - sentTime < retryWaitTime)
br549 0:db6e4ce9dc02 264 {
br549 0:db6e4ce9dc02 265 if (ACKReceived(toAddress))
br549 0:db6e4ce9dc02 266 {
br549 0:db6e4ce9dc02 267 //Serial.print(" ~ms:"); Serial.print(t.read_ms() - sentTime);
br549 0:db6e4ce9dc02 268 return true;
br549 0:db6e4ce9dc02 269 }
br549 0:db6e4ce9dc02 270 }
br549 0:db6e4ce9dc02 271 //Serial.print(" RETRY#"); Serial.println(i + 1);
br549 0:db6e4ce9dc02 272 }
br549 0:db6e4ce9dc02 273 return false;
br549 0:db6e4ce9dc02 274 }
br549 0:db6e4ce9dc02 275
br549 0:db6e4ce9dc02 276 // should be polled immediately after sending a packet with ACK request
br549 0:db6e4ce9dc02 277 bool RFM69::ACKReceived(uint8_t fromNodeID) {
br549 0:db6e4ce9dc02 278 if (receiveDone())
br549 0:db6e4ce9dc02 279 return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED;
br549 0:db6e4ce9dc02 280 return false;
br549 0:db6e4ce9dc02 281 }
br549 0:db6e4ce9dc02 282
br549 0:db6e4ce9dc02 283 // check whether an ACK was requested in the last received packet (non-broadcasted packet)
br549 0:db6e4ce9dc02 284 bool RFM69::ACKRequested() {
br549 0:db6e4ce9dc02 285 return ACK_REQUESTED && (TARGETID != RF69_BROADCAST_ADDR);
br549 0:db6e4ce9dc02 286 }
br549 0:db6e4ce9dc02 287
br549 0:db6e4ce9dc02 288 // should be called immediately after reception in case sender wants ACK
br549 0:db6e4ce9dc02 289 void RFM69::sendACK(const void* buffer, uint8_t bufferSize) {
br549 0:db6e4ce9dc02 290 uint8_t sender = SENDERID;
br549 0:db6e4ce9dc02 291 int16_t _RSSI = RSSI; // save payload received RSSI value
br549 0:db6e4ce9dc02 292 writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
br549 0:db6e4ce9dc02 293 uint32_t now = t.read_ms();
br549 0:db6e4ce9dc02 294 while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone();
br549 0:db6e4ce9dc02 295 sendFrame(sender, buffer, bufferSize, false, true);
br549 0:db6e4ce9dc02 296 RSSI = _RSSI; // restore payload RSSI
br549 0:db6e4ce9dc02 297 }
br549 0:db6e4ce9dc02 298
br549 0:db6e4ce9dc02 299 void RFM69::sendFrame(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK, bool sendACK)
br549 0:db6e4ce9dc02 300 {
br549 0:db6e4ce9dc02 301 setMode(RF69_MODE_STANDBY); // turn off receiver to prevent reception while filling fifo
br549 0:db6e4ce9dc02 302 while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady
eisd 1:b6d925d3740d 303 //writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent"
br549 0:db6e4ce9dc02 304 if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN;
br549 0:db6e4ce9dc02 305
br549 0:db6e4ce9dc02 306 // control byte
br549 0:db6e4ce9dc02 307 uint8_t CTLbyte = 0x00;
br549 0:db6e4ce9dc02 308 if (sendACK)
br549 0:db6e4ce9dc02 309 CTLbyte = 0x80;
br549 0:db6e4ce9dc02 310 else if (requestACK)
br549 0:db6e4ce9dc02 311 CTLbyte = 0x40;
br549 0:db6e4ce9dc02 312
br549 0:db6e4ce9dc02 313 select();
br549 0:db6e4ce9dc02 314 _spi.write(REG_FIFO | 0x80);
br549 0:db6e4ce9dc02 315 _spi.write(bufferSize + 3);
br549 0:db6e4ce9dc02 316 _spi.write(toAddress);
br549 0:db6e4ce9dc02 317 _spi.write(_address);
br549 0:db6e4ce9dc02 318 _spi.write(CTLbyte);
br549 0:db6e4ce9dc02 319
br549 0:db6e4ce9dc02 320 for (uint8_t i = 0; i < bufferSize; i++)
br549 0:db6e4ce9dc02 321 _spi.write(((uint8_t*) buffer)[i]);
br549 0:db6e4ce9dc02 322 unselect();
br549 0:db6e4ce9dc02 323
br549 0:db6e4ce9dc02 324 // no need to wait for transmit mode to be ready since its handled by the radio
br549 0:db6e4ce9dc02 325 setMode(RF69_MODE_TX);
br549 0:db6e4ce9dc02 326 uint32_t txStart = t.read_ms();
eisd 1:b6d925d3740d 327 //while (_interrupt == 0 && t.read_ms() - txStart < RF69_TX_LIMIT_MS); // wait for DIO0 to turn HIGH signalling transmission finish
eisd 2:574f229e8182 328 while ((readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT) == 0x00); // wait for ModeReady
br549 0:db6e4ce9dc02 329 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 330 }
br549 0:db6e4ce9dc02 331 // ON = disable filtering to capture all frames on network
br549 0:db6e4ce9dc02 332 // OFF = enable node/broadcast filtering to capture only frames sent to this/broadcast address
br549 0:db6e4ce9dc02 333 void RFM69::promiscuous(bool onOff) {
br549 0:db6e4ce9dc02 334 _promiscuousMode = onOff;
br549 0:db6e4ce9dc02 335 //writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | (onOff ? RF_PACKET1_ADRSFILTERING_OFF : RF_PACKET1_ADRSFILTERING_NODEBROADCAST));
br549 0:db6e4ce9dc02 336 }
br549 0:db6e4ce9dc02 337
br549 0:db6e4ce9dc02 338 void RFM69::setHighPower(bool onOff) {
br549 0:db6e4ce9dc02 339 _isRFM69HW = onOff;
br549 0:db6e4ce9dc02 340 writeReg(REG_OCP, _isRFM69HW ? RF_OCP_OFF : RF_OCP_ON);
br549 0:db6e4ce9dc02 341 if (_isRFM69HW) // turning ON
br549 0:db6e4ce9dc02 342 writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0x1F) | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON); // enable P1 & P2 amplifier stages
br549 0:db6e4ce9dc02 343 else
br549 0:db6e4ce9dc02 344 writeReg(REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | _powerLevel); // enable P0 only
br549 0:db6e4ce9dc02 345 }
br549 0:db6e4ce9dc02 346
br549 0:db6e4ce9dc02 347 void RFM69::setHighPowerRegs(bool onOff) {
br549 0:db6e4ce9dc02 348 writeReg(REG_TESTPA1, onOff ? 0x5D : 0x55);
br549 0:db6e4ce9dc02 349 writeReg(REG_TESTPA2, onOff ? 0x7C : 0x70);
br549 0:db6e4ce9dc02 350 }
br549 0:db6e4ce9dc02 351
br549 0:db6e4ce9dc02 352 /*
br549 0:db6e4ce9dc02 353 void RFM69::setCS(uint8_t newSPISlaveSelect) {
br549 0:db6e4ce9dc02 354 DigitalOut _slaveSelectPin(newSPISlaveSelect);
br549 0:db6e4ce9dc02 355 _slaveSelectPin = 1;
br549 0:db6e4ce9dc02 356 }
br549 0:db6e4ce9dc02 357 */
eisd 2:574f229e8182 358
br549 0:db6e4ce9dc02 359 // for debugging
br549 0:db6e4ce9dc02 360 void RFM69::readAllRegs()
br549 0:db6e4ce9dc02 361 {
br549 0:db6e4ce9dc02 362 uint8_t regVal,regAddr;
br549 0:db6e4ce9dc02 363
br549 0:db6e4ce9dc02 364 for (regAddr = 1; regAddr <= 0x4F; regAddr++)
br549 0:db6e4ce9dc02 365 {
br549 0:db6e4ce9dc02 366 select();
br549 0:db6e4ce9dc02 367 _spi.write(regAddr & 0x7F); // send address + r/w bit
br549 0:db6e4ce9dc02 368 regVal = _spi.write(0);
br549 0:db6e4ce9dc02 369
eisd 1:b6d925d3740d 370 pc.printf("%d - %d - %d\r\n", regAddr, regVal, regVal);
br549 0:db6e4ce9dc02 371 }
br549 0:db6e4ce9dc02 372 unselect();
br549 0:db6e4ce9dc02 373 }
br549 0:db6e4ce9dc02 374
br549 0:db6e4ce9dc02 375 uint8_t RFM69::readTemperature(int8_t calFactor) // returns centigrade
br549 0:db6e4ce9dc02 376 {
br549 0:db6e4ce9dc02 377 uint8_t oldMode = _mode;
br549 0:db6e4ce9dc02 378
br549 0:db6e4ce9dc02 379 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 380 writeReg(REG_TEMP1, RF_TEMP1_MEAS_START);
br549 0:db6e4ce9dc02 381 while ((readReg(REG_TEMP1) & RF_TEMP1_MEAS_RUNNING));
br549 0:db6e4ce9dc02 382 setMode(oldMode);
br549 0:db6e4ce9dc02 383
br549 0:db6e4ce9dc02 384 return ~readReg(REG_TEMP2) + COURSE_TEMP_COEF + calFactor; // 'complement' corrects the slope, rising temp = rising val
br549 0:db6e4ce9dc02 385 } // COURSE_TEMP_COEF puts reading in the ballpark, user can add additional correction
br549 0:db6e4ce9dc02 386
br549 0:db6e4ce9dc02 387 void RFM69::rcCalibration()
br549 0:db6e4ce9dc02 388 {
br549 0:db6e4ce9dc02 389 writeReg(REG_OSC1, RF_OSC1_RCCAL_START);
br549 0:db6e4ce9dc02 390 while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00);
br549 0:db6e4ce9dc02 391 }
br549 0:db6e4ce9dc02 392 // C++ level interrupt handler for this instance
br549 0:db6e4ce9dc02 393 void RFM69::interruptHandler() {
br549 0:db6e4ce9dc02 394
br549 0:db6e4ce9dc02 395 if (_mode == RF69_MODE_RX && (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY))
br549 0:db6e4ce9dc02 396 {
br549 0:db6e4ce9dc02 397 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 398 select();
br549 0:db6e4ce9dc02 399
br549 0:db6e4ce9dc02 400 _spi.write(REG_FIFO & 0x7F);
br549 0:db6e4ce9dc02 401 PAYLOADLEN = _spi.write(0);
br549 0:db6e4ce9dc02 402 PAYLOADLEN = PAYLOADLEN > 66 ? 66 : PAYLOADLEN; // precaution
br549 0:db6e4ce9dc02 403 TARGETID = _spi.write(0);
br549 0:db6e4ce9dc02 404 if(!(_promiscuousMode || TARGETID == _address || TARGETID == RF69_BROADCAST_ADDR) // match this node's address, or broadcast address or anything in promiscuous mode
br549 0:db6e4ce9dc02 405 || PAYLOADLEN < 3) // address situation could receive packets that are malformed and don't fit this libraries extra fields
br549 0:db6e4ce9dc02 406 {
br549 0:db6e4ce9dc02 407 PAYLOADLEN = 0;
br549 0:db6e4ce9dc02 408 unselect();
br549 0:db6e4ce9dc02 409 receiveBegin();
br549 0:db6e4ce9dc02 410 return;
br549 0:db6e4ce9dc02 411 }
br549 0:db6e4ce9dc02 412
br549 0:db6e4ce9dc02 413 DATALEN = PAYLOADLEN - 3;
br549 0:db6e4ce9dc02 414 SENDERID = _spi.write(0);
br549 0:db6e4ce9dc02 415 uint8_t CTLbyte = _spi.write(0);
br549 0:db6e4ce9dc02 416
br549 0:db6e4ce9dc02 417 ACK_RECEIVED = CTLbyte & 0x80; // extract ACK-received flag
br549 0:db6e4ce9dc02 418 ACK_REQUESTED = CTLbyte & 0x40; // extract ACK-requested flag
br549 0:db6e4ce9dc02 419
br549 0:db6e4ce9dc02 420 for (uint8_t i = 0; i < DATALEN; i++)
br549 0:db6e4ce9dc02 421 {
br549 0:db6e4ce9dc02 422 DATA[i] = _spi.write(0);
br549 0:db6e4ce9dc02 423 }
br549 0:db6e4ce9dc02 424 if (DATALEN < RF69_MAX_DATA_LEN) DATA[DATALEN] = 0; // add null at end of string
br549 0:db6e4ce9dc02 425 unselect();
br549 0:db6e4ce9dc02 426 setMode(RF69_MODE_RX);
br549 0:db6e4ce9dc02 427 }
br549 0:db6e4ce9dc02 428 RSSI = readRSSI();
br549 0:db6e4ce9dc02 429 }
br549 0:db6e4ce9dc02 430
br549 0:db6e4ce9dc02 431
br549 0:db6e4ce9dc02 432 // These are low level functions that call the interrupt handler for the correct instance of RFM69.
br549 0:db6e4ce9dc02 433 void RFM69::isr0()
br549 0:db6e4ce9dc02 434 {
br549 0:db6e4ce9dc02 435 interruptHandler();
br549 0:db6e4ce9dc02 436 }
br549 0:db6e4ce9dc02 437 void RFM69::receiveBegin() {
br549 0:db6e4ce9dc02 438 DATALEN = 0;
br549 0:db6e4ce9dc02 439 SENDERID = 0;
br549 0:db6e4ce9dc02 440 TARGETID = 0;
br549 0:db6e4ce9dc02 441 PAYLOADLEN = 0;
br549 0:db6e4ce9dc02 442 ACK_REQUESTED = 0;
br549 0:db6e4ce9dc02 443 ACK_RECEIVED = 0;
br549 0:db6e4ce9dc02 444 RSSI = 0;
br549 0:db6e4ce9dc02 445 if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)
br549 0:db6e4ce9dc02 446 writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
br549 0:db6e4ce9dc02 447 writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); // set DIO0 to "PAYLOADREADY" in receive mode
br549 0:db6e4ce9dc02 448 setMode(RF69_MODE_RX);
eisd 1:b6d925d3740d 449 //_interrupt.enable_irq();
br549 0:db6e4ce9dc02 450 }
br549 0:db6e4ce9dc02 451
br549 0:db6e4ce9dc02 452 bool RFM69::receiveDone() {
eisd 1:b6d925d3740d 453 //_interrupt.disable_irq(); // re-enabled in unselect() via setMode() or via receiveBegin()
br549 0:db6e4ce9dc02 454 if (_mode == RF69_MODE_RX && PAYLOADLEN > 0)
br549 0:db6e4ce9dc02 455 {
br549 0:db6e4ce9dc02 456 setMode(RF69_MODE_STANDBY); // enables interrupts
br549 0:db6e4ce9dc02 457 return true;
br549 0:db6e4ce9dc02 458 }
br549 0:db6e4ce9dc02 459 else if (_mode == RF69_MODE_RX) // already in RX no payload yet
br549 0:db6e4ce9dc02 460 {
eisd 1:b6d925d3740d 461 //_interrupt.enable_irq(); // explicitly re-enable interrupts
br549 0:db6e4ce9dc02 462 return false;
br549 0:db6e4ce9dc02 463 }
br549 0:db6e4ce9dc02 464 receiveBegin();
br549 0:db6e4ce9dc02 465 return false;
br549 0:db6e4ce9dc02 466 }
br549 0:db6e4ce9dc02 467
br549 0:db6e4ce9dc02 468 // To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP");
br549 0:db6e4ce9dc02 469 // To disable encryption: radio.encrypt(null) or radio.encrypt(0)
br549 0:db6e4ce9dc02 470 // KEY HAS TO BE 16 bytes !!!
br549 0:db6e4ce9dc02 471 void RFM69::encrypt(const char* key) {
br549 0:db6e4ce9dc02 472 setMode(RF69_MODE_STANDBY);
br549 0:db6e4ce9dc02 473 if (key != 0)
br549 0:db6e4ce9dc02 474 {
br549 0:db6e4ce9dc02 475 select();
br549 0:db6e4ce9dc02 476 _spi.write(REG_AESKEY1 | 0x80);
br549 0:db6e4ce9dc02 477 for (uint8_t i = 0; i < 16; i++)
br549 0:db6e4ce9dc02 478 _spi.write(key[i]);
br549 0:db6e4ce9dc02 479 unselect();
br549 0:db6e4ce9dc02 480 }
br549 0:db6e4ce9dc02 481 writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (key ? 1 : 0));
br549 0:db6e4ce9dc02 482 }
br549 0:db6e4ce9dc02 483
br549 0:db6e4ce9dc02 484 int16_t RFM69::readRSSI(bool forceTrigger) {
br549 0:db6e4ce9dc02 485 int16_t rssi = 0;
br549 0:db6e4ce9dc02 486 if (forceTrigger)
br549 0:db6e4ce9dc02 487 {
br549 0:db6e4ce9dc02 488 // RSSI trigger not needed if DAGC is in continuous mode
br549 0:db6e4ce9dc02 489 writeReg(REG_RSSICONFIG, RF_RSSI_START);
br549 0:db6e4ce9dc02 490 while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // wait for RSSI_Ready
br549 0:db6e4ce9dc02 491 }
br549 0:db6e4ce9dc02 492 rssi = -readReg(REG_RSSIVALUE);
br549 0:db6e4ce9dc02 493 rssi >>= 1;
br549 0:db6e4ce9dc02 494 return rssi;
br549 0:db6e4ce9dc02 495 }
br549 0:db6e4ce9dc02 496
br549 0:db6e4ce9dc02 497 uint8_t RFM69::readReg(uint8_t addr)
br549 0:db6e4ce9dc02 498 {
br549 0:db6e4ce9dc02 499 select();
br549 0:db6e4ce9dc02 500 _spi.write(addr & 0x7F); // Send the address with the write mask off
br549 0:db6e4ce9dc02 501 uint8_t val = _spi.write(0); // The written value is ignored, reg value is read
br549 0:db6e4ce9dc02 502 unselect();
br549 0:db6e4ce9dc02 503 return val;
br549 0:db6e4ce9dc02 504 }
br549 0:db6e4ce9dc02 505
br549 0:db6e4ce9dc02 506 void RFM69::writeReg(uint8_t addr, uint8_t value)
br549 0:db6e4ce9dc02 507 {
br549 0:db6e4ce9dc02 508 select();
br549 0:db6e4ce9dc02 509 _spi.write(addr | 0x80); // Send the address with the write mask on
br549 0:db6e4ce9dc02 510 _spi.write(value); // New value follows
br549 0:db6e4ce9dc02 511 unselect();
br549 0:db6e4ce9dc02 512 }
br549 0:db6e4ce9dc02 513
br549 0:db6e4ce9dc02 514 // select the transceiver
br549 0:db6e4ce9dc02 515 void RFM69::select() {
eisd 1:b6d925d3740d 516 //_interrupt.disable_irq(); // Disable Interrupts
br549 0:db6e4ce9dc02 517 /* // set RFM69 SPI settings
br549 0:db6e4ce9dc02 518 SPI.setDataMode(SPI_MODE0);
br549 0:db6e4ce9dc02 519 SPI.setBitOrder(MSBFIRST);
br549 0:db6e4ce9dc02 520 SPI.setClockDivider(SPI_CLOCK_DIV4); // decided to slow down from DIV2 after SPI stalling in some instances, especially visible on mega1284p when RFM69 and FLASH chip both present */
br549 0:db6e4ce9dc02 521 _slaveSelectPin = 0;
br549 0:db6e4ce9dc02 522 }
br549 0:db6e4ce9dc02 523
br549 0:db6e4ce9dc02 524 // UNselect the transceiver chip
br549 0:db6e4ce9dc02 525 void RFM69::unselect() {
br549 0:db6e4ce9dc02 526 _slaveSelectPin = 1;
eisd 1:b6d925d3740d 527 //_interrupt.enable_irq(); // Enable Interrupts
br549 0:db6e4ce9dc02 528 }