![](/media/cache/img/default_profile.jpg.50x50_q85.jpg)
Data Logger Mangue Baja
LSM6DS3/LSM6DS3.cpp@0:aef6b59caed0, 2019-07-05 (annotated)
- Committer:
- einsteingustavo
- Date:
- Fri Jul 05 00:02:13 2019 +0000
- Revision:
- 0:aef6b59caed0
Datta Logger Mangue Baja 200Hz
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
einsteingustavo | 0:aef6b59caed0 | 1 | #include "LSM6DS3.h" |
einsteingustavo | 0:aef6b59caed0 | 2 | |
einsteingustavo | 0:aef6b59caed0 | 3 | LSM6DS3::LSM6DS3(PinName sda, PinName scl, uint8_t xgAddr) : i2c(sda, scl) |
einsteingustavo | 0:aef6b59caed0 | 4 | { |
einsteingustavo | 0:aef6b59caed0 | 5 | // xgAddress will store the 7-bit I2C address, if using I2C. |
einsteingustavo | 0:aef6b59caed0 | 6 | i2c.frequency(400000); |
einsteingustavo | 0:aef6b59caed0 | 7 | xgAddress = xgAddr; |
einsteingustavo | 0:aef6b59caed0 | 8 | } |
einsteingustavo | 0:aef6b59caed0 | 9 | |
einsteingustavo | 0:aef6b59caed0 | 10 | uint16_t LSM6DS3::begin(gyro_scale gScl, accel_scale aScl, |
einsteingustavo | 0:aef6b59caed0 | 11 | gyro_odr gODR, accel_odr aODR) |
einsteingustavo | 0:aef6b59caed0 | 12 | { |
einsteingustavo | 0:aef6b59caed0 | 13 | // Store the given scales in class variables. These scale variables |
einsteingustavo | 0:aef6b59caed0 | 14 | // are used throughout to calculate the actual g's, DPS,and Gs's. |
einsteingustavo | 0:aef6b59caed0 | 15 | gScale = gScl; |
einsteingustavo | 0:aef6b59caed0 | 16 | aScale = aScl; |
einsteingustavo | 0:aef6b59caed0 | 17 | |
einsteingustavo | 0:aef6b59caed0 | 18 | // Once we have the scale values, we can calculate the resolution |
einsteingustavo | 0:aef6b59caed0 | 19 | // of each sensor. That's what these functions are for. One for each sensor |
einsteingustavo | 0:aef6b59caed0 | 20 | calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable |
einsteingustavo | 0:aef6b59caed0 | 21 | calcaRes(); // Calculate g / ADC tick, stored in aRes variable |
einsteingustavo | 0:aef6b59caed0 | 22 | |
einsteingustavo | 0:aef6b59caed0 | 23 | |
einsteingustavo | 0:aef6b59caed0 | 24 | // To verify communication, we can read from the WHO_AM_I register of |
einsteingustavo | 0:aef6b59caed0 | 25 | // each device. Store those in a variable so we can return them. |
einsteingustavo | 0:aef6b59caed0 | 26 | // The start of the addresses we want to read from |
einsteingustavo | 0:aef6b59caed0 | 27 | char cmd[2] = { |
einsteingustavo | 0:aef6b59caed0 | 28 | WHO_AM_I_REG, |
einsteingustavo | 0:aef6b59caed0 | 29 | 0 |
einsteingustavo | 0:aef6b59caed0 | 30 | }; |
einsteingustavo | 0:aef6b59caed0 | 31 | |
einsteingustavo | 0:aef6b59caed0 | 32 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 33 | i2c.write(xgAddress, cmd, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 34 | // Read in all the 8 bits of data |
einsteingustavo | 0:aef6b59caed0 | 35 | i2c.read(xgAddress, cmd+1, 1); |
einsteingustavo | 0:aef6b59caed0 | 36 | uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I |
einsteingustavo | 0:aef6b59caed0 | 37 | |
einsteingustavo | 0:aef6b59caed0 | 38 | // Gyro initialization stuff: |
einsteingustavo | 0:aef6b59caed0 | 39 | initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. |
einsteingustavo | 0:aef6b59caed0 | 40 | setGyroODR(gODR); // Set the gyro output data rate and bandwidth. |
einsteingustavo | 0:aef6b59caed0 | 41 | setGyroScale(gScale); // Set the gyro range |
einsteingustavo | 0:aef6b59caed0 | 42 | |
einsteingustavo | 0:aef6b59caed0 | 43 | // Accelerometer initialization stuff: |
einsteingustavo | 0:aef6b59caed0 | 44 | initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. |
einsteingustavo | 0:aef6b59caed0 | 45 | setAccelODR(aODR); // Set the accel data rate. |
einsteingustavo | 0:aef6b59caed0 | 46 | setAccelScale(aScale); // Set the accel range. |
einsteingustavo | 0:aef6b59caed0 | 47 | |
einsteingustavo | 0:aef6b59caed0 | 48 | // Interrupt initialization stuff; |
einsteingustavo | 0:aef6b59caed0 | 49 | initIntr(); |
einsteingustavo | 0:aef6b59caed0 | 50 | |
einsteingustavo | 0:aef6b59caed0 | 51 | // Once everything is initialized, return the WHO_AM_I registers we read: |
einsteingustavo | 0:aef6b59caed0 | 52 | return xgTest; |
einsteingustavo | 0:aef6b59caed0 | 53 | } |
einsteingustavo | 0:aef6b59caed0 | 54 | |
einsteingustavo | 0:aef6b59caed0 | 55 | void LSM6DS3::initGyro() |
einsteingustavo | 0:aef6b59caed0 | 56 | { |
einsteingustavo | 0:aef6b59caed0 | 57 | char cmd[4] = { |
einsteingustavo | 0:aef6b59caed0 | 58 | CTRL2_G, |
einsteingustavo | 0:aef6b59caed0 | 59 | gScale | G_ODR_104, |
einsteingustavo | 0:aef6b59caed0 | 60 | 0, // Default data out and int out |
einsteingustavo | 0:aef6b59caed0 | 61 | 0 // Default power mode and high pass settings |
einsteingustavo | 0:aef6b59caed0 | 62 | }; |
einsteingustavo | 0:aef6b59caed0 | 63 | |
einsteingustavo | 0:aef6b59caed0 | 64 | // Write the data to the gyro control registers |
einsteingustavo | 0:aef6b59caed0 | 65 | i2c.write(xgAddress, cmd, 4); |
einsteingustavo | 0:aef6b59caed0 | 66 | } |
einsteingustavo | 0:aef6b59caed0 | 67 | |
einsteingustavo | 0:aef6b59caed0 | 68 | void LSM6DS3::initAccel() |
einsteingustavo | 0:aef6b59caed0 | 69 | { |
einsteingustavo | 0:aef6b59caed0 | 70 | char cmd[4] = { |
einsteingustavo | 0:aef6b59caed0 | 71 | CTRL1_XL, |
einsteingustavo | 0:aef6b59caed0 | 72 | 0x38, // Enable all axis and don't decimate data in out Registers |
einsteingustavo | 0:aef6b59caed0 | 73 | (A_ODR_104 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW |
einsteingustavo | 0:aef6b59caed0 | 74 | 0 // Default resolution mode and filtering settings |
einsteingustavo | 0:aef6b59caed0 | 75 | }; |
einsteingustavo | 0:aef6b59caed0 | 76 | |
einsteingustavo | 0:aef6b59caed0 | 77 | // Write the data to the accel control registers |
einsteingustavo | 0:aef6b59caed0 | 78 | i2c.write(xgAddress, cmd, 4); |
einsteingustavo | 0:aef6b59caed0 | 79 | } |
einsteingustavo | 0:aef6b59caed0 | 80 | |
einsteingustavo | 0:aef6b59caed0 | 81 | void LSM6DS3::initIntr() |
einsteingustavo | 0:aef6b59caed0 | 82 | { |
einsteingustavo | 0:aef6b59caed0 | 83 | char cmd[2]; |
einsteingustavo | 0:aef6b59caed0 | 84 | |
einsteingustavo | 0:aef6b59caed0 | 85 | cmd[0] = TAP_CFG; |
einsteingustavo | 0:aef6b59caed0 | 86 | cmd[1] = 0x0E; |
einsteingustavo | 0:aef6b59caed0 | 87 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 88 | cmd[0] = TAP_THS_6D; |
einsteingustavo | 0:aef6b59caed0 | 89 | cmd[1] = 0x03; |
einsteingustavo | 0:aef6b59caed0 | 90 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 91 | cmd[0] = INT_DUR2; |
einsteingustavo | 0:aef6b59caed0 | 92 | cmd[1] = 0x7F; |
einsteingustavo | 0:aef6b59caed0 | 93 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 94 | cmd[0] = WAKE_UP_THS; |
einsteingustavo | 0:aef6b59caed0 | 95 | cmd[1] = 0x80; |
einsteingustavo | 0:aef6b59caed0 | 96 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 97 | cmd[0] = MD1_CFG; |
einsteingustavo | 0:aef6b59caed0 | 98 | cmd[1] = 0x48; |
einsteingustavo | 0:aef6b59caed0 | 99 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 100 | } |
einsteingustavo | 0:aef6b59caed0 | 101 | |
einsteingustavo | 0:aef6b59caed0 | 102 | void LSM6DS3::readAccel() |
einsteingustavo | 0:aef6b59caed0 | 103 | { |
einsteingustavo | 0:aef6b59caed0 | 104 | // The data we are going to read from the accel |
einsteingustavo | 0:aef6b59caed0 | 105 | char data[6]; |
einsteingustavo | 0:aef6b59caed0 | 106 | |
einsteingustavo | 0:aef6b59caed0 | 107 | // Set addresses |
einsteingustavo | 0:aef6b59caed0 | 108 | char subAddressXL = OUTX_L_XL; |
einsteingustavo | 0:aef6b59caed0 | 109 | char subAddressXH = OUTX_H_XL; |
einsteingustavo | 0:aef6b59caed0 | 110 | char subAddressYL = OUTY_L_XL; |
einsteingustavo | 0:aef6b59caed0 | 111 | char subAddressYH = OUTY_H_XL; |
einsteingustavo | 0:aef6b59caed0 | 112 | char subAddressZL = OUTZ_L_XL; |
einsteingustavo | 0:aef6b59caed0 | 113 | char subAddressZH = OUTZ_H_XL; |
einsteingustavo | 0:aef6b59caed0 | 114 | |
einsteingustavo | 0:aef6b59caed0 | 115 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 116 | i2c.write(xgAddress, &subAddressXL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 117 | // Read in register containing the axes data and alocated to the correct index |
einsteingustavo | 0:aef6b59caed0 | 118 | i2c.read(xgAddress, data, 1); |
einsteingustavo | 0:aef6b59caed0 | 119 | |
einsteingustavo | 0:aef6b59caed0 | 120 | i2c.write(xgAddress, &subAddressXH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 121 | i2c.read(xgAddress, (data + 1), 1); |
einsteingustavo | 0:aef6b59caed0 | 122 | i2c.write(xgAddress, &subAddressYL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 123 | i2c.read(xgAddress, (data + 2), 1); |
einsteingustavo | 0:aef6b59caed0 | 124 | i2c.write(xgAddress, &subAddressYH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 125 | i2c.read(xgAddress, (data + 3), 1); |
einsteingustavo | 0:aef6b59caed0 | 126 | i2c.write(xgAddress, &subAddressZL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 127 | i2c.read(xgAddress, (data + 4), 1); |
einsteingustavo | 0:aef6b59caed0 | 128 | i2c.write(xgAddress, &subAddressZH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 129 | i2c.read(xgAddress, (data + 5), 1); |
einsteingustavo | 0:aef6b59caed0 | 130 | |
einsteingustavo | 0:aef6b59caed0 | 131 | // Reassemble the data and convert to g |
einsteingustavo | 0:aef6b59caed0 | 132 | ax_raw = data[0] | (data[1] << 8); |
einsteingustavo | 0:aef6b59caed0 | 133 | ay_raw = data[2] | (data[3] << 8); |
einsteingustavo | 0:aef6b59caed0 | 134 | az_raw = data[4] | (data[5] << 8); |
einsteingustavo | 0:aef6b59caed0 | 135 | ax = ax_raw * aRes; |
einsteingustavo | 0:aef6b59caed0 | 136 | ay = ay_raw * aRes; |
einsteingustavo | 0:aef6b59caed0 | 137 | az = az_raw * aRes; |
einsteingustavo | 0:aef6b59caed0 | 138 | } |
einsteingustavo | 0:aef6b59caed0 | 139 | |
einsteingustavo | 0:aef6b59caed0 | 140 | void LSM6DS3::readIntr() |
einsteingustavo | 0:aef6b59caed0 | 141 | { |
einsteingustavo | 0:aef6b59caed0 | 142 | char data[1]; |
einsteingustavo | 0:aef6b59caed0 | 143 | char subAddress = TAP_SRC; |
einsteingustavo | 0:aef6b59caed0 | 144 | |
einsteingustavo | 0:aef6b59caed0 | 145 | i2c.write(xgAddress, &subAddress, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 146 | i2c.read(xgAddress, data, 1); |
einsteingustavo | 0:aef6b59caed0 | 147 | |
einsteingustavo | 0:aef6b59caed0 | 148 | intr = (float)data[0]; |
einsteingustavo | 0:aef6b59caed0 | 149 | } |
einsteingustavo | 0:aef6b59caed0 | 150 | |
einsteingustavo | 0:aef6b59caed0 | 151 | void LSM6DS3::readTemp() |
einsteingustavo | 0:aef6b59caed0 | 152 | { |
einsteingustavo | 0:aef6b59caed0 | 153 | // The data we are going to read from the temp |
einsteingustavo | 0:aef6b59caed0 | 154 | char data[2]; |
einsteingustavo | 0:aef6b59caed0 | 155 | |
einsteingustavo | 0:aef6b59caed0 | 156 | // Set addresses |
einsteingustavo | 0:aef6b59caed0 | 157 | char subAddressL = OUT_TEMP_L; |
einsteingustavo | 0:aef6b59caed0 | 158 | char subAddressH = OUT_TEMP_H; |
einsteingustavo | 0:aef6b59caed0 | 159 | |
einsteingustavo | 0:aef6b59caed0 | 160 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 161 | i2c.write(xgAddress, &subAddressL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 162 | // Read in register containing the temperature data and alocated to the correct index |
einsteingustavo | 0:aef6b59caed0 | 163 | i2c.read(xgAddress, data, 1); |
einsteingustavo | 0:aef6b59caed0 | 164 | |
einsteingustavo | 0:aef6b59caed0 | 165 | i2c.write(xgAddress, &subAddressH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 166 | i2c.read(xgAddress, (data + 1), 1); |
einsteingustavo | 0:aef6b59caed0 | 167 | |
einsteingustavo | 0:aef6b59caed0 | 168 | // Temperature is a 12-bit signed integer |
einsteingustavo | 0:aef6b59caed0 | 169 | temperature_raw = data[0] | (data[1] << 8); |
einsteingustavo | 0:aef6b59caed0 | 170 | |
einsteingustavo | 0:aef6b59caed0 | 171 | temperature_c = (float)temperature_raw / 16.0 + 25.0; |
einsteingustavo | 0:aef6b59caed0 | 172 | temperature_f = temperature_c * 1.8 + 32.0; |
einsteingustavo | 0:aef6b59caed0 | 173 | } |
einsteingustavo | 0:aef6b59caed0 | 174 | |
einsteingustavo | 0:aef6b59caed0 | 175 | |
einsteingustavo | 0:aef6b59caed0 | 176 | void LSM6DS3::readGyro() |
einsteingustavo | 0:aef6b59caed0 | 177 | { |
einsteingustavo | 0:aef6b59caed0 | 178 | // The data we are going to read from the gyro |
einsteingustavo | 0:aef6b59caed0 | 179 | char data[6]; |
einsteingustavo | 0:aef6b59caed0 | 180 | |
einsteingustavo | 0:aef6b59caed0 | 181 | // Set addresses |
einsteingustavo | 0:aef6b59caed0 | 182 | char subAddressXL = OUTX_L_G; |
einsteingustavo | 0:aef6b59caed0 | 183 | char subAddressXH = OUTX_H_G; |
einsteingustavo | 0:aef6b59caed0 | 184 | char subAddressYL = OUTY_L_G; |
einsteingustavo | 0:aef6b59caed0 | 185 | char subAddressYH = OUTY_H_G; |
einsteingustavo | 0:aef6b59caed0 | 186 | char subAddressZL = OUTZ_L_G; |
einsteingustavo | 0:aef6b59caed0 | 187 | char subAddressZH = OUTZ_H_G; |
einsteingustavo | 0:aef6b59caed0 | 188 | |
einsteingustavo | 0:aef6b59caed0 | 189 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 190 | i2c.write(xgAddress, &subAddressXL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 191 | // Read in register containing the axes data and alocated to the correct index |
einsteingustavo | 0:aef6b59caed0 | 192 | i2c.read(xgAddress, data, 1); |
einsteingustavo | 0:aef6b59caed0 | 193 | |
einsteingustavo | 0:aef6b59caed0 | 194 | i2c.write(xgAddress, &subAddressXH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 195 | i2c.read(xgAddress, (data + 1), 1); |
einsteingustavo | 0:aef6b59caed0 | 196 | i2c.write(xgAddress, &subAddressYL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 197 | i2c.read(xgAddress, (data + 2), 1); |
einsteingustavo | 0:aef6b59caed0 | 198 | i2c.write(xgAddress, &subAddressYH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 199 | i2c.read(xgAddress, (data + 3), 1); |
einsteingustavo | 0:aef6b59caed0 | 200 | i2c.write(xgAddress, &subAddressZL, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 201 | i2c.read(xgAddress, (data + 4), 1); |
einsteingustavo | 0:aef6b59caed0 | 202 | i2c.write(xgAddress, &subAddressZH, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 203 | i2c.read(xgAddress, (data + 5), 1); |
einsteingustavo | 0:aef6b59caed0 | 204 | |
einsteingustavo | 0:aef6b59caed0 | 205 | // Reassemble the data and convert to degrees/sec |
einsteingustavo | 0:aef6b59caed0 | 206 | gx_raw = data[0] | (data[1] << 8); |
einsteingustavo | 0:aef6b59caed0 | 207 | gy_raw = data[2] | (data[3] << 8); |
einsteingustavo | 0:aef6b59caed0 | 208 | gz_raw = data[4] | (data[5] << 8); |
einsteingustavo | 0:aef6b59caed0 | 209 | gx = gx_raw * gRes; |
einsteingustavo | 0:aef6b59caed0 | 210 | gy = gy_raw * gRes; |
einsteingustavo | 0:aef6b59caed0 | 211 | gz = gz_raw * gRes; |
einsteingustavo | 0:aef6b59caed0 | 212 | } |
einsteingustavo | 0:aef6b59caed0 | 213 | |
einsteingustavo | 0:aef6b59caed0 | 214 | void LSM6DS3::setGyroScale(gyro_scale gScl) |
einsteingustavo | 0:aef6b59caed0 | 215 | { |
einsteingustavo | 0:aef6b59caed0 | 216 | // The start of the addresses we want to read from |
einsteingustavo | 0:aef6b59caed0 | 217 | char cmd[2] = { |
einsteingustavo | 0:aef6b59caed0 | 218 | CTRL2_G, |
einsteingustavo | 0:aef6b59caed0 | 219 | 0 |
einsteingustavo | 0:aef6b59caed0 | 220 | }; |
einsteingustavo | 0:aef6b59caed0 | 221 | |
einsteingustavo | 0:aef6b59caed0 | 222 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 223 | i2c.write(xgAddress, cmd, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 224 | // Read in all the 8 bits of data |
einsteingustavo | 0:aef6b59caed0 | 225 | i2c.read(xgAddress, cmd+1, 1); |
einsteingustavo | 0:aef6b59caed0 | 226 | |
einsteingustavo | 0:aef6b59caed0 | 227 | // Then mask out the gyro scale bits: |
einsteingustavo | 0:aef6b59caed0 | 228 | cmd[1] &= 0xFF^(0x3 << 3); |
einsteingustavo | 0:aef6b59caed0 | 229 | // Then shift in our new scale bits: |
einsteingustavo | 0:aef6b59caed0 | 230 | cmd[1] |= gScl << 3; |
einsteingustavo | 0:aef6b59caed0 | 231 | |
einsteingustavo | 0:aef6b59caed0 | 232 | // Write the gyroscale out to the gyro |
einsteingustavo | 0:aef6b59caed0 | 233 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 234 | |
einsteingustavo | 0:aef6b59caed0 | 235 | // We've updated the sensor, but we also need to update our class variables |
einsteingustavo | 0:aef6b59caed0 | 236 | // First update gScale: |
einsteingustavo | 0:aef6b59caed0 | 237 | gScale = gScl; |
einsteingustavo | 0:aef6b59caed0 | 238 | // Then calculate a new gRes, which relies on gScale being set correctly: |
einsteingustavo | 0:aef6b59caed0 | 239 | calcgRes(); |
einsteingustavo | 0:aef6b59caed0 | 240 | } |
einsteingustavo | 0:aef6b59caed0 | 241 | |
einsteingustavo | 0:aef6b59caed0 | 242 | void LSM6DS3::setAccelScale(accel_scale aScl) |
einsteingustavo | 0:aef6b59caed0 | 243 | { |
einsteingustavo | 0:aef6b59caed0 | 244 | // The start of the addresses we want to read from |
einsteingustavo | 0:aef6b59caed0 | 245 | char cmd[2] = { |
einsteingustavo | 0:aef6b59caed0 | 246 | CTRL1_XL, |
einsteingustavo | 0:aef6b59caed0 | 247 | 0 |
einsteingustavo | 0:aef6b59caed0 | 248 | }; |
einsteingustavo | 0:aef6b59caed0 | 249 | |
einsteingustavo | 0:aef6b59caed0 | 250 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 251 | i2c.write(xgAddress, cmd, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 252 | // Read in all the 8 bits of data |
einsteingustavo | 0:aef6b59caed0 | 253 | i2c.read(xgAddress, cmd+1, 1); |
einsteingustavo | 0:aef6b59caed0 | 254 | |
einsteingustavo | 0:aef6b59caed0 | 255 | // Then mask out the accel scale bits: |
einsteingustavo | 0:aef6b59caed0 | 256 | cmd[1] &= 0xFF^(0x3 << 3); |
einsteingustavo | 0:aef6b59caed0 | 257 | // Then shift in our new scale bits: |
einsteingustavo | 0:aef6b59caed0 | 258 | cmd[1] |= aScl << 3; |
einsteingustavo | 0:aef6b59caed0 | 259 | |
einsteingustavo | 0:aef6b59caed0 | 260 | // Write the accelscale out to the accel |
einsteingustavo | 0:aef6b59caed0 | 261 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 262 | |
einsteingustavo | 0:aef6b59caed0 | 263 | // We've updated the sensor, but we also need to update our class variables |
einsteingustavo | 0:aef6b59caed0 | 264 | // First update aScale: |
einsteingustavo | 0:aef6b59caed0 | 265 | aScale = aScl; |
einsteingustavo | 0:aef6b59caed0 | 266 | // Then calculate a new aRes, which relies on aScale being set correctly: |
einsteingustavo | 0:aef6b59caed0 | 267 | calcaRes(); |
einsteingustavo | 0:aef6b59caed0 | 268 | } |
einsteingustavo | 0:aef6b59caed0 | 269 | |
einsteingustavo | 0:aef6b59caed0 | 270 | void LSM6DS3::setGyroODR(gyro_odr gRate) |
einsteingustavo | 0:aef6b59caed0 | 271 | { |
einsteingustavo | 0:aef6b59caed0 | 272 | // The start of the addresses we want to read from |
einsteingustavo | 0:aef6b59caed0 | 273 | char cmd[2] = { |
einsteingustavo | 0:aef6b59caed0 | 274 | CTRL2_G, |
einsteingustavo | 0:aef6b59caed0 | 275 | 0 |
einsteingustavo | 0:aef6b59caed0 | 276 | }; |
einsteingustavo | 0:aef6b59caed0 | 277 | |
einsteingustavo | 0:aef6b59caed0 | 278 | // Set low power based on ODR, else keep sensor on high performance |
einsteingustavo | 0:aef6b59caed0 | 279 | if(gRate == G_ODR_13_BW_0 | gRate == G_ODR_26_BW_2 | gRate == G_ODR_52_BW_16) { |
einsteingustavo | 0:aef6b59caed0 | 280 | char cmdLow[2] ={ |
einsteingustavo | 0:aef6b59caed0 | 281 | CTRL7_G, |
einsteingustavo | 0:aef6b59caed0 | 282 | 1 |
einsteingustavo | 0:aef6b59caed0 | 283 | }; |
einsteingustavo | 0:aef6b59caed0 | 284 | |
einsteingustavo | 0:aef6b59caed0 | 285 | i2c.write(xgAddress, cmdLow, 2); |
einsteingustavo | 0:aef6b59caed0 | 286 | } |
einsteingustavo | 0:aef6b59caed0 | 287 | else { |
einsteingustavo | 0:aef6b59caed0 | 288 | char cmdLow[2] ={ |
einsteingustavo | 0:aef6b59caed0 | 289 | CTRL7_G, |
einsteingustavo | 0:aef6b59caed0 | 290 | 0 |
einsteingustavo | 0:aef6b59caed0 | 291 | }; |
einsteingustavo | 0:aef6b59caed0 | 292 | |
einsteingustavo | 0:aef6b59caed0 | 293 | i2c.write(xgAddress, cmdLow, 2); |
einsteingustavo | 0:aef6b59caed0 | 294 | } |
einsteingustavo | 0:aef6b59caed0 | 295 | |
einsteingustavo | 0:aef6b59caed0 | 296 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 297 | i2c.write(xgAddress, cmd, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 298 | // Read in all the 8 bits of data |
einsteingustavo | 0:aef6b59caed0 | 299 | i2c.read(xgAddress, cmd+1, 1); |
einsteingustavo | 0:aef6b59caed0 | 300 | |
einsteingustavo | 0:aef6b59caed0 | 301 | // Then mask out the gyro odr bits: |
einsteingustavo | 0:aef6b59caed0 | 302 | cmd[1] &= (0x3 << 3); |
einsteingustavo | 0:aef6b59caed0 | 303 | // Then shift in our new odr bits: |
einsteingustavo | 0:aef6b59caed0 | 304 | cmd[1] |= gRate; |
einsteingustavo | 0:aef6b59caed0 | 305 | |
einsteingustavo | 0:aef6b59caed0 | 306 | // Write the gyroodr out to the gyro |
einsteingustavo | 0:aef6b59caed0 | 307 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 308 | } |
einsteingustavo | 0:aef6b59caed0 | 309 | |
einsteingustavo | 0:aef6b59caed0 | 310 | void LSM6DS3::setAccelODR(accel_odr aRate) |
einsteingustavo | 0:aef6b59caed0 | 311 | { |
einsteingustavo | 0:aef6b59caed0 | 312 | // The start of the addresses we want to read from |
einsteingustavo | 0:aef6b59caed0 | 313 | char cmd[2] = { |
einsteingustavo | 0:aef6b59caed0 | 314 | CTRL1_XL, |
einsteingustavo | 0:aef6b59caed0 | 315 | 0 |
einsteingustavo | 0:aef6b59caed0 | 316 | }; |
einsteingustavo | 0:aef6b59caed0 | 317 | |
einsteingustavo | 0:aef6b59caed0 | 318 | // Set low power based on ODR, else keep sensor on high performance |
einsteingustavo | 0:aef6b59caed0 | 319 | if(aRate == A_ODR_13 | aRate == A_ODR_26 | aRate == A_ODR_52) { |
einsteingustavo | 0:aef6b59caed0 | 320 | char cmdLow[2] ={ |
einsteingustavo | 0:aef6b59caed0 | 321 | CTRL6_C, |
einsteingustavo | 0:aef6b59caed0 | 322 | 1 |
einsteingustavo | 0:aef6b59caed0 | 323 | }; |
einsteingustavo | 0:aef6b59caed0 | 324 | |
einsteingustavo | 0:aef6b59caed0 | 325 | i2c.write(xgAddress, cmdLow, 2); |
einsteingustavo | 0:aef6b59caed0 | 326 | } |
einsteingustavo | 0:aef6b59caed0 | 327 | else { |
einsteingustavo | 0:aef6b59caed0 | 328 | char cmdLow[2] ={ |
einsteingustavo | 0:aef6b59caed0 | 329 | CTRL6_C, |
einsteingustavo | 0:aef6b59caed0 | 330 | 0 |
einsteingustavo | 0:aef6b59caed0 | 331 | }; |
einsteingustavo | 0:aef6b59caed0 | 332 | |
einsteingustavo | 0:aef6b59caed0 | 333 | i2c.write(xgAddress, cmdLow, 2); |
einsteingustavo | 0:aef6b59caed0 | 334 | } |
einsteingustavo | 0:aef6b59caed0 | 335 | |
einsteingustavo | 0:aef6b59caed0 | 336 | // Write the address we are going to read from and don't end the transaction |
einsteingustavo | 0:aef6b59caed0 | 337 | i2c.write(xgAddress, cmd, 1, true); |
einsteingustavo | 0:aef6b59caed0 | 338 | // Read in all the 8 bits of data |
einsteingustavo | 0:aef6b59caed0 | 339 | i2c.read(xgAddress, cmd+1, 1); |
einsteingustavo | 0:aef6b59caed0 | 340 | |
einsteingustavo | 0:aef6b59caed0 | 341 | // Then mask out the accel odr bits: |
einsteingustavo | 0:aef6b59caed0 | 342 | cmd[1] &= 0xFF^(0x7 << 5); |
einsteingustavo | 0:aef6b59caed0 | 343 | // Then shift in our new odr bits: |
einsteingustavo | 0:aef6b59caed0 | 344 | cmd[1] |= aRate << 5; |
einsteingustavo | 0:aef6b59caed0 | 345 | |
einsteingustavo | 0:aef6b59caed0 | 346 | // Write the accelodr out to the accel |
einsteingustavo | 0:aef6b59caed0 | 347 | i2c.write(xgAddress, cmd, 2); |
einsteingustavo | 0:aef6b59caed0 | 348 | } |
einsteingustavo | 0:aef6b59caed0 | 349 | |
einsteingustavo | 0:aef6b59caed0 | 350 | void LSM6DS3::calcgRes() |
einsteingustavo | 0:aef6b59caed0 | 351 | { |
einsteingustavo | 0:aef6b59caed0 | 352 | // Possible gyro scales (and their register bit settings) are: |
einsteingustavo | 0:aef6b59caed0 | 353 | // 245 DPS (00), 500 DPS (01), 2000 DPS (10). |
einsteingustavo | 0:aef6b59caed0 | 354 | switch (gScale) |
einsteingustavo | 0:aef6b59caed0 | 355 | { |
einsteingustavo | 0:aef6b59caed0 | 356 | case G_SCALE_245DPS: |
einsteingustavo | 0:aef6b59caed0 | 357 | gRes = 245.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 358 | break; |
einsteingustavo | 0:aef6b59caed0 | 359 | case G_SCALE_500DPS: |
einsteingustavo | 0:aef6b59caed0 | 360 | gRes = 500.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 361 | break; |
einsteingustavo | 0:aef6b59caed0 | 362 | case G_SCALE_2000DPS: |
einsteingustavo | 0:aef6b59caed0 | 363 | gRes = 2000.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 364 | break; |
einsteingustavo | 0:aef6b59caed0 | 365 | } |
einsteingustavo | 0:aef6b59caed0 | 366 | } |
einsteingustavo | 0:aef6b59caed0 | 367 | |
einsteingustavo | 0:aef6b59caed0 | 368 | void LSM6DS3::calcaRes() |
einsteingustavo | 0:aef6b59caed0 | 369 | { |
einsteingustavo | 0:aef6b59caed0 | 370 | // Possible accelerometer scales (and their register bit settings) are: |
einsteingustavo | 0:aef6b59caed0 | 371 | // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). |
einsteingustavo | 0:aef6b59caed0 | 372 | switch (aScale) |
einsteingustavo | 0:aef6b59caed0 | 373 | { |
einsteingustavo | 0:aef6b59caed0 | 374 | case A_SCALE_2G: |
einsteingustavo | 0:aef6b59caed0 | 375 | aRes = 2.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 376 | break; |
einsteingustavo | 0:aef6b59caed0 | 377 | case A_SCALE_4G: |
einsteingustavo | 0:aef6b59caed0 | 378 | aRes = 4.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 379 | break; |
einsteingustavo | 0:aef6b59caed0 | 380 | case A_SCALE_8G: |
einsteingustavo | 0:aef6b59caed0 | 381 | aRes = 8.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 382 | break; |
einsteingustavo | 0:aef6b59caed0 | 383 | case A_SCALE_16G: |
einsteingustavo | 0:aef6b59caed0 | 384 | aRes = 16.0 / 32768.0; |
einsteingustavo | 0:aef6b59caed0 | 385 | break; |
einsteingustavo | 0:aef6b59caed0 | 386 | } |
einsteingustavo | 0:aef6b59caed0 | 387 | } |