Einstein Filho
/
MANGUEBAJA2019_REAR2
Mangue Baja team's code to rear ECU
RFM69/RFM69.cpp
- Committer:
- einsteingustavo
- Date:
- 2019-07-24
- Revision:
- 0:80950b84a6c4
File content as of revision 0:80950b84a6c4:
//Port of RFM69 from lowpowerlab //Sync'd Feb. 6, 2015 //spi register read/write routines from Karl Zweimuller's RF22 // // // // ********************************************************************************** // Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H // ********************************************************************************** // Copyright Felix Rusu (2014), felix@lowpowerlab.com // http://lowpowerlab.com/ // ********************************************************************************** // License // ********************************************************************************** // This program is free software; you can redistribute it // and/or modify it under the terms of the GNU General // Public License as published by the Free Software // Foundation; either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will // be useful, but WITHOUT ANY WARRANTY; without even the // implied warranty of MERCHANTABILITY or FITNESS FOR A // PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General // Public License along with this program. // If not, see <http://www.gnu.org/licenses/>. // // Licence can be viewed at // http://www.gnu.org/licenses/gpl-3.0.txt // // Please maintain this license information along with authorship // and copyright notices in any redistribution of this code // **********************************************************************************// RF22.cpp // // Copyright (C) 2011 Mike McCauley // $Id: RF22.cpp,v 1.17 2013/02/06 21:33:56 mikem Exp mikem $ // ported to mbed by Karl Zweimueller #include "mbed.h" #include "RFM69.h" #include <RFM69registers.h> #include <SPI.h> extern Thread eventThread; extern EventQueue queue; volatile uint8_t RFM69::DATA[RF69_MAX_DATA_LEN]; volatile uint8_t RFM69::_mode; // current transceiver state volatile uint8_t RFM69::DATALEN; volatile uint8_t RFM69::SENDERID; volatile uint8_t RFM69::TARGETID; // should match _address volatile uint8_t RFM69::PAYLOADLEN; volatile uint8_t RFM69::ACK_REQUESTED; volatile uint8_t RFM69::ACK_RECEIVED; // should be polled immediately after sending a packet with ACK request volatile int16_t RFM69::RSSI; // most accurate RSSI during reception (closest to the reception) RFM69::RFM69(PinName mosi, PinName miso, PinName sclk, PinName slaveSelectPin, PinName interrupt): _slaveSelectPin(slaveSelectPin) , _spi(mosi, miso, sclk), _interrupt(interrupt) { // Setup the spi for 8 bit data, high steady state clock, // second edge capture, with a 1MHz clock rate _spi.format(8,0); _spi.frequency(4000000); _mode = RF69_MODE_STANDBY; _promiscuousMode = false; _powerLevel = 31; } bool RFM69::initialize(uint8_t freqBand, uint8_t nodeID, uint8_t networkID) { unsigned long start_to; const uint8_t CONFIG[][2] = { /* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY }, /* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, // no shaping /* 0x03 */ { REG_BITRATEMSB, RF_BITRATEMSB_4800}, // default: 4.8 KBPS /* 0x04 */ { REG_BITRATELSB, RF_BITRATELSB_4800}, /* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_50000}, // default: 5KHz, (FDEV + BitRate / 2 <= 500KHz) /* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_50000}, /* 0x07 */ { REG_FRFMSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMSB_315 : (freqBand==RF69_433MHZ ? RF_FRFMSB_433 : (freqBand==RF69_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) }, /* 0x08 */ { REG_FRFMID, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFMID_315 : (freqBand==RF69_433MHZ ? RF_FRFMID_433 : (freqBand==RF69_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) }, /* 0x09 */ { REG_FRFLSB, (uint8_t) (freqBand==RF69_315MHZ ? RF_FRFLSB_315 : (freqBand==RF69_433MHZ ? RF_FRFLSB_433 : (freqBand==RF69_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) }, // looks like PA1 and PA2 are not implemented on RFM69W, hence the max output power is 13dBm // +17dBm and +20dBm are possible on RFM69HW // +13dBm formula: Pout = -18 + OutputPower (with PA0 or PA1**) // +17dBm formula: Pout = -14 + OutputPower (with PA1 and PA2)** // +20dBm formula: Pout = -11 + OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet) ///* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | RF_PALEVEL_OUTPUTPOWER_11111}, ///* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, // over current protection (default is 95mA) // RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4KHz) /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, // (BitRate < 2 * RxBw) //for BR-19200: /* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 }, /* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 }, // DIO0 is the only IRQ we're using /* 0x26 */ { REG_DIOMAPPING2, RF_DIOMAPPING2_CLKOUT_OFF }, // DIO5 ClkOut disable for power saving /* 0x28 */ { REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN }, // writing to this bit ensures that the FIFO & status flags are reset /* 0x29 */ { REG_RSSITHRESH, 220 }, // must be set to dBm = (-Sensitivity / 2), default is 0xE4 = 228 so -114dBm ///* 0x2D */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE } // default 3 preamble bytes 0xAAAAAA /* 0x2E */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_2 | RF_SYNC_TOL_0 }, /* 0x2F */ { REG_SYNCVALUE1, 0x2D }, // attempt to make this compatible with sync1 byte of RFM12B lib /* 0x30 */ { REG_SYNCVALUE2, networkID }, // NETWORK ID /* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE | RF_PACKET1_DCFREE_OFF | RF_PACKET1_CRC_ON | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF }, /* 0x38 */ { REG_PAYLOADLENGTH, 66 }, // in variable length mode: the max frame size, not used in TX ///* 0x39 */ { REG_NODEADRS, nodeID }, // turned off because we're not using address filtering /* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, // TX on FIFO not empty /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent) //for BR-19200: /* 0x3D */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, // RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent) /* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 }, // run DAGC continuously in RX mode for Fading Margin Improvement, recommended default for AfcLowBetaOn=0 {255, 0} }; // Timer for ms waits t.start(); _slaveSelectPin = 1; // Setup the spi for 8 bit data : 1RW-bit 7 adressbit and 8 databit // second edge capture, with a 10MHz clock rate _spi.format(8,0); _spi.frequency(4000000); #define TIME_OUT 50 start_to = t.read_ms() ; do writeReg(REG_SYNCVALUE1, 0xaa); while (readReg(REG_SYNCVALUE1) != 0xaa && t.read_ms()-start_to < TIME_OUT); if (t.read_ms()-start_to >= TIME_OUT) return (false); // Set time out start_to = t.read_ms() ; do writeReg(REG_SYNCVALUE1, 0x55); while (readReg(REG_SYNCVALUE1) != 0x55 && t.read_ms()-start_to < TIME_OUT); if (t.read_ms()-start_to >= TIME_OUT) return (false); for (uint8_t i = 0; CONFIG[i][0] != 255; i++) writeReg(CONFIG[i][0], CONFIG[i][1]); // Encryption is persistent between resets and can trip you up during debugging. // Disable it during initialization so we always start from a known state. encrypt(0); setHighPower(_isRFM69HW); // called regardless if it's a RFM69W or RFM69HW setMode(RF69_MODE_STANDBY); // Set up interrupt handler start_to = t.read_ms() ; while (((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00) && t.read_ms()-start_to < TIME_OUT); // Wait for ModeReady if (t.read_ms()-start_to >= TIME_OUT) return (false); _interrupt.rise(this, &RFM69::isr0); _address = nodeID; return true; } // return the frequency (in Hz) uint32_t RFM69::getFrequency() { return RF69_FSTEP * (((uint32_t) readReg(REG_FRFMSB) << 16) + ((uint16_t) readReg(REG_FRFMID) << 8) + readReg(REG_FRFLSB)); } // set the frequency (in Hz) void RFM69::setFrequency(uint32_t freqHz) { uint8_t oldMode = _mode; if (oldMode == RF69_MODE_TX) { setMode(RF69_MODE_RX); } freqHz /= RF69_FSTEP; // divide down by FSTEP to get FRF writeReg(REG_FRFMSB, freqHz >> 16); writeReg(REG_FRFMID, freqHz >> 8); writeReg(REG_FRFLSB, freqHz); if (oldMode == RF69_MODE_RX) { setMode(RF69_MODE_SYNTH); } setMode(oldMode); } void RFM69::setMode(uint8_t newMode) { if (newMode == _mode) return; switch (newMode) { case RF69_MODE_TX: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER); if (_isRFM69HW) setHighPowerRegs(true); break; case RF69_MODE_RX: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER); if (_isRFM69HW) setHighPowerRegs(false); break; case RF69_MODE_SYNTH: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER); break; case RF69_MODE_STANDBY: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY); break; case RF69_MODE_SLEEP: writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP); break; default: return; } // we are using packet mode, so this check is not really needed // but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode while (_mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady _mode = newMode; } void RFM69::sleep() { setMode(RF69_MODE_SLEEP); } void RFM69::setAddress(uint8_t addr) { _address = addr; writeReg(REG_NODEADRS, _address); } void RFM69::setNetwork(uint8_t networkID) { writeReg(REG_SYNCVALUE2, networkID); } // set output power: 0 = min, 31 = max // this results in a "weaker" transmitted signal, and directly results in a lower RSSI at the receiver void RFM69::setPowerLevel(uint8_t powerLevel) { _powerLevel = powerLevel; writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0xE0) | (_powerLevel > 31 ? 31 : _powerLevel)); } bool RFM69::canSend() { if (_mode == RF69_MODE_RX && PAYLOADLEN == 0 && readRSSI() < CSMA_LIMIT) // if signal stronger than -100dBm is detected assume channel activity { setMode(RF69_MODE_STANDBY); return true; } return false; } void RFM69::send(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK, bool sendACK) { writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks uint32_t now = t.read_ms(); while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone(); sendFrame(toAddress, buffer, bufferSize, requestACK, sendACK); } // to increase the chance of getting a packet across, call this function instead of send // and it handles all the ACK requesting/retrying for you :) // The only twist is that you have to manually listen to ACK requests on the other side and send back the ACKs // The reason for the semi-automaton is that the lib is interrupt driven and // requires user action to read the received data and decide what to do with it // replies usually take only 5..8ms at 50kbps@915MHz bool RFM69::sendWithRetry(uint8_t toAddress, const void* buffer, uint8_t bufferSize, uint8_t retries, uint8_t retryWaitTime) { uint32_t sentTime; for (uint8_t i = 0; i <= retries; i++) { send(toAddress, buffer, bufferSize, true); sentTime = t.read_ms(); while (t.read_ms() - sentTime < retryWaitTime) { if (ACKReceived(toAddress)) { //Serial.print(" ~ms:"); Serial.print(t.read_ms() - sentTime); return true; } } //Serial.print(" RETRY#"); Serial.println(i + 1); } return false; } // should be polled immediately after sending a packet with ACK request bool RFM69::ACKReceived(uint8_t fromNodeID) { if (receiveDone()) return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED; return false; } // check whether an ACK was requested in the last received packet (non-broadcasted packet) bool RFM69::ACKRequested() { return ACK_REQUESTED && (TARGETID != RF69_BROADCAST_ADDR); } // should be called immediately after reception in case sender wants ACK void RFM69::sendACK(const void* buffer, uint8_t bufferSize) { uint8_t sender = SENDERID; int16_t _RSSI = RSSI; // save payload received RSSI value writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks uint32_t now = t.read_ms(); while (!canSend() && t.read_ms() - now < RF69_CSMA_LIMIT_MS) receiveDone(); sendFrame(sender, buffer, bufferSize, false, true); RSSI = _RSSI; // restore payload RSSI } void RFM69::sendFrame(uint8_t toAddress, const void* buffer, uint8_t bufferSize, bool requestACK, bool sendACK) { setMode(RF69_MODE_STANDBY); // turn off receiver to prevent reception while filling fifo while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // wait for ModeReady writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent" if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN; // control byte uint8_t CTLbyte = 0x00; if (sendACK) CTLbyte = 0x80; else if (requestACK) CTLbyte = 0x40; select(); _spi.write(REG_FIFO | 0x80); _spi.write(bufferSize + 3); _spi.write(toAddress); _spi.write(_address); _spi.write(CTLbyte); for (uint8_t i = 0; i < bufferSize; i++) _spi.write(((uint8_t*) buffer)[i]); unselect(); // no need to wait for transmit mode to be ready since its handled by the radio setMode(RF69_MODE_TX); uint32_t txStart = t.read_ms(); while (_interrupt == 0 && t.read_ms() - txStart < RF69_TX_LIMIT_MS); // wait for DIO0 to turn HIGH signalling transmission finish //while (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT == 0x00); // wait for ModeReady setMode(RF69_MODE_STANDBY); } // ON = disable filtering to capture all frames on network // OFF = enable node/broadcast filtering to capture only frames sent to this/broadcast address void RFM69::promiscuous(bool onOff) { _promiscuousMode = onOff; //writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | (onOff ? RF_PACKET1_ADRSFILTERING_OFF : RF_PACKET1_ADRSFILTERING_NODEBROADCAST)); } void RFM69::setHighPower(bool onOff) { _isRFM69HW = onOff; writeReg(REG_OCP, _isRFM69HW ? RF_OCP_OFF : RF_OCP_ON); if (_isRFM69HW) // turning ON writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0x1F) | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON); // enable P1 & P2 amplifier stages else writeReg(REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | _powerLevel); // enable P0 only } void RFM69::setHighPowerRegs(bool onOff) { writeReg(REG_TESTPA1, onOff ? 0x5D : 0x55); writeReg(REG_TESTPA2, onOff ? 0x7C : 0x70); } /* void RFM69::setCS(uint8_t newSPISlaveSelect) { DigitalOut _slaveSelectPin(newSPISlaveSelect); _slaveSelectPin = 1; } */ // for debugging void RFM69::readAllRegs() { uint8_t regVal,regAddr; for (regAddr = 1; regAddr <= 0x4F; regAddr++) { select(); _spi.write(regAddr & 0x7F); // send address + r/w bit regVal = _spi.write(0); /* Serial.print(regAddr, HEX); Serial.print(" - "); Serial.print(regVal,HEX); Serial.print(" - "); Serial.println(regVal,BIN);*/ } unselect(); } uint8_t RFM69::readTemperature(int8_t calFactor) // returns centigrade { uint8_t oldMode = _mode; setMode(RF69_MODE_STANDBY); writeReg(REG_TEMP1, RF_TEMP1_MEAS_START); while ((readReg(REG_TEMP1) & RF_TEMP1_MEAS_RUNNING)); setMode(oldMode); return ~readReg(REG_TEMP2) + COURSE_TEMP_COEF + calFactor; // 'complement' corrects the slope, rising temp = rising val } // COURSE_TEMP_COEF puts reading in the ballpark, user can add additional correction void RFM69::rcCalibration() { writeReg(REG_OSC1, RF_OSC1_RCCAL_START); while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00); } // C++ level interrupt handler for this instance void RFM69::interruptHandler() { if (_mode == RF69_MODE_RX && (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)) { setMode(RF69_MODE_STANDBY); select(); _spi.write(REG_FIFO & 0x7F); PAYLOADLEN = _spi.write(0); PAYLOADLEN = PAYLOADLEN > 66 ? 66 : PAYLOADLEN; // precaution TARGETID = _spi.write(0); if(!(_promiscuousMode || TARGETID == _address || TARGETID == RF69_BROADCAST_ADDR) // match this node's address, or broadcast address or anything in promiscuous mode || PAYLOADLEN < 3) // address situation could receive packets that are malformed and don't fit this libraries extra fields { PAYLOADLEN = 0; unselect(); receiveBegin(); return; } DATALEN = PAYLOADLEN - 3; SENDERID = _spi.write(0); uint8_t CTLbyte = _spi.write(0); ACK_RECEIVED = CTLbyte & 0x80; // extract ACK-received flag ACK_REQUESTED = CTLbyte & 0x40; // extract ACK-requested flag for (uint8_t i = 0; i < DATALEN; i++) { DATA[i] = _spi.write(0); } if (DATALEN < RF69_MAX_DATA_LEN) DATA[DATALEN] = 0; // add null at end of string unselect(); setMode(RF69_MODE_RX); } RSSI = readRSSI(); } // These are low level functions that call the interrupt handler for the correct instance of RFM69. void RFM69::isr0() { queue.call(this, &RFM69::interruptHandler); } void RFM69::receiveBegin() { DATALEN = 0; SENDERID = 0; TARGETID = 0; PAYLOADLEN = 0; ACK_REQUESTED = 0; ACK_RECEIVED = 0; RSSI = 0; if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY) writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); // set DIO0 to "PAYLOADREADY" in receive mode setMode(RF69_MODE_RX); _interrupt.enable_irq(); } bool RFM69::receiveDone() { _interrupt.disable_irq(); // re-enabled in unselect() via setMode() or via receiveBegin() if (_mode == RF69_MODE_RX && PAYLOADLEN > 0) { setMode(RF69_MODE_STANDBY); // enables interrupts return true; } else if (_mode == RF69_MODE_RX) // already in RX no payload yet { _interrupt.enable_irq(); // explicitly re-enable interrupts return false; } receiveBegin(); return false; } // To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP"); // To disable encryption: radio.encrypt(null) or radio.encrypt(0) // KEY HAS TO BE 16 bytes !!! void RFM69::encrypt(const char* key) { setMode(RF69_MODE_STANDBY); if (key != 0) { select(); _spi.write(REG_AESKEY1 | 0x80); for (uint8_t i = 0; i < 16; i++) _spi.write(key[i]); unselect(); } writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (key ? 1 : 0)); } int16_t RFM69::readRSSI(bool forceTrigger) { int16_t rssi = 0; if (forceTrigger) { // RSSI trigger not needed if DAGC is in continuous mode writeReg(REG_RSSICONFIG, RF_RSSI_START); while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // wait for RSSI_Ready } rssi = -readReg(REG_RSSIVALUE); rssi >>= 1; return rssi; } uint8_t RFM69::readReg(uint8_t addr) { select(); _spi.write(addr & 0x7F); // Send the address with the write mask off uint8_t val = _spi.write(0); // The written value is ignored, reg value is read unselect(); return val; } void RFM69::writeReg(uint8_t addr, uint8_t value) { select(); _spi.write(addr | 0x80); // Send the address with the write mask on _spi.write(value); // New value follows unselect(); } // select the transceiver void RFM69::select() { _interrupt.disable_irq(); // Disable Interrupts /* // set RFM69 SPI settings SPI.setDataMode(SPI_MODE0); SPI.setBitOrder(MSBFIRST); SPI.setClockDivider(SPI_CLOCK_DIV4); // decided to slow down from DIV2 after SPI stalling in some instances, especially visible on mega1284p when RFM69 and FLASH chip both present */ _slaveSelectPin = 0; } // UNselect the transceiver chip void RFM69::unselect() { _slaveSelectPin = 1; _interrupt.enable_irq(); // Enable Interrupts }