lsm6ds3 library working on mbed-os 5
Diff: LSM6DS3.cpp
- Revision:
- 0:46630122dec9
- Child:
- 1:924c7dea286e
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM6DS3.cpp Thu Jun 16 20:07:13 2016 +0000 @@ -0,0 +1,315 @@ +#include "LSM6DS3.h" + +LSM6DS3::LSM6DS3(PinName sda, PinName scl, uint8_t xgAddr) : i2c(sda, scl) +{ + // xgAddress will store the 7-bit I2C address, if using I2C. + xgAddress = xgAddr; +} + +uint16_t LSM6DS3::begin(gyro_scale gScl, accel_scale aScl, + gyro_odr gODR, accel_odr aODR) +{ + // Store the given scales in class variables. These scale variables + // are used throughout to calculate the actual g's, DPS,and Gs's. + gScale = gScl; + aScale = aScl; + + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + // The start of the addresses we want to read from + char cmd[2] = { + WHO_AM_I_REG, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + setGyroODR(gODR); // Set the gyro output data rate and bandwidth. + setGyroScale(gScale); // Set the gyro range + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + setAccelODR(aODR); // Set the accel data rate. + setAccelScale(aScale); // Set the accel range. + + // Once everything is initialized, return the WHO_AM_I registers we read: + return xgTest; +} + +void LSM6DS3::initGyro() +{ + char cmd[4] = { + CTRL2_G, + gScale | G_ODR_119_BW_14, + 0, // Default data out and int out + 0 // Default power mode and high pass settings + }; + + // Write the data to the gyro control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM6DS3::initAccel() +{ + char cmd[4] = { + CTRL1_XL, + 0x38, // Enable all axis and don't decimate data in out Registers + (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW + 0 // Default resolution mode and filtering settings + }; + + // Write the data to the accel control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM6DS3::readAccel() +{ + // The data we are going to read from the accel + char data[6]; + + // Set addresses + char subAddressXL = OUTX_L_XL; + char subAddressXH = OUTX_H_XL; + char subAddressYL = OUTY_L_XL; + char subAddressYH = OUTY_H_XL; + char subAddressZL = OUTZ_L_XL; + char subAddressZH = OUTZ_H_XL; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressXL, 1, true); + // Read in register containing the axes data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressXH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + i2c.write(xgAddress, &subAddressYL, 1, true); + i2c.read(xgAddress, (data + 2), 1); + i2c.write(xgAddress, &subAddressYH, 1, true); + i2c.read(xgAddress, (data + 3), 1); + i2c.write(xgAddress, &subAddressZL, 1, true); + i2c.read(xgAddress, (data + 4), 1); + i2c.write(xgAddress, &subAddressZH, 1, true); + i2c.read(xgAddress, (data + 5), 1); + + // Reassemble the data and convert to g + ax_raw = data[0] | (data[1] << 8); + ay_raw = data[2] | (data[3] << 8); + az_raw = data[4] | (data[5] << 8); + ax = ax_raw * aRes; + ay = ay_raw * aRes; + az = az_raw * aRes; +} + +void LSM6DS3::readTemp() +{ + // The data we are going to read from the temp + char data[2]; + + // Set addresses + char subAddressL = OUT_TEMP_L; + char subAddressH = OUT_TEMP_H; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressL, 1, true); + // Read in register containing the temperature data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + + // Temperature is a 12-bit signed integer + temperature_raw = data[0] | (data[1] << 8); + + temperature_c = (float)temperature_raw / 16.0 + 25.0; + temperature_f = temperature_c * 1.8 + 32.0; +} + + +void LSM6DS3::readGyro() +{ + // The data we are going to read from the gyro + char data[6]; + + // Set addresses + char subAddressXL = OUTX_L_G; + char subAddressXH = OUTX_H_G; + char subAddressYL = OUTY_L_G; + char subAddressYH = OUTY_H_G; + char subAddressZL = OUTZ_L_G; + char subAddressZH = OUTZ_H_G; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressXL, 1, true); + // Read in register containing the axes data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressXH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + i2c.write(xgAddress, &subAddressYL, 1, true); + i2c.read(xgAddress, (data + 2), 1); + i2c.write(xgAddress, &subAddressYH, 1, true); + i2c.read(xgAddress, (data + 3), 1); + i2c.write(xgAddress, &subAddressZL, 1, true); + i2c.read(xgAddress, (data + 4), 1); + i2c.write(xgAddress, &subAddressZH, 1, true); + i2c.read(xgAddress, (data + 5), 1); + + // Reassemble the data and convert to degrees/sec + gx_raw = data[0] | (data[1] << 8); + gy_raw = data[2] | (data[3] << 8); + gz_raw = data[4] | (data[5] << 8); + gx = gx_raw * gRes; + gy = gy_raw * gRes; + gz = gz_raw * gRes; +} + +void LSM6DS3::setGyroScale(gyro_scale gScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL2_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= gScl << 3; + + // Write the gyroscale out to the gyro + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update gScale: + gScale = gScl; + // Then calculate a new gRes, which relies on gScale being set correctly: + calcgRes(); +} + +void LSM6DS3::setAccelScale(accel_scale aScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL1_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= aScl << 3; + + // Write the accelscale out to the accel + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update aScale: + aScale = aScl; + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM6DS3::setGyroODR(gyro_odr gRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL2_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro odr bits: + cmd[1] &= (0x3 << 3); + // Then shift in our new odr bits: + cmd[1] |= gRate; + + // Write the gyroodr out to the gyro + i2c.write(xgAddress, cmd, 2); +} + +void LSM6DS3::setAccelODR(accel_odr aRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL1_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel odr bits: + cmd[1] &= 0xFF^(0x7 << 5); + // Then shift in our new odr bits: + cmd[1] |= aRate << 5; + + // Write the accelodr out to the accel + i2c.write(xgAddress, cmd, 2); +} + +void LSM6DS3::calcgRes() +{ + // Possible gyro scales (and their register bit settings) are: + // 245 DPS (00), 500 DPS (01), 2000 DPS (10). + switch (gScale) + { + case G_SCALE_245DPS: + gRes = 245.0 / 32768.0; + break; + case G_SCALE_500DPS: + gRes = 500.0 / 32768.0; + break; + case G_SCALE_2000DPS: + gRes = 2000.0 / 32768.0; + break; + } +} + +void LSM6DS3::calcaRes() +{ + // Possible accelerometer scales (and their register bit settings) are: + // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). + switch (aScale) + { + case A_SCALE_2G: + aRes = 2.0 / 32768.0; + break; + case A_SCALE_4G: + aRes = 4.0 / 32768.0; + break; + case A_SCALE_8G: + aRes = 8.0 / 32768.0; + break; + case A_SCALE_16G: + aRes = 16.0 / 32768.0; + break; + } +} \ No newline at end of file