lsm6ds3 library working on mbed-os 5
LSM6DS3.cpp@2:ed14e6196255, 2016-06-21 (annotated)
- Committer:
- 5hel2l2y
- Date:
- Tue Jun 21 20:51:25 2016 +0000
- Revision:
- 2:ed14e6196255
- Parent:
- 1:924c7dea286e
- Child:
- 3:69c5c66c3f2f
Adding interrupt.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
5hel2l2y | 0:46630122dec9 | 1 | #include "LSM6DS3.h" |
5hel2l2y | 0:46630122dec9 | 2 | |
5hel2l2y | 0:46630122dec9 | 3 | LSM6DS3::LSM6DS3(PinName sda, PinName scl, uint8_t xgAddr) : i2c(sda, scl) |
5hel2l2y | 0:46630122dec9 | 4 | { |
5hel2l2y | 0:46630122dec9 | 5 | // xgAddress will store the 7-bit I2C address, if using I2C. |
5hel2l2y | 0:46630122dec9 | 6 | xgAddress = xgAddr; |
5hel2l2y | 0:46630122dec9 | 7 | } |
5hel2l2y | 0:46630122dec9 | 8 | |
5hel2l2y | 0:46630122dec9 | 9 | uint16_t LSM6DS3::begin(gyro_scale gScl, accel_scale aScl, |
5hel2l2y | 0:46630122dec9 | 10 | gyro_odr gODR, accel_odr aODR) |
5hel2l2y | 0:46630122dec9 | 11 | { |
5hel2l2y | 0:46630122dec9 | 12 | // Store the given scales in class variables. These scale variables |
5hel2l2y | 0:46630122dec9 | 13 | // are used throughout to calculate the actual g's, DPS,and Gs's. |
5hel2l2y | 0:46630122dec9 | 14 | gScale = gScl; |
5hel2l2y | 0:46630122dec9 | 15 | aScale = aScl; |
5hel2l2y | 0:46630122dec9 | 16 | |
5hel2l2y | 0:46630122dec9 | 17 | // Once we have the scale values, we can calculate the resolution |
5hel2l2y | 0:46630122dec9 | 18 | // of each sensor. That's what these functions are for. One for each sensor |
5hel2l2y | 0:46630122dec9 | 19 | calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable |
5hel2l2y | 0:46630122dec9 | 20 | calcaRes(); // Calculate g / ADC tick, stored in aRes variable |
5hel2l2y | 0:46630122dec9 | 21 | |
5hel2l2y | 0:46630122dec9 | 22 | |
5hel2l2y | 0:46630122dec9 | 23 | // To verify communication, we can read from the WHO_AM_I register of |
5hel2l2y | 0:46630122dec9 | 24 | // each device. Store those in a variable so we can return them. |
5hel2l2y | 0:46630122dec9 | 25 | // The start of the addresses we want to read from |
5hel2l2y | 0:46630122dec9 | 26 | char cmd[2] = { |
5hel2l2y | 0:46630122dec9 | 27 | WHO_AM_I_REG, |
5hel2l2y | 0:46630122dec9 | 28 | 0 |
5hel2l2y | 0:46630122dec9 | 29 | }; |
5hel2l2y | 0:46630122dec9 | 30 | |
5hel2l2y | 0:46630122dec9 | 31 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 32 | i2c.write(xgAddress, cmd, 1, true); |
5hel2l2y | 0:46630122dec9 | 33 | // Read in all the 8 bits of data |
5hel2l2y | 0:46630122dec9 | 34 | i2c.read(xgAddress, cmd+1, 1); |
5hel2l2y | 0:46630122dec9 | 35 | uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I |
5hel2l2y | 0:46630122dec9 | 36 | |
5hel2l2y | 0:46630122dec9 | 37 | // Gyro initialization stuff: |
5hel2l2y | 0:46630122dec9 | 38 | initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. |
5hel2l2y | 0:46630122dec9 | 39 | setGyroODR(gODR); // Set the gyro output data rate and bandwidth. |
5hel2l2y | 0:46630122dec9 | 40 | setGyroScale(gScale); // Set the gyro range |
5hel2l2y | 0:46630122dec9 | 41 | |
5hel2l2y | 0:46630122dec9 | 42 | // Accelerometer initialization stuff: |
5hel2l2y | 0:46630122dec9 | 43 | initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. |
5hel2l2y | 0:46630122dec9 | 44 | setAccelODR(aODR); // Set the accel data rate. |
5hel2l2y | 0:46630122dec9 | 45 | setAccelScale(aScale); // Set the accel range. |
5hel2l2y | 0:46630122dec9 | 46 | |
5hel2l2y | 2:ed14e6196255 | 47 | // Interrupt initialization stuff; |
5hel2l2y | 2:ed14e6196255 | 48 | initIntr(); |
5hel2l2y | 2:ed14e6196255 | 49 | |
5hel2l2y | 0:46630122dec9 | 50 | // Once everything is initialized, return the WHO_AM_I registers we read: |
5hel2l2y | 0:46630122dec9 | 51 | return xgTest; |
5hel2l2y | 0:46630122dec9 | 52 | } |
5hel2l2y | 0:46630122dec9 | 53 | |
5hel2l2y | 0:46630122dec9 | 54 | void LSM6DS3::initGyro() |
5hel2l2y | 0:46630122dec9 | 55 | { |
5hel2l2y | 0:46630122dec9 | 56 | char cmd[4] = { |
5hel2l2y | 0:46630122dec9 | 57 | CTRL2_G, |
5hel2l2y | 1:924c7dea286e | 58 | gScale | G_ODR_104, |
5hel2l2y | 0:46630122dec9 | 59 | 0, // Default data out and int out |
5hel2l2y | 0:46630122dec9 | 60 | 0 // Default power mode and high pass settings |
5hel2l2y | 0:46630122dec9 | 61 | }; |
5hel2l2y | 0:46630122dec9 | 62 | |
5hel2l2y | 0:46630122dec9 | 63 | // Write the data to the gyro control registers |
5hel2l2y | 0:46630122dec9 | 64 | i2c.write(xgAddress, cmd, 4); |
5hel2l2y | 0:46630122dec9 | 65 | } |
5hel2l2y | 0:46630122dec9 | 66 | |
5hel2l2y | 0:46630122dec9 | 67 | void LSM6DS3::initAccel() |
5hel2l2y | 0:46630122dec9 | 68 | { |
5hel2l2y | 0:46630122dec9 | 69 | char cmd[4] = { |
5hel2l2y | 0:46630122dec9 | 70 | CTRL1_XL, |
5hel2l2y | 0:46630122dec9 | 71 | 0x38, // Enable all axis and don't decimate data in out Registers |
5hel2l2y | 1:924c7dea286e | 72 | (A_ODR_104 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW |
5hel2l2y | 0:46630122dec9 | 73 | 0 // Default resolution mode and filtering settings |
5hel2l2y | 0:46630122dec9 | 74 | }; |
5hel2l2y | 0:46630122dec9 | 75 | |
5hel2l2y | 0:46630122dec9 | 76 | // Write the data to the accel control registers |
5hel2l2y | 0:46630122dec9 | 77 | i2c.write(xgAddress, cmd, 4); |
5hel2l2y | 0:46630122dec9 | 78 | } |
5hel2l2y | 0:46630122dec9 | 79 | |
5hel2l2y | 2:ed14e6196255 | 80 | void LSM6DS3::initIntr() |
5hel2l2y | 2:ed14e6196255 | 81 | { |
5hel2l2y | 2:ed14e6196255 | 82 | char cmd[2]; |
5hel2l2y | 2:ed14e6196255 | 83 | |
5hel2l2y | 2:ed14e6196255 | 84 | cmd[0] = TAP_CFG; |
5hel2l2y | 2:ed14e6196255 | 85 | cmd[1] = 0x0E; |
5hel2l2y | 2:ed14e6196255 | 86 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 2:ed14e6196255 | 87 | cmd[0] = TAP_THS_6D; |
5hel2l2y | 2:ed14e6196255 | 88 | cmd[1] = 0x03; |
5hel2l2y | 2:ed14e6196255 | 89 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 2:ed14e6196255 | 90 | cmd[0] = INT_DUR2; |
5hel2l2y | 2:ed14e6196255 | 91 | cmd[1] = 0x7F; |
5hel2l2y | 2:ed14e6196255 | 92 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 2:ed14e6196255 | 93 | cmd[0] = WAKE_UP_THS; |
5hel2l2y | 2:ed14e6196255 | 94 | cmd[1] = 0x80; |
5hel2l2y | 2:ed14e6196255 | 95 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 2:ed14e6196255 | 96 | cmd[0] = MD1_CFG; |
5hel2l2y | 2:ed14e6196255 | 97 | cmd[1] = 0x48; |
5hel2l2y | 2:ed14e6196255 | 98 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 2:ed14e6196255 | 99 | } |
5hel2l2y | 2:ed14e6196255 | 100 | |
5hel2l2y | 0:46630122dec9 | 101 | void LSM6DS3::readAccel() |
5hel2l2y | 0:46630122dec9 | 102 | { |
5hel2l2y | 0:46630122dec9 | 103 | // The data we are going to read from the accel |
5hel2l2y | 0:46630122dec9 | 104 | char data[6]; |
5hel2l2y | 0:46630122dec9 | 105 | |
5hel2l2y | 0:46630122dec9 | 106 | // Set addresses |
5hel2l2y | 0:46630122dec9 | 107 | char subAddressXL = OUTX_L_XL; |
5hel2l2y | 0:46630122dec9 | 108 | char subAddressXH = OUTX_H_XL; |
5hel2l2y | 0:46630122dec9 | 109 | char subAddressYL = OUTY_L_XL; |
5hel2l2y | 0:46630122dec9 | 110 | char subAddressYH = OUTY_H_XL; |
5hel2l2y | 0:46630122dec9 | 111 | char subAddressZL = OUTZ_L_XL; |
5hel2l2y | 0:46630122dec9 | 112 | char subAddressZH = OUTZ_H_XL; |
5hel2l2y | 0:46630122dec9 | 113 | |
5hel2l2y | 0:46630122dec9 | 114 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 115 | i2c.write(xgAddress, &subAddressXL, 1, true); |
5hel2l2y | 0:46630122dec9 | 116 | // Read in register containing the axes data and alocated to the correct index |
5hel2l2y | 0:46630122dec9 | 117 | i2c.read(xgAddress, data, 1); |
5hel2l2y | 0:46630122dec9 | 118 | |
5hel2l2y | 0:46630122dec9 | 119 | i2c.write(xgAddress, &subAddressXH, 1, true); |
5hel2l2y | 0:46630122dec9 | 120 | i2c.read(xgAddress, (data + 1), 1); |
5hel2l2y | 0:46630122dec9 | 121 | i2c.write(xgAddress, &subAddressYL, 1, true); |
5hel2l2y | 0:46630122dec9 | 122 | i2c.read(xgAddress, (data + 2), 1); |
5hel2l2y | 0:46630122dec9 | 123 | i2c.write(xgAddress, &subAddressYH, 1, true); |
5hel2l2y | 0:46630122dec9 | 124 | i2c.read(xgAddress, (data + 3), 1); |
5hel2l2y | 0:46630122dec9 | 125 | i2c.write(xgAddress, &subAddressZL, 1, true); |
5hel2l2y | 0:46630122dec9 | 126 | i2c.read(xgAddress, (data + 4), 1); |
5hel2l2y | 0:46630122dec9 | 127 | i2c.write(xgAddress, &subAddressZH, 1, true); |
5hel2l2y | 0:46630122dec9 | 128 | i2c.read(xgAddress, (data + 5), 1); |
5hel2l2y | 0:46630122dec9 | 129 | |
5hel2l2y | 0:46630122dec9 | 130 | // Reassemble the data and convert to g |
5hel2l2y | 0:46630122dec9 | 131 | ax_raw = data[0] | (data[1] << 8); |
5hel2l2y | 0:46630122dec9 | 132 | ay_raw = data[2] | (data[3] << 8); |
5hel2l2y | 0:46630122dec9 | 133 | az_raw = data[4] | (data[5] << 8); |
5hel2l2y | 0:46630122dec9 | 134 | ax = ax_raw * aRes; |
5hel2l2y | 0:46630122dec9 | 135 | ay = ay_raw * aRes; |
5hel2l2y | 0:46630122dec9 | 136 | az = az_raw * aRes; |
5hel2l2y | 0:46630122dec9 | 137 | } |
5hel2l2y | 0:46630122dec9 | 138 | |
5hel2l2y | 2:ed14e6196255 | 139 | void LSM6DS3::readIntr() |
5hel2l2y | 2:ed14e6196255 | 140 | { |
5hel2l2y | 2:ed14e6196255 | 141 | char data[1]; |
5hel2l2y | 2:ed14e6196255 | 142 | char subAddress = TAP_SRC; |
5hel2l2y | 2:ed14e6196255 | 143 | |
5hel2l2y | 2:ed14e6196255 | 144 | i2c.write(xgAddress, &subAddress, 1, true); |
5hel2l2y | 2:ed14e6196255 | 145 | i2c.read(xgAddress, data, 1); |
5hel2l2y | 2:ed14e6196255 | 146 | |
5hel2l2y | 2:ed14e6196255 | 147 | intr = (float)data[0]; |
5hel2l2y | 2:ed14e6196255 | 148 | } |
5hel2l2y | 2:ed14e6196255 | 149 | |
5hel2l2y | 0:46630122dec9 | 150 | void LSM6DS3::readTemp() |
5hel2l2y | 0:46630122dec9 | 151 | { |
5hel2l2y | 0:46630122dec9 | 152 | // The data we are going to read from the temp |
5hel2l2y | 0:46630122dec9 | 153 | char data[2]; |
5hel2l2y | 0:46630122dec9 | 154 | |
5hel2l2y | 0:46630122dec9 | 155 | // Set addresses |
5hel2l2y | 0:46630122dec9 | 156 | char subAddressL = OUT_TEMP_L; |
5hel2l2y | 0:46630122dec9 | 157 | char subAddressH = OUT_TEMP_H; |
5hel2l2y | 0:46630122dec9 | 158 | |
5hel2l2y | 0:46630122dec9 | 159 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 160 | i2c.write(xgAddress, &subAddressL, 1, true); |
5hel2l2y | 0:46630122dec9 | 161 | // Read in register containing the temperature data and alocated to the correct index |
5hel2l2y | 0:46630122dec9 | 162 | i2c.read(xgAddress, data, 1); |
5hel2l2y | 0:46630122dec9 | 163 | |
5hel2l2y | 0:46630122dec9 | 164 | i2c.write(xgAddress, &subAddressH, 1, true); |
5hel2l2y | 0:46630122dec9 | 165 | i2c.read(xgAddress, (data + 1), 1); |
5hel2l2y | 0:46630122dec9 | 166 | |
5hel2l2y | 0:46630122dec9 | 167 | // Temperature is a 12-bit signed integer |
5hel2l2y | 0:46630122dec9 | 168 | temperature_raw = data[0] | (data[1] << 8); |
5hel2l2y | 0:46630122dec9 | 169 | |
5hel2l2y | 0:46630122dec9 | 170 | temperature_c = (float)temperature_raw / 16.0 + 25.0; |
5hel2l2y | 0:46630122dec9 | 171 | temperature_f = temperature_c * 1.8 + 32.0; |
5hel2l2y | 0:46630122dec9 | 172 | } |
5hel2l2y | 0:46630122dec9 | 173 | |
5hel2l2y | 0:46630122dec9 | 174 | |
5hel2l2y | 0:46630122dec9 | 175 | void LSM6DS3::readGyro() |
5hel2l2y | 0:46630122dec9 | 176 | { |
5hel2l2y | 0:46630122dec9 | 177 | // The data we are going to read from the gyro |
5hel2l2y | 0:46630122dec9 | 178 | char data[6]; |
5hel2l2y | 0:46630122dec9 | 179 | |
5hel2l2y | 0:46630122dec9 | 180 | // Set addresses |
5hel2l2y | 0:46630122dec9 | 181 | char subAddressXL = OUTX_L_G; |
5hel2l2y | 0:46630122dec9 | 182 | char subAddressXH = OUTX_H_G; |
5hel2l2y | 0:46630122dec9 | 183 | char subAddressYL = OUTY_L_G; |
5hel2l2y | 0:46630122dec9 | 184 | char subAddressYH = OUTY_H_G; |
5hel2l2y | 0:46630122dec9 | 185 | char subAddressZL = OUTZ_L_G; |
5hel2l2y | 0:46630122dec9 | 186 | char subAddressZH = OUTZ_H_G; |
5hel2l2y | 0:46630122dec9 | 187 | |
5hel2l2y | 0:46630122dec9 | 188 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 189 | i2c.write(xgAddress, &subAddressXL, 1, true); |
5hel2l2y | 0:46630122dec9 | 190 | // Read in register containing the axes data and alocated to the correct index |
5hel2l2y | 0:46630122dec9 | 191 | i2c.read(xgAddress, data, 1); |
5hel2l2y | 0:46630122dec9 | 192 | |
5hel2l2y | 0:46630122dec9 | 193 | i2c.write(xgAddress, &subAddressXH, 1, true); |
5hel2l2y | 0:46630122dec9 | 194 | i2c.read(xgAddress, (data + 1), 1); |
5hel2l2y | 0:46630122dec9 | 195 | i2c.write(xgAddress, &subAddressYL, 1, true); |
5hel2l2y | 0:46630122dec9 | 196 | i2c.read(xgAddress, (data + 2), 1); |
5hel2l2y | 0:46630122dec9 | 197 | i2c.write(xgAddress, &subAddressYH, 1, true); |
5hel2l2y | 0:46630122dec9 | 198 | i2c.read(xgAddress, (data + 3), 1); |
5hel2l2y | 0:46630122dec9 | 199 | i2c.write(xgAddress, &subAddressZL, 1, true); |
5hel2l2y | 0:46630122dec9 | 200 | i2c.read(xgAddress, (data + 4), 1); |
5hel2l2y | 0:46630122dec9 | 201 | i2c.write(xgAddress, &subAddressZH, 1, true); |
5hel2l2y | 0:46630122dec9 | 202 | i2c.read(xgAddress, (data + 5), 1); |
5hel2l2y | 0:46630122dec9 | 203 | |
5hel2l2y | 0:46630122dec9 | 204 | // Reassemble the data and convert to degrees/sec |
5hel2l2y | 0:46630122dec9 | 205 | gx_raw = data[0] | (data[1] << 8); |
5hel2l2y | 0:46630122dec9 | 206 | gy_raw = data[2] | (data[3] << 8); |
5hel2l2y | 0:46630122dec9 | 207 | gz_raw = data[4] | (data[5] << 8); |
5hel2l2y | 0:46630122dec9 | 208 | gx = gx_raw * gRes; |
5hel2l2y | 0:46630122dec9 | 209 | gy = gy_raw * gRes; |
5hel2l2y | 0:46630122dec9 | 210 | gz = gz_raw * gRes; |
5hel2l2y | 0:46630122dec9 | 211 | } |
5hel2l2y | 0:46630122dec9 | 212 | |
5hel2l2y | 0:46630122dec9 | 213 | void LSM6DS3::setGyroScale(gyro_scale gScl) |
5hel2l2y | 0:46630122dec9 | 214 | { |
5hel2l2y | 0:46630122dec9 | 215 | // The start of the addresses we want to read from |
5hel2l2y | 0:46630122dec9 | 216 | char cmd[2] = { |
5hel2l2y | 0:46630122dec9 | 217 | CTRL2_G, |
5hel2l2y | 0:46630122dec9 | 218 | 0 |
5hel2l2y | 0:46630122dec9 | 219 | }; |
5hel2l2y | 0:46630122dec9 | 220 | |
5hel2l2y | 0:46630122dec9 | 221 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 222 | i2c.write(xgAddress, cmd, 1, true); |
5hel2l2y | 0:46630122dec9 | 223 | // Read in all the 8 bits of data |
5hel2l2y | 0:46630122dec9 | 224 | i2c.read(xgAddress, cmd+1, 1); |
5hel2l2y | 0:46630122dec9 | 225 | |
5hel2l2y | 0:46630122dec9 | 226 | // Then mask out the gyro scale bits: |
5hel2l2y | 0:46630122dec9 | 227 | cmd[1] &= 0xFF^(0x3 << 3); |
5hel2l2y | 0:46630122dec9 | 228 | // Then shift in our new scale bits: |
5hel2l2y | 0:46630122dec9 | 229 | cmd[1] |= gScl << 3; |
5hel2l2y | 0:46630122dec9 | 230 | |
5hel2l2y | 0:46630122dec9 | 231 | // Write the gyroscale out to the gyro |
5hel2l2y | 0:46630122dec9 | 232 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 0:46630122dec9 | 233 | |
5hel2l2y | 0:46630122dec9 | 234 | // We've updated the sensor, but we also need to update our class variables |
5hel2l2y | 0:46630122dec9 | 235 | // First update gScale: |
5hel2l2y | 0:46630122dec9 | 236 | gScale = gScl; |
5hel2l2y | 0:46630122dec9 | 237 | // Then calculate a new gRes, which relies on gScale being set correctly: |
5hel2l2y | 0:46630122dec9 | 238 | calcgRes(); |
5hel2l2y | 0:46630122dec9 | 239 | } |
5hel2l2y | 0:46630122dec9 | 240 | |
5hel2l2y | 0:46630122dec9 | 241 | void LSM6DS3::setAccelScale(accel_scale aScl) |
5hel2l2y | 0:46630122dec9 | 242 | { |
5hel2l2y | 0:46630122dec9 | 243 | // The start of the addresses we want to read from |
5hel2l2y | 0:46630122dec9 | 244 | char cmd[2] = { |
5hel2l2y | 0:46630122dec9 | 245 | CTRL1_XL, |
5hel2l2y | 0:46630122dec9 | 246 | 0 |
5hel2l2y | 0:46630122dec9 | 247 | }; |
5hel2l2y | 0:46630122dec9 | 248 | |
5hel2l2y | 0:46630122dec9 | 249 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 250 | i2c.write(xgAddress, cmd, 1, true); |
5hel2l2y | 0:46630122dec9 | 251 | // Read in all the 8 bits of data |
5hel2l2y | 0:46630122dec9 | 252 | i2c.read(xgAddress, cmd+1, 1); |
5hel2l2y | 0:46630122dec9 | 253 | |
5hel2l2y | 0:46630122dec9 | 254 | // Then mask out the accel scale bits: |
5hel2l2y | 0:46630122dec9 | 255 | cmd[1] &= 0xFF^(0x3 << 3); |
5hel2l2y | 0:46630122dec9 | 256 | // Then shift in our new scale bits: |
5hel2l2y | 0:46630122dec9 | 257 | cmd[1] |= aScl << 3; |
5hel2l2y | 0:46630122dec9 | 258 | |
5hel2l2y | 0:46630122dec9 | 259 | // Write the accelscale out to the accel |
5hel2l2y | 0:46630122dec9 | 260 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 0:46630122dec9 | 261 | |
5hel2l2y | 0:46630122dec9 | 262 | // We've updated the sensor, but we also need to update our class variables |
5hel2l2y | 0:46630122dec9 | 263 | // First update aScale: |
5hel2l2y | 0:46630122dec9 | 264 | aScale = aScl; |
5hel2l2y | 0:46630122dec9 | 265 | // Then calculate a new aRes, which relies on aScale being set correctly: |
5hel2l2y | 0:46630122dec9 | 266 | calcaRes(); |
5hel2l2y | 0:46630122dec9 | 267 | } |
5hel2l2y | 0:46630122dec9 | 268 | |
5hel2l2y | 0:46630122dec9 | 269 | void LSM6DS3::setGyroODR(gyro_odr gRate) |
5hel2l2y | 0:46630122dec9 | 270 | { |
5hel2l2y | 0:46630122dec9 | 271 | // The start of the addresses we want to read from |
5hel2l2y | 0:46630122dec9 | 272 | char cmd[2] = { |
5hel2l2y | 0:46630122dec9 | 273 | CTRL2_G, |
5hel2l2y | 0:46630122dec9 | 274 | 0 |
5hel2l2y | 0:46630122dec9 | 275 | }; |
5hel2l2y | 1:924c7dea286e | 276 | |
5hel2l2y | 1:924c7dea286e | 277 | // Set low power based on ODR, else keep sensor on high performance |
5hel2l2y | 1:924c7dea286e | 278 | if(gRate == G_ODR_13_BW_0 | gRate == G_ODR_26_BW_2 | gRate == G_ODR_52_BW_16) { |
5hel2l2y | 1:924c7dea286e | 279 | char cmdLow[2] ={ |
5hel2l2y | 1:924c7dea286e | 280 | CTRL7_G, |
5hel2l2y | 1:924c7dea286e | 281 | 1 |
5hel2l2y | 1:924c7dea286e | 282 | }; |
5hel2l2y | 1:924c7dea286e | 283 | |
5hel2l2y | 1:924c7dea286e | 284 | i2c.write(xgAddress, cmdLow, 2); |
5hel2l2y | 1:924c7dea286e | 285 | } |
5hel2l2y | 1:924c7dea286e | 286 | else { |
5hel2l2y | 1:924c7dea286e | 287 | char cmdLow[2] ={ |
5hel2l2y | 1:924c7dea286e | 288 | CTRL7_G, |
5hel2l2y | 1:924c7dea286e | 289 | 0 |
5hel2l2y | 1:924c7dea286e | 290 | }; |
5hel2l2y | 1:924c7dea286e | 291 | |
5hel2l2y | 1:924c7dea286e | 292 | i2c.write(xgAddress, cmdLow, 2); |
5hel2l2y | 1:924c7dea286e | 293 | } |
5hel2l2y | 0:46630122dec9 | 294 | |
5hel2l2y | 0:46630122dec9 | 295 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 296 | i2c.write(xgAddress, cmd, 1, true); |
5hel2l2y | 0:46630122dec9 | 297 | // Read in all the 8 bits of data |
5hel2l2y | 0:46630122dec9 | 298 | i2c.read(xgAddress, cmd+1, 1); |
5hel2l2y | 0:46630122dec9 | 299 | |
5hel2l2y | 0:46630122dec9 | 300 | // Then mask out the gyro odr bits: |
5hel2l2y | 0:46630122dec9 | 301 | cmd[1] &= (0x3 << 3); |
5hel2l2y | 0:46630122dec9 | 302 | // Then shift in our new odr bits: |
5hel2l2y | 0:46630122dec9 | 303 | cmd[1] |= gRate; |
5hel2l2y | 0:46630122dec9 | 304 | |
5hel2l2y | 0:46630122dec9 | 305 | // Write the gyroodr out to the gyro |
5hel2l2y | 0:46630122dec9 | 306 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 0:46630122dec9 | 307 | } |
5hel2l2y | 0:46630122dec9 | 308 | |
5hel2l2y | 0:46630122dec9 | 309 | void LSM6DS3::setAccelODR(accel_odr aRate) |
5hel2l2y | 0:46630122dec9 | 310 | { |
5hel2l2y | 0:46630122dec9 | 311 | // The start of the addresses we want to read from |
5hel2l2y | 0:46630122dec9 | 312 | char cmd[2] = { |
5hel2l2y | 0:46630122dec9 | 313 | CTRL1_XL, |
5hel2l2y | 0:46630122dec9 | 314 | 0 |
5hel2l2y | 0:46630122dec9 | 315 | }; |
5hel2l2y | 1:924c7dea286e | 316 | |
5hel2l2y | 1:924c7dea286e | 317 | // Set low power based on ODR, else keep sensor on high performance |
5hel2l2y | 1:924c7dea286e | 318 | if(aRate == A_ODR_13 | aRate == A_ODR_26 | aRate == A_ODR_52) { |
5hel2l2y | 1:924c7dea286e | 319 | char cmdLow[2] ={ |
5hel2l2y | 1:924c7dea286e | 320 | CTRL6_C, |
5hel2l2y | 1:924c7dea286e | 321 | 1 |
5hel2l2y | 1:924c7dea286e | 322 | }; |
5hel2l2y | 1:924c7dea286e | 323 | |
5hel2l2y | 1:924c7dea286e | 324 | i2c.write(xgAddress, cmdLow, 2); |
5hel2l2y | 1:924c7dea286e | 325 | } |
5hel2l2y | 1:924c7dea286e | 326 | else { |
5hel2l2y | 1:924c7dea286e | 327 | char cmdLow[2] ={ |
5hel2l2y | 1:924c7dea286e | 328 | CTRL6_C, |
5hel2l2y | 1:924c7dea286e | 329 | 0 |
5hel2l2y | 1:924c7dea286e | 330 | }; |
5hel2l2y | 1:924c7dea286e | 331 | |
5hel2l2y | 1:924c7dea286e | 332 | i2c.write(xgAddress, cmdLow, 2); |
5hel2l2y | 1:924c7dea286e | 333 | } |
5hel2l2y | 0:46630122dec9 | 334 | |
5hel2l2y | 0:46630122dec9 | 335 | // Write the address we are going to read from and don't end the transaction |
5hel2l2y | 0:46630122dec9 | 336 | i2c.write(xgAddress, cmd, 1, true); |
5hel2l2y | 0:46630122dec9 | 337 | // Read in all the 8 bits of data |
5hel2l2y | 0:46630122dec9 | 338 | i2c.read(xgAddress, cmd+1, 1); |
5hel2l2y | 0:46630122dec9 | 339 | |
5hel2l2y | 0:46630122dec9 | 340 | // Then mask out the accel odr bits: |
5hel2l2y | 0:46630122dec9 | 341 | cmd[1] &= 0xFF^(0x7 << 5); |
5hel2l2y | 0:46630122dec9 | 342 | // Then shift in our new odr bits: |
5hel2l2y | 0:46630122dec9 | 343 | cmd[1] |= aRate << 5; |
5hel2l2y | 0:46630122dec9 | 344 | |
5hel2l2y | 0:46630122dec9 | 345 | // Write the accelodr out to the accel |
5hel2l2y | 0:46630122dec9 | 346 | i2c.write(xgAddress, cmd, 2); |
5hel2l2y | 0:46630122dec9 | 347 | } |
5hel2l2y | 0:46630122dec9 | 348 | |
5hel2l2y | 0:46630122dec9 | 349 | void LSM6DS3::calcgRes() |
5hel2l2y | 0:46630122dec9 | 350 | { |
5hel2l2y | 0:46630122dec9 | 351 | // Possible gyro scales (and their register bit settings) are: |
5hel2l2y | 0:46630122dec9 | 352 | // 245 DPS (00), 500 DPS (01), 2000 DPS (10). |
5hel2l2y | 0:46630122dec9 | 353 | switch (gScale) |
5hel2l2y | 0:46630122dec9 | 354 | { |
5hel2l2y | 0:46630122dec9 | 355 | case G_SCALE_245DPS: |
5hel2l2y | 0:46630122dec9 | 356 | gRes = 245.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 357 | break; |
5hel2l2y | 0:46630122dec9 | 358 | case G_SCALE_500DPS: |
5hel2l2y | 0:46630122dec9 | 359 | gRes = 500.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 360 | break; |
5hel2l2y | 0:46630122dec9 | 361 | case G_SCALE_2000DPS: |
5hel2l2y | 0:46630122dec9 | 362 | gRes = 2000.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 363 | break; |
5hel2l2y | 0:46630122dec9 | 364 | } |
5hel2l2y | 0:46630122dec9 | 365 | } |
5hel2l2y | 0:46630122dec9 | 366 | |
5hel2l2y | 0:46630122dec9 | 367 | void LSM6DS3::calcaRes() |
5hel2l2y | 0:46630122dec9 | 368 | { |
5hel2l2y | 0:46630122dec9 | 369 | // Possible accelerometer scales (and their register bit settings) are: |
5hel2l2y | 0:46630122dec9 | 370 | // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). |
5hel2l2y | 0:46630122dec9 | 371 | switch (aScale) |
5hel2l2y | 0:46630122dec9 | 372 | { |
5hel2l2y | 0:46630122dec9 | 373 | case A_SCALE_2G: |
5hel2l2y | 0:46630122dec9 | 374 | aRes = 2.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 375 | break; |
5hel2l2y | 0:46630122dec9 | 376 | case A_SCALE_4G: |
5hel2l2y | 0:46630122dec9 | 377 | aRes = 4.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 378 | break; |
5hel2l2y | 0:46630122dec9 | 379 | case A_SCALE_8G: |
5hel2l2y | 0:46630122dec9 | 380 | aRes = 8.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 381 | break; |
5hel2l2y | 0:46630122dec9 | 382 | case A_SCALE_16G: |
5hel2l2y | 0:46630122dec9 | 383 | aRes = 16.0 / 32768.0; |
5hel2l2y | 0:46630122dec9 | 384 | break; |
5hel2l2y | 0:46630122dec9 | 385 | } |
5hel2l2y | 0:46630122dec9 | 386 | } |