Fitbit code using RTOS

Dependencies:   mbed PulseSensor2 SCP1000 mbed-rtos 4DGL-uLCD-SE LSM9DS1_Library_cal PinDetect FatFileSystemCpp GP-20U7

main.cpp

Committer:
dyu2021
Date:
2020-04-22
Revision:
4:158ea0c5531c
Parent:
3:f3e1ee4aa5ec

File content as of revision 4:158ea0c5531c:

#include "mbed.h"
#include "rtos.h"
#include "LSM9DS1.h"
#include "SCP1000.h"
#include "PulseSensor.h"
#include "PinDetect.h"
#include "uLCD_4DGL.h"
#include "GPS.h"
#include "MSCFileSystem.h"
 
SCP1000 scp1000(p5,p6,p7,p8);
LSM9DS1 IMU(p9, p10, 0xD6, 0x3C);
PulseSensor PPG(p17);
uLCD_4DGL uLCD(p28,p27,p29);
Serial pc(USBTX, USBRX);
DigitalOut one = LED1;
DigitalOut two = LED2;
DigitalOut three = LED3;
DigitalOut four = LED4;
AnalogIn pot(p20);
PinDetect pb(p21);
GPS gps(p13, p14);

#define FSNAME "msc"
MSCFileSystem msc(FSNAME); 
 
int bpm;
int steps = 0;
int flights = 0;
float distance = 0.0;
float calories = 0;
int oldSteps = 0;
const int stepGoal = 100;
float stride_length = 0.0;

unsigned long pressure;
float latitude = 0;
float longitude = 0;
float old_lat = 0;
float old_lon = 0;
#define PI 3.14159
unsigned long p_buff[4];
int count = 0;

int mode = 1;
int oldMode = 1;
 
bool run = true;

int gender;
int weight;
int age;
int screen = 1;
int oldScreen = 1;
bool setup_state = true;

Timer usb_timer;

Thread thread1;
Thread thread2;
Thread thread3;
Thread thread4;
Thread thread5;
Mutex serial_mtx;
Mutex usb_mtx;
 
// when the pushbotton is pressed the run flag is set to false and the main 
// function while loop exits so that the data file can be closed 
// so press the button when you're ready to be done collecting data
void button (void) {
    run = false;
}

void next() {
    oldScreen = screen;
    screen++;
    if(screen == 4) {
        setup_state = false;
    }
}
 
// Reads the value of the potentiometer and averages over 3 readings to get rid 
// of random spikes/zero values. Returns either a 1, 2 or 3 based on which 3rd 
// of its range the potentiometer is in and which screen should be displayed
void read_pot() {
    float m1; 
    float m2;
    float m3;
    oldMode = mode;
    m1 = pot.read();
    m2 = pot.read();
    m3 = pot.read();
    if(m1 < 0.2 && m2 < 0.2 && m3 < 0.2) {
        mode = 1;
    } else if(m1 >= 0.2 && m1 < 0.4 && m2 >= 0.2 && m2 < 0.4 && m3 >= 0.2 && m3 < 0.4) {
        mode = 2;
    } else if(m1 >= 0.4 && m1 < 0.6 && m2 >= 0.4 && m2 < 0.6 && m3 >= 0.4 && m3 < 0.6) {
        mode = 3;
    } else if(m1 >= 0.6 && m1 < 0.8 && m2 >= 0.6 && m2 < 0.8 && m3 >= 0.6 && m3 < 0.8) {
        mode = 4;
    } else if(m1 >= 0.8 && m2 >= 0.8 && m3 >= 0.8) {
        mode = 5;
    }
    //when the mode changes, clear the screen
}    
 
//Display the time on the top
void display_time() {
    while(1) {
        serial_mtx.lock();
        uLCD.locate(1, 1);
        uLCD.color(WHITE);
        uLCD.text_width(2);
        uLCD.text_height(3);
        time_t seconds = time(NULL);
        char timeBuffer[32];
        strftime(timeBuffer, 32, "%I:%M %p\r\n", localtime(&seconds));
        uLCD.printf("%s", timeBuffer);
        serial_mtx.unlock();
        Thread::wait(700);
    }
}

void setup_screen(void) {
    while(1) {
        serial_mtx.lock();
        if (oldScreen != screen) {
            uLCD.filled_rectangle(0,0, 128, 128, BLACK);
            oldScreen++;
        }
        switch(screen) {
            case 1:
                //Gender
                uLCD.locate(2, 1);
                uLCD.text_width(2);
                uLCD.text_height(2);
                uLCD.puts("Gender");
                uLCD.text_width(3);
                uLCD.text_height(3);
                uLCD.locate(1, 3);
                uLCD.putc('M');
                uLCD.locate(4, 3);
                uLCD.putc('F');
                if(pot.read() > 0.5) {
                    gender = 0;
                    uLCD.rectangle(13, 60, 48, 100, BLACK);
                    uLCD.rectangle(75, 60, 110, 100, GREEN);
                } else {
                    gender = 1;
                    uLCD.rectangle(75, 60, 110, 100, BLACK);
                    uLCD.rectangle(13, 60, 48, 100, GREEN);
                }
                break;
            case 2:
                //Weight
                uLCD.color(WHITE);
                uLCD.locate(9, 14);
                uLCD.text_width(1);
                uLCD.text_height(1);
                uLCD.puts("lbs");
                uLCD.locate(2, 1);
                uLCD.text_width(2);
                uLCD.text_height(2);
                uLCD.puts("Weight");
                weight = 0.45 * (90 + pot.read() * 210);
                char weight_string[3];
                if(weight < 100) {
                    sprintf(weight_string, " %d", weight);
                } else {
                    sprintf(weight_string, "%d", weight);
                }
                uLCD.text_width(3);
                uLCD.text_height(3);
                uLCD.locate(2, 3);
                uLCD.color(GREEN);
                uLCD.puts(weight_string);
                uLCD.line(35, 100, 110, 100, WHITE);
                break;
            case 3:
                //Age
                uLCD.color(WHITE);
                uLCD.locate(3, 1);
                uLCD.text_width(2);
                uLCD.text_height(2);
                uLCD.puts("Age");
                age = (int) (10 + pot.read() * 89);
                char age_string[2];
                sprintf(age_string, "%d", age);
                uLCD.text_width(3);
                uLCD.text_height(3);
                uLCD.locate(2, 3);
                uLCD.color(GREEN);
                uLCD.puts(age_string);
                uLCD.line(40, 100, 90, 100, WHITE);
                break;
        }
        serial_mtx.unlock();
        Thread::wait(100);
    }
}
 
void update_screen(void) {
    while(1) {
        read_pot();
        serial_mtx.lock();
        if (oldMode != mode) {
            uLCD.filled_rectangle(0,0, 128, 128, BLACK);
        }
        // print the information to the LCD display
        switch(mode) {
            case 1:
                //Step count
                //uLCD.media_init();
                //uLCD.set_sector_address(0x0000, 0x0005);
                //uLCD.display_image(50, 45);
                uLCD.filled_rectangle(10, 110, 118, 115, BLACK);
                uLCD.locate(3, 11);
                uLCD.text_height(1);
                uLCD.text_width(1);
                uLCD.color(WHITE);
                uLCD.printf("%4d steps",steps);
                uLCD.filled_rectangle(10, 110, 10 + int(steps * (110/stepGoal)), 115, WHITE);
                break;
            case 2:
                // Heart rate
                //uLCD.media_init();
                //uLCD.set_sector_address(0x0000, 0x000A);
                //uLCD.display_image(50, 45);
                uLCD.locate(5, 11);
                uLCD.text_height(1);
                uLCD.text_width(1);
                uLCD.color(WHITE);
                uLCD.printf("%3d BPM", bpm);
                break;
            case 3:
                //Distance
                //uLCD.media_init();
                //uLCD.set_sector_address(0x0000, 0x000F);
                //uLCD.display_image(50, 45);
                uLCD.locate(6, 11);
                uLCD.text_height(1);
                uLCD.text_width(1);
                uLCD.color(WHITE);
                uLCD.printf("%4.2f ft", distance);
                break;
            case 4:
                //Calories
                //uLCD.media_init();
                //uLCD.set_sector_address(0x0000, 0x0000);
                //uLCD.display_image(50, 45);
                uLCD.locate(4, 11);
                uLCD.text_height(1);
                uLCD.text_width(1);
                uLCD.color(WHITE);
                uLCD.printf("%4d cal", (int)calories);
                break;
            case 5:
                //Floors
                //uLCD.media_init();
                //uLCD.set_sector_address(0x0000, 0x0014);
                //uLCD.display_image(50, 45);
                uLCD.locate(4, 11);
                uLCD.text_height(1);
                uLCD.text_width(1);
                uLCD.color(WHITE);
                uLCD.printf("%2d floors", flights);
                break;
        }
        serial_mtx.unlock();
        Thread::wait(100);
    }
}

void readHR(){
    while(1) {
        bpm = PPG.get_BPM();
        //calories = calories + (.0083)*.239*(gender*(-55.0969+.6309*bpm+.1988*weight+.2017*age)+(1-gender)*(-20.4022+.4472*bpm-.1263*weight+.074*age));
        calories = calories + (.0083)*0.239*(gender*(-55.0969+.6309*bpm+.1988*0.453592*weight
                                             +.2017*age)+(1-gender)*(-20.4022+.4472*bpm-.1263*0.453592*weight+.074*age));
        //converted weight from lbs to kilograms

        //Alternate way to calculate distance (likely more accurate)
        //distance = distance + (steps - oldSteps)* stride_length;
        //oldSteps = steps;
        Thread::wait(500);
    }
}

void readBarometer()
{
    while(1) {
        pressure = scp1000.readPressure();
        if(count >= 0) count--;
        unsigned long dif;
        if(pressure < p_buff[0]) {
            dif = p_buff[0] - pressure;
        } else {
            dif = 0;
        }
        if(pressure != 0 && p_buff[0] != 0 && dif > 40 && dif < 60 && count < 0) {
            flights++;
            count = 2;
        }
        p_buff[0] = p_buff[1];
        p_buff[1] = p_buff[2];
        p_buff[2] = p_buff[3];
        p_buff[3] = pressure;
        Thread::wait(2000);
    }
}
        
void readGPS(){
    while(1) {
        serial_mtx.lock();
        if(gps.connected()) {
            if(gps.sample()) {
                if(gps.ns == 'S') {
                    longitude = gps.longitude*PI/180;
                } else {
                    longitude = -gps.longitude*PI/180;
                }
                if(gps.ew == 'W') {
                    latitude = gps.latitude*PI/180;
                } else {
                    latitude = -gps.latitude*PI/180;
                }
                if(latitude != 0 && longitude != 0 && old_lat != 0 && old_lon != 0) {
                    float a = sinf(old_lat)*sinf(latitude)+cosf(old_lat)*cosf(latitude)*cosf(longitude-old_lon);
                    if(a > 1) a = 1;
                    distance = distance + (.75*acosf(a));
                }
                old_lat = latitude;
                old_lon = longitude;
                //pc.printf("%f, %f, %f\r\n", latitude, longitude, distance);
            }
        }
        serial_mtx.unlock();
        Thread::wait(10000);
    }
}

void saveData() {
    // Save the data to the usb flash drive and print to the terminal
    FILE *fp = fopen( "/msc/data.txt", "a");
    if(fp == NULL) {
        error("Could not open file for write\n");
    }
    time_t seconds = time(NULL);
    char date[32];
    strftime(date, 32, "%m/%d/%y", localtime(&seconds));
    fprintf(fp, "%s\t%d\t%d\t%0.2f\t%0.2f\n\r", date, steps, flights, calories, distance);
    pc.printf("%s\t%d\t%d\t%0.2f\t%0.2f\n\r", date, steps, flights, calories, distance);
    fclose(fp);
}

    
int main() {
    //Set RTC time
    set_time(1256729737);
    
    // Next screen button
    pb.mode(PullUp);
    pb.attach_deasserted(&next);
    pb.setSampleFrequency();
    
    //set up the display
    uLCD.baudrate(3000000);
    uLCD.background_color(BLACK);
    uLCD.cls();
    thread1.start(setup_screen);
    
    while(setup_state) {
        pc.printf("%d\r\n", screen);
    }
    thread1.terminate();
    
    // Off button
    pb.attach_deasserted(&button);
    
    // set up the display
    uLCD.cls();
    thread1.start(update_screen);
    thread2.start(display_time);
    
    // LED indicates whether or not data is being collected
    one = 0;
    two = 0;
    three = 0;
    four = 0;
    // Start sensors
    int sample_num = 1;
    PPG.start();
    IMU.begin();
    IMU.calibrate(1);
    float ax;
    float ay;
    float az;
    float mag = 0;
    float buffer[2] = {0};
    float avg_buffer[2] = {0};
    float avg;
    
    // Initialize data file on usb flash drive
    usb_mtx.lock();
    FILE *fp = fopen( "/msc/data.txt", "r+");
    if(fp == NULL) {
        error("Could not open file for write\n");
    }
    //Check to see if file is empty, not working right now
    fseek (fp, 0, SEEK_END);
    int size = ftell(fp);
    if (0 == size) {
        fprintf(fp, "Date\tSteps\tFloors\tCalories\tDistance (ft)\r\n");
        pc.printf("Data.txt rewritten\r\n");
    }
    fclose(fp);
    usb_mtx.unlock();
    
    thread3.start(readBarometer);
    thread4.start(readGPS);
    thread5.start(readHR);

    usb_timer.start();

    while(run) {
        // Read Sensors
        IMU.readAccel();
        ax = IMU.calcAccel(IMU.ax);
        ay = IMU.calcAccel(IMU.ay);
        az = IMU.calcAccel(IMU.az);
        // Calculate the 3 point moving average of the magnitude of the 
        // acceleration vector
        mag = sqrt((ax*ax) + (ay*ay) + (az*az));
        avg = (buffer[0] + buffer[1] + mag) / 3;
        buffer[0] = buffer[1];
        buffer[1] = mag;
        // Count a step if the previous point was a maximum (greater than the 
        // current point and 2 points back) and was greater than the threshold 
        // value of 1.05
        if(sample_num > 1) {
            float dif1 = avg_buffer[1] - avg_buffer[0];
            float dif2 = avg_buffer[1] - avg;
            float peak_prominence = 0.01;
            if(dif1 > peak_prominence && dif2 > peak_prominence) {
                steps++;
            }
        }
        avg_buffer[0] = avg_buffer[1];
        avg_buffer[1] = avg;
        
        sample_num++;
        one = !one;
        // Sampling rate of ~200 Hz
        if(usb_timer.read() >= 30) {
            //pc.printf("Starting USB Write\r\n");
            usb_mtx.lock();
            saveData();
            usb_mtx.unlock();
            usb_timer.stop();
            usb_timer.reset();
            usb_timer.start();
        }
        Thread::wait(200);
    }
    one = 0;
}