Dodging asteroids game.

Dependencies:   4DGL-uLCD-SE PinDetect SDFileSystem mbed wave_player

Committer:
dylanslack
Date:
Mon Mar 14 03:08:37 2016 +0000
Revision:
0:3f73e98442ec
Initial commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
dylanslack 0:3f73e98442ec 1 /******************************************************************************
dylanslack 0:3f73e98442ec 2 SFE_LSM9DS1.cpp
dylanslack 0:3f73e98442ec 3 SFE_LSM9DS1 Library Source File
dylanslack 0:3f73e98442ec 4 Jim Lindblom @ SparkFun Electronics
dylanslack 0:3f73e98442ec 5 Original Creation Date: February 27, 2015
dylanslack 0:3f73e98442ec 6 https://github.com/sparkfun/LSM9DS1_Breakout
dylanslack 0:3f73e98442ec 7
dylanslack 0:3f73e98442ec 8 This file implements all functions of the LSM9DS1 class. Functions here range
dylanslack 0:3f73e98442ec 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
dylanslack 0:3f73e98442ec 10 hardware reads and writes. Both SPI and I2C handler functions can be found
dylanslack 0:3f73e98442ec 11 towards the bottom of this file.
dylanslack 0:3f73e98442ec 12
dylanslack 0:3f73e98442ec 13 Development environment specifics:
dylanslack 0:3f73e98442ec 14 IDE: Arduino 1.6
dylanslack 0:3f73e98442ec 15 Hardware Platform: Arduino Uno
dylanslack 0:3f73e98442ec 16 LSM9DS1 Breakout Version: 1.0
dylanslack 0:3f73e98442ec 17
dylanslack 0:3f73e98442ec 18 This code is beerware; if you see me (or any other SparkFun employee) at the
dylanslack 0:3f73e98442ec 19 local, and you've found our code helpful, please buy us a round!
dylanslack 0:3f73e98442ec 20
dylanslack 0:3f73e98442ec 21 Distributed as-is; no warranty is given.
dylanslack 0:3f73e98442ec 22 ******************************************************************************/
dylanslack 0:3f73e98442ec 23
dylanslack 0:3f73e98442ec 24 #include "LSM9DS1.h"
dylanslack 0:3f73e98442ec 25 #include "LSM9DS1_Registers.h"
dylanslack 0:3f73e98442ec 26 #include "LSM9DS1_Types.h"
dylanslack 0:3f73e98442ec 27 //#include <Wire.h> // Wire library is used for I2C
dylanslack 0:3f73e98442ec 28 //#include <SPI.h> // SPI library is used for...SPI.
dylanslack 0:3f73e98442ec 29
dylanslack 0:3f73e98442ec 30 //#if defined(ARDUINO) && ARDUINO >= 100
dylanslack 0:3f73e98442ec 31 // #include "Arduino.h"
dylanslack 0:3f73e98442ec 32 //#else
dylanslack 0:3f73e98442ec 33 // #include "WProgram.h"
dylanslack 0:3f73e98442ec 34 //#endif
dylanslack 0:3f73e98442ec 35
dylanslack 0:3f73e98442ec 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
dylanslack 0:3f73e98442ec 37
dylanslack 0:3f73e98442ec 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
dylanslack 0:3f73e98442ec 39 extern Serial pc;
dylanslack 0:3f73e98442ec 40
dylanslack 0:3f73e98442ec 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
dylanslack 0:3f73e98442ec 42 :i2c(sda, scl)
dylanslack 0:3f73e98442ec 43 {
dylanslack 0:3f73e98442ec 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
dylanslack 0:3f73e98442ec 45 }
dylanslack 0:3f73e98442ec 46 /*
dylanslack 0:3f73e98442ec 47 LSM9DS1::LSM9DS1()
dylanslack 0:3f73e98442ec 48 {
dylanslack 0:3f73e98442ec 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
dylanslack 0:3f73e98442ec 50 }
dylanslack 0:3f73e98442ec 51
dylanslack 0:3f73e98442ec 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
dylanslack 0:3f73e98442ec 53 {
dylanslack 0:3f73e98442ec 54 init(interface, xgAddr, mAddr);
dylanslack 0:3f73e98442ec 55 }
dylanslack 0:3f73e98442ec 56 */
dylanslack 0:3f73e98442ec 57
dylanslack 0:3f73e98442ec 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
dylanslack 0:3f73e98442ec 59 {
dylanslack 0:3f73e98442ec 60 settings.device.commInterface = interface;
dylanslack 0:3f73e98442ec 61 settings.device.agAddress = xgAddr;
dylanslack 0:3f73e98442ec 62 settings.device.mAddress = mAddr;
dylanslack 0:3f73e98442ec 63
dylanslack 0:3f73e98442ec 64 settings.gyro.enabled = true;
dylanslack 0:3f73e98442ec 65 settings.gyro.enableX = true;
dylanslack 0:3f73e98442ec 66 settings.gyro.enableY = true;
dylanslack 0:3f73e98442ec 67 settings.gyro.enableZ = true;
dylanslack 0:3f73e98442ec 68 // gyro scale can be 245, 500, or 2000
dylanslack 0:3f73e98442ec 69 settings.gyro.scale = 245;
dylanslack 0:3f73e98442ec 70 // gyro sample rate: value between 1-6
dylanslack 0:3f73e98442ec 71 // 1 = 14.9 4 = 238
dylanslack 0:3f73e98442ec 72 // 2 = 59.5 5 = 476
dylanslack 0:3f73e98442ec 73 // 3 = 119 6 = 952
dylanslack 0:3f73e98442ec 74 settings.gyro.sampleRate = 6;
dylanslack 0:3f73e98442ec 75 // gyro cutoff frequency: value between 0-3
dylanslack 0:3f73e98442ec 76 // Actual value of cutoff frequency depends
dylanslack 0:3f73e98442ec 77 // on sample rate.
dylanslack 0:3f73e98442ec 78 settings.gyro.bandwidth = 0;
dylanslack 0:3f73e98442ec 79 settings.gyro.lowPowerEnable = false;
dylanslack 0:3f73e98442ec 80 settings.gyro.HPFEnable = false;
dylanslack 0:3f73e98442ec 81 // Gyro HPF cutoff frequency: value between 0-9
dylanslack 0:3f73e98442ec 82 // Actual value depends on sample rate. Only applies
dylanslack 0:3f73e98442ec 83 // if gyroHPFEnable is true.
dylanslack 0:3f73e98442ec 84 settings.gyro.HPFCutoff = 0;
dylanslack 0:3f73e98442ec 85 settings.gyro.flipX = false;
dylanslack 0:3f73e98442ec 86 settings.gyro.flipY = false;
dylanslack 0:3f73e98442ec 87 settings.gyro.flipZ = false;
dylanslack 0:3f73e98442ec 88 settings.gyro.orientation = 0;
dylanslack 0:3f73e98442ec 89 settings.gyro.latchInterrupt = true;
dylanslack 0:3f73e98442ec 90
dylanslack 0:3f73e98442ec 91 settings.accel.enabled = true;
dylanslack 0:3f73e98442ec 92 settings.accel.enableX = true;
dylanslack 0:3f73e98442ec 93 settings.accel.enableY = true;
dylanslack 0:3f73e98442ec 94 settings.accel.enableZ = true;
dylanslack 0:3f73e98442ec 95 // accel scale can be 2, 4, 8, or 16
dylanslack 0:3f73e98442ec 96 settings.accel.scale = 2;
dylanslack 0:3f73e98442ec 97 // accel sample rate can be 1-6
dylanslack 0:3f73e98442ec 98 // 1 = 10 Hz 4 = 238 Hz
dylanslack 0:3f73e98442ec 99 // 2 = 50 Hz 5 = 476 Hz
dylanslack 0:3f73e98442ec 100 // 3 = 119 Hz 6 = 952 Hz
dylanslack 0:3f73e98442ec 101 settings.accel.sampleRate = 6;
dylanslack 0:3f73e98442ec 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
dylanslack 0:3f73e98442ec 103 // -1 = bandwidth determined by sample rate
dylanslack 0:3f73e98442ec 104 // 0 = 408 Hz 2 = 105 Hz
dylanslack 0:3f73e98442ec 105 // 1 = 211 Hz 3 = 50 Hz
dylanslack 0:3f73e98442ec 106 settings.accel.bandwidth = -1;
dylanslack 0:3f73e98442ec 107 settings.accel.highResEnable = false;
dylanslack 0:3f73e98442ec 108 // accelHighResBandwidth can be any value between 0-3
dylanslack 0:3f73e98442ec 109 // LP cutoff is set to a factor of sample rate
dylanslack 0:3f73e98442ec 110 // 0 = ODR/50 2 = ODR/9
dylanslack 0:3f73e98442ec 111 // 1 = ODR/100 3 = ODR/400
dylanslack 0:3f73e98442ec 112 settings.accel.highResBandwidth = 0;
dylanslack 0:3f73e98442ec 113
dylanslack 0:3f73e98442ec 114 settings.mag.enabled = true;
dylanslack 0:3f73e98442ec 115 // mag scale can be 4, 8, 12, or 16
dylanslack 0:3f73e98442ec 116 settings.mag.scale = 4;
dylanslack 0:3f73e98442ec 117 // mag data rate can be 0-7
dylanslack 0:3f73e98442ec 118 // 0 = 0.625 Hz 4 = 10 Hz
dylanslack 0:3f73e98442ec 119 // 1 = 1.25 Hz 5 = 20 Hz
dylanslack 0:3f73e98442ec 120 // 2 = 2.5 Hz 6 = 40 Hz
dylanslack 0:3f73e98442ec 121 // 3 = 5 Hz 7 = 80 Hz
dylanslack 0:3f73e98442ec 122 settings.mag.sampleRate = 7;
dylanslack 0:3f73e98442ec 123 settings.mag.tempCompensationEnable = false;
dylanslack 0:3f73e98442ec 124 // magPerformance can be any value between 0-3
dylanslack 0:3f73e98442ec 125 // 0 = Low power mode 2 = high performance
dylanslack 0:3f73e98442ec 126 // 1 = medium performance 3 = ultra-high performance
dylanslack 0:3f73e98442ec 127 settings.mag.XYPerformance = 3;
dylanslack 0:3f73e98442ec 128 settings.mag.ZPerformance = 3;
dylanslack 0:3f73e98442ec 129 settings.mag.lowPowerEnable = false;
dylanslack 0:3f73e98442ec 130 // magOperatingMode can be 0-2
dylanslack 0:3f73e98442ec 131 // 0 = continuous conversion
dylanslack 0:3f73e98442ec 132 // 1 = single-conversion
dylanslack 0:3f73e98442ec 133 // 2 = power down
dylanslack 0:3f73e98442ec 134 settings.mag.operatingMode = 0;
dylanslack 0:3f73e98442ec 135
dylanslack 0:3f73e98442ec 136 settings.temp.enabled = true;
dylanslack 0:3f73e98442ec 137 for (int i=0; i<3; i++)
dylanslack 0:3f73e98442ec 138 {
dylanslack 0:3f73e98442ec 139 gBias[i] = 0;
dylanslack 0:3f73e98442ec 140 aBias[i] = 0;
dylanslack 0:3f73e98442ec 141 mBias[i] = 0;
dylanslack 0:3f73e98442ec 142 gBiasRaw[i] = 0;
dylanslack 0:3f73e98442ec 143 aBiasRaw[i] = 0;
dylanslack 0:3f73e98442ec 144 mBiasRaw[i] = 0;
dylanslack 0:3f73e98442ec 145 }
dylanslack 0:3f73e98442ec 146 _autoCalc = false;
dylanslack 0:3f73e98442ec 147 }
dylanslack 0:3f73e98442ec 148
dylanslack 0:3f73e98442ec 149
dylanslack 0:3f73e98442ec 150 uint16_t LSM9DS1::begin()
dylanslack 0:3f73e98442ec 151 {
dylanslack 0:3f73e98442ec 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
dylanslack 0:3f73e98442ec 153 _xgAddress = settings.device.agAddress;
dylanslack 0:3f73e98442ec 154 _mAddress = settings.device.mAddress;
dylanslack 0:3f73e98442ec 155
dylanslack 0:3f73e98442ec 156 constrainScales();
dylanslack 0:3f73e98442ec 157 // Once we have the scale values, we can calculate the resolution
dylanslack 0:3f73e98442ec 158 // of each sensor. That's what these functions are for. One for each sensor
dylanslack 0:3f73e98442ec 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
dylanslack 0:3f73e98442ec 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
dylanslack 0:3f73e98442ec 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
dylanslack 0:3f73e98442ec 162
dylanslack 0:3f73e98442ec 163 // Now, initialize our hardware interface.
dylanslack 0:3f73e98442ec 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
dylanslack 0:3f73e98442ec 165 initI2C(); // Initialize I2C
dylanslack 0:3f73e98442ec 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
dylanslack 0:3f73e98442ec 167 initSPI(); // Initialize SPI
dylanslack 0:3f73e98442ec 168
dylanslack 0:3f73e98442ec 169 // To verify communication, we can read from the WHO_AM_I register of
dylanslack 0:3f73e98442ec 170 // each device. Store those in a variable so we can return them.
dylanslack 0:3f73e98442ec 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
dylanslack 0:3f73e98442ec 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
dylanslack 0:3f73e98442ec 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
dylanslack 0:3f73e98442ec 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
dylanslack 0:3f73e98442ec 175
dylanslack 0:3f73e98442ec 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
dylanslack 0:3f73e98442ec 177 return 0;
dylanslack 0:3f73e98442ec 178
dylanslack 0:3f73e98442ec 179 // Gyro initialization stuff:
dylanslack 0:3f73e98442ec 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
dylanslack 0:3f73e98442ec 181
dylanslack 0:3f73e98442ec 182 // Accelerometer initialization stuff:
dylanslack 0:3f73e98442ec 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
dylanslack 0:3f73e98442ec 184
dylanslack 0:3f73e98442ec 185 // Magnetometer initialization stuff:
dylanslack 0:3f73e98442ec 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
dylanslack 0:3f73e98442ec 187
dylanslack 0:3f73e98442ec 188 // Once everything is initialized, return the WHO_AM_I registers we read:
dylanslack 0:3f73e98442ec 189 return whoAmICombined;
dylanslack 0:3f73e98442ec 190 }
dylanslack 0:3f73e98442ec 191
dylanslack 0:3f73e98442ec 192 void LSM9DS1::initGyro()
dylanslack 0:3f73e98442ec 193 {
dylanslack 0:3f73e98442ec 194 uint8_t tempRegValue = 0;
dylanslack 0:3f73e98442ec 195
dylanslack 0:3f73e98442ec 196 // CTRL_REG1_G (Default value: 0x00)
dylanslack 0:3f73e98442ec 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
dylanslack 0:3f73e98442ec 198 // ODR_G[2:0] - Output data rate selection
dylanslack 0:3f73e98442ec 199 // FS_G[1:0] - Gyroscope full-scale selection
dylanslack 0:3f73e98442ec 200 // BW_G[1:0] - Gyroscope bandwidth selection
dylanslack 0:3f73e98442ec 201
dylanslack 0:3f73e98442ec 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
dylanslack 0:3f73e98442ec 203 // rate if the gyro is enabled.
dylanslack 0:3f73e98442ec 204 if (settings.gyro.enabled)
dylanslack 0:3f73e98442ec 205 {
dylanslack 0:3f73e98442ec 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
dylanslack 0:3f73e98442ec 207 }
dylanslack 0:3f73e98442ec 208 switch (settings.gyro.scale)
dylanslack 0:3f73e98442ec 209 {
dylanslack 0:3f73e98442ec 210 case 500:
dylanslack 0:3f73e98442ec 211 tempRegValue |= (0x1 << 3);
dylanslack 0:3f73e98442ec 212 break;
dylanslack 0:3f73e98442ec 213 case 2000:
dylanslack 0:3f73e98442ec 214 tempRegValue |= (0x3 << 3);
dylanslack 0:3f73e98442ec 215 break;
dylanslack 0:3f73e98442ec 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
dylanslack 0:3f73e98442ec 217 }
dylanslack 0:3f73e98442ec 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
dylanslack 0:3f73e98442ec 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
dylanslack 0:3f73e98442ec 220
dylanslack 0:3f73e98442ec 221 // CTRL_REG2_G (Default value: 0x00)
dylanslack 0:3f73e98442ec 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
dylanslack 0:3f73e98442ec 223 // INT_SEL[1:0] - INT selection configuration
dylanslack 0:3f73e98442ec 224 // OUT_SEL[1:0] - Out selection configuration
dylanslack 0:3f73e98442ec 225 xgWriteByte(CTRL_REG2_G, 0x00);
dylanslack 0:3f73e98442ec 226
dylanslack 0:3f73e98442ec 227 // CTRL_REG3_G (Default value: 0x00)
dylanslack 0:3f73e98442ec 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
dylanslack 0:3f73e98442ec 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
dylanslack 0:3f73e98442ec 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
dylanslack 0:3f73e98442ec 231 // HPCF_G[3:0] - HPF cutoff frequency
dylanslack 0:3f73e98442ec 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
dylanslack 0:3f73e98442ec 233 if (settings.gyro.HPFEnable)
dylanslack 0:3f73e98442ec 234 {
dylanslack 0:3f73e98442ec 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
dylanslack 0:3f73e98442ec 236 }
dylanslack 0:3f73e98442ec 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
dylanslack 0:3f73e98442ec 238
dylanslack 0:3f73e98442ec 239 // CTRL_REG4 (Default value: 0x38)
dylanslack 0:3f73e98442ec 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
dylanslack 0:3f73e98442ec 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
dylanslack 0:3f73e98442ec 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
dylanslack 0:3f73e98442ec 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
dylanslack 0:3f73e98442ec 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
dylanslack 0:3f73e98442ec 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
dylanslack 0:3f73e98442ec 246 tempRegValue = 0;
dylanslack 0:3f73e98442ec 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
dylanslack 0:3f73e98442ec 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
dylanslack 0:3f73e98442ec 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
dylanslack 0:3f73e98442ec 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
dylanslack 0:3f73e98442ec 251 xgWriteByte(CTRL_REG4, tempRegValue);
dylanslack 0:3f73e98442ec 252
dylanslack 0:3f73e98442ec 253 // ORIENT_CFG_G (Default value: 0x00)
dylanslack 0:3f73e98442ec 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
dylanslack 0:3f73e98442ec 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
dylanslack 0:3f73e98442ec 256 // Orient [2:0] - Directional user orientation selection
dylanslack 0:3f73e98442ec 257 tempRegValue = 0;
dylanslack 0:3f73e98442ec 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
dylanslack 0:3f73e98442ec 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
dylanslack 0:3f73e98442ec 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
dylanslack 0:3f73e98442ec 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
dylanslack 0:3f73e98442ec 262 }
dylanslack 0:3f73e98442ec 263
dylanslack 0:3f73e98442ec 264 void LSM9DS1::initAccel()
dylanslack 0:3f73e98442ec 265 {
dylanslack 0:3f73e98442ec 266 uint8_t tempRegValue = 0;
dylanslack 0:3f73e98442ec 267
dylanslack 0:3f73e98442ec 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
dylanslack 0:3f73e98442ec 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
dylanslack 0:3f73e98442ec 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
dylanslack 0:3f73e98442ec 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
dylanslack 0:3f73e98442ec 272 // Zen_XL - Z-axis output enabled
dylanslack 0:3f73e98442ec 273 // Yen_XL - Y-axis output enabled
dylanslack 0:3f73e98442ec 274 // Xen_XL - X-axis output enabled
dylanslack 0:3f73e98442ec 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
dylanslack 0:3f73e98442ec 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
dylanslack 0:3f73e98442ec 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
dylanslack 0:3f73e98442ec 278
dylanslack 0:3f73e98442ec 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
dylanslack 0:3f73e98442ec 280
dylanslack 0:3f73e98442ec 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
dylanslack 0:3f73e98442ec 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
dylanslack 0:3f73e98442ec 283 // ODR_XL[2:0] - Output data rate & power mode selection
dylanslack 0:3f73e98442ec 284 // FS_XL[1:0] - Full-scale selection
dylanslack 0:3f73e98442ec 285 // BW_SCAL_ODR - Bandwidth selection
dylanslack 0:3f73e98442ec 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
dylanslack 0:3f73e98442ec 287 tempRegValue = 0;
dylanslack 0:3f73e98442ec 288 // To disable the accel, set the sampleRate bits to 0.
dylanslack 0:3f73e98442ec 289 if (settings.accel.enabled)
dylanslack 0:3f73e98442ec 290 {
dylanslack 0:3f73e98442ec 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
dylanslack 0:3f73e98442ec 292 }
dylanslack 0:3f73e98442ec 293 switch (settings.accel.scale)
dylanslack 0:3f73e98442ec 294 {
dylanslack 0:3f73e98442ec 295 case 4:
dylanslack 0:3f73e98442ec 296 tempRegValue |= (0x2 << 3);
dylanslack 0:3f73e98442ec 297 break;
dylanslack 0:3f73e98442ec 298 case 8:
dylanslack 0:3f73e98442ec 299 tempRegValue |= (0x3 << 3);
dylanslack 0:3f73e98442ec 300 break;
dylanslack 0:3f73e98442ec 301 case 16:
dylanslack 0:3f73e98442ec 302 tempRegValue |= (0x1 << 3);
dylanslack 0:3f73e98442ec 303 break;
dylanslack 0:3f73e98442ec 304 // Otherwise it'll be set to 2g (0x0 << 3)
dylanslack 0:3f73e98442ec 305 }
dylanslack 0:3f73e98442ec 306 if (settings.accel.bandwidth >= 0)
dylanslack 0:3f73e98442ec 307 {
dylanslack 0:3f73e98442ec 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
dylanslack 0:3f73e98442ec 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
dylanslack 0:3f73e98442ec 310 }
dylanslack 0:3f73e98442ec 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
dylanslack 0:3f73e98442ec 312
dylanslack 0:3f73e98442ec 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
dylanslack 0:3f73e98442ec 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
dylanslack 0:3f73e98442ec 315 // HR - High resolution mode (0: disable, 1: enable)
dylanslack 0:3f73e98442ec 316 // DCF[1:0] - Digital filter cutoff frequency
dylanslack 0:3f73e98442ec 317 // FDS - Filtered data selection
dylanslack 0:3f73e98442ec 318 // HPIS1 - HPF enabled for interrupt function
dylanslack 0:3f73e98442ec 319 tempRegValue = 0;
dylanslack 0:3f73e98442ec 320 if (settings.accel.highResEnable)
dylanslack 0:3f73e98442ec 321 {
dylanslack 0:3f73e98442ec 322 tempRegValue |= (1<<7); // Set HR bit
dylanslack 0:3f73e98442ec 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
dylanslack 0:3f73e98442ec 324 }
dylanslack 0:3f73e98442ec 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
dylanslack 0:3f73e98442ec 326 }
dylanslack 0:3f73e98442ec 327
dylanslack 0:3f73e98442ec 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
dylanslack 0:3f73e98442ec 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
dylanslack 0:3f73e98442ec 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
dylanslack 0:3f73e98442ec 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
dylanslack 0:3f73e98442ec 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
dylanslack 0:3f73e98442ec 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
dylanslack 0:3f73e98442ec 334 // is good practice.
dylanslack 0:3f73e98442ec 335 void LSM9DS1::calibrate(bool autoCalc)
dylanslack 0:3f73e98442ec 336 {
dylanslack 0:3f73e98442ec 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
dylanslack 0:3f73e98442ec 338 uint8_t samples = 0;
dylanslack 0:3f73e98442ec 339 int ii;
dylanslack 0:3f73e98442ec 340 int32_t aBiasRawTemp[3] = {0, 0, 0};
dylanslack 0:3f73e98442ec 341 int32_t gBiasRawTemp[3] = {0, 0, 0};
dylanslack 0:3f73e98442ec 342
dylanslack 0:3f73e98442ec 343 // Turn on FIFO and set threshold to 32 samples
dylanslack 0:3f73e98442ec 344 enableFIFO(true);
dylanslack 0:3f73e98442ec 345 setFIFO(FIFO_THS, 0x1F);
dylanslack 0:3f73e98442ec 346 while (samples < 0x1F)
dylanslack 0:3f73e98442ec 347 {
dylanslack 0:3f73e98442ec 348 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
dylanslack 0:3f73e98442ec 349 }
dylanslack 0:3f73e98442ec 350 for(ii = 0; ii < samples ; ii++)
dylanslack 0:3f73e98442ec 351 { // Read the gyro data stored in the FIFO
dylanslack 0:3f73e98442ec 352 readGyro();
dylanslack 0:3f73e98442ec 353 gBiasRawTemp[0] += gx;
dylanslack 0:3f73e98442ec 354 gBiasRawTemp[1] += gy;
dylanslack 0:3f73e98442ec 355 gBiasRawTemp[2] += gz;
dylanslack 0:3f73e98442ec 356 readAccel();
dylanslack 0:3f73e98442ec 357 aBiasRawTemp[0] += ax;
dylanslack 0:3f73e98442ec 358 aBiasRawTemp[1] += ay;
dylanslack 0:3f73e98442ec 359 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
dylanslack 0:3f73e98442ec 360 }
dylanslack 0:3f73e98442ec 361 for (ii = 0; ii < 3; ii++)
dylanslack 0:3f73e98442ec 362 {
dylanslack 0:3f73e98442ec 363 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
dylanslack 0:3f73e98442ec 364 gBias[ii] = calcGyro(gBiasRaw[ii]);
dylanslack 0:3f73e98442ec 365 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
dylanslack 0:3f73e98442ec 366 aBias[ii] = calcAccel(aBiasRaw[ii]);
dylanslack 0:3f73e98442ec 367 }
dylanslack 0:3f73e98442ec 368
dylanslack 0:3f73e98442ec 369 enableFIFO(false);
dylanslack 0:3f73e98442ec 370 setFIFO(FIFO_OFF, 0x00);
dylanslack 0:3f73e98442ec 371
dylanslack 0:3f73e98442ec 372 if (autoCalc) _autoCalc = true;
dylanslack 0:3f73e98442ec 373 }
dylanslack 0:3f73e98442ec 374
dylanslack 0:3f73e98442ec 375 void LSM9DS1::calibrateMag(bool loadIn)
dylanslack 0:3f73e98442ec 376 {
dylanslack 0:3f73e98442ec 377 int i, j;
dylanslack 0:3f73e98442ec 378 int16_t magMin[3] = {0, 0, 0};
dylanslack 0:3f73e98442ec 379 int16_t magMax[3] = {0, 0, 0}; // The road warrior
dylanslack 0:3f73e98442ec 380
dylanslack 0:3f73e98442ec 381 for (i=0; i<128; i++)
dylanslack 0:3f73e98442ec 382 {
dylanslack 0:3f73e98442ec 383 while (!magAvailable())
dylanslack 0:3f73e98442ec 384 ;
dylanslack 0:3f73e98442ec 385 readMag();
dylanslack 0:3f73e98442ec 386 int16_t magTemp[3] = {0, 0, 0};
dylanslack 0:3f73e98442ec 387 magTemp[0] = mx;
dylanslack 0:3f73e98442ec 388 magTemp[1] = my;
dylanslack 0:3f73e98442ec 389 magTemp[2] = mz;
dylanslack 0:3f73e98442ec 390 for (j = 0; j < 3; j++)
dylanslack 0:3f73e98442ec 391 {
dylanslack 0:3f73e98442ec 392 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
dylanslack 0:3f73e98442ec 393 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
dylanslack 0:3f73e98442ec 394 }
dylanslack 0:3f73e98442ec 395 }
dylanslack 0:3f73e98442ec 396 for (j = 0; j < 3; j++)
dylanslack 0:3f73e98442ec 397 {
dylanslack 0:3f73e98442ec 398 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
dylanslack 0:3f73e98442ec 399 mBias[j] = calcMag(mBiasRaw[j]);
dylanslack 0:3f73e98442ec 400 if (loadIn)
dylanslack 0:3f73e98442ec 401 magOffset(j, mBiasRaw[j]);
dylanslack 0:3f73e98442ec 402 }
dylanslack 0:3f73e98442ec 403
dylanslack 0:3f73e98442ec 404 }
dylanslack 0:3f73e98442ec 405 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
dylanslack 0:3f73e98442ec 406 {
dylanslack 0:3f73e98442ec 407 if (axis > 2)
dylanslack 0:3f73e98442ec 408 return;
dylanslack 0:3f73e98442ec 409 uint8_t msb, lsb;
dylanslack 0:3f73e98442ec 410 msb = (offset & 0xFF00) >> 8;
dylanslack 0:3f73e98442ec 411 lsb = offset & 0x00FF;
dylanslack 0:3f73e98442ec 412 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
dylanslack 0:3f73e98442ec 413 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
dylanslack 0:3f73e98442ec 414 }
dylanslack 0:3f73e98442ec 415
dylanslack 0:3f73e98442ec 416 void LSM9DS1::initMag()
dylanslack 0:3f73e98442ec 417 {
dylanslack 0:3f73e98442ec 418 uint8_t tempRegValue = 0;
dylanslack 0:3f73e98442ec 419
dylanslack 0:3f73e98442ec 420 // CTRL_REG1_M (Default value: 0x10)
dylanslack 0:3f73e98442ec 421 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
dylanslack 0:3f73e98442ec 422 // TEMP_COMP - Temperature compensation
dylanslack 0:3f73e98442ec 423 // OM[1:0] - X & Y axes op mode selection
dylanslack 0:3f73e98442ec 424 // 00:low-power, 01:medium performance
dylanslack 0:3f73e98442ec 425 // 10: high performance, 11:ultra-high performance
dylanslack 0:3f73e98442ec 426 // DO[2:0] - Output data rate selection
dylanslack 0:3f73e98442ec 427 // ST - Self-test enable
dylanslack 0:3f73e98442ec 428 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
dylanslack 0:3f73e98442ec 429 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
dylanslack 0:3f73e98442ec 430 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
dylanslack 0:3f73e98442ec 431 mWriteByte(CTRL_REG1_M, tempRegValue);
dylanslack 0:3f73e98442ec 432
dylanslack 0:3f73e98442ec 433 // CTRL_REG2_M (Default value 0x00)
dylanslack 0:3f73e98442ec 434 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
dylanslack 0:3f73e98442ec 435 // FS[1:0] - Full-scale configuration
dylanslack 0:3f73e98442ec 436 // REBOOT - Reboot memory content (0:normal, 1:reboot)
dylanslack 0:3f73e98442ec 437 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
dylanslack 0:3f73e98442ec 438 tempRegValue = 0;
dylanslack 0:3f73e98442ec 439 switch (settings.mag.scale)
dylanslack 0:3f73e98442ec 440 {
dylanslack 0:3f73e98442ec 441 case 8:
dylanslack 0:3f73e98442ec 442 tempRegValue |= (0x1 << 5);
dylanslack 0:3f73e98442ec 443 break;
dylanslack 0:3f73e98442ec 444 case 12:
dylanslack 0:3f73e98442ec 445 tempRegValue |= (0x2 << 5);
dylanslack 0:3f73e98442ec 446 break;
dylanslack 0:3f73e98442ec 447 case 16:
dylanslack 0:3f73e98442ec 448 tempRegValue |= (0x3 << 5);
dylanslack 0:3f73e98442ec 449 break;
dylanslack 0:3f73e98442ec 450 // Otherwise we'll default to 4 gauss (00)
dylanslack 0:3f73e98442ec 451 }
dylanslack 0:3f73e98442ec 452 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
dylanslack 0:3f73e98442ec 453
dylanslack 0:3f73e98442ec 454 // CTRL_REG3_M (Default value: 0x03)
dylanslack 0:3f73e98442ec 455 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
dylanslack 0:3f73e98442ec 456 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
dylanslack 0:3f73e98442ec 457 // LP - Low-power mode cofiguration (1:enable)
dylanslack 0:3f73e98442ec 458 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
dylanslack 0:3f73e98442ec 459 // MD[1:0] - Operating mode
dylanslack 0:3f73e98442ec 460 // 00:continuous conversion, 01:single-conversion,
dylanslack 0:3f73e98442ec 461 // 10,11: Power-down
dylanslack 0:3f73e98442ec 462 tempRegValue = 0;
dylanslack 0:3f73e98442ec 463 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
dylanslack 0:3f73e98442ec 464 tempRegValue |= (settings.mag.operatingMode & 0x3);
dylanslack 0:3f73e98442ec 465 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
dylanslack 0:3f73e98442ec 466
dylanslack 0:3f73e98442ec 467 // CTRL_REG4_M (Default value: 0x00)
dylanslack 0:3f73e98442ec 468 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
dylanslack 0:3f73e98442ec 469 // OMZ[1:0] - Z-axis operative mode selection
dylanslack 0:3f73e98442ec 470 // 00:low-power mode, 01:medium performance
dylanslack 0:3f73e98442ec 471 // 10:high performance, 10:ultra-high performance
dylanslack 0:3f73e98442ec 472 // BLE - Big/little endian data
dylanslack 0:3f73e98442ec 473 tempRegValue = 0;
dylanslack 0:3f73e98442ec 474 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
dylanslack 0:3f73e98442ec 475 mWriteByte(CTRL_REG4_M, tempRegValue);
dylanslack 0:3f73e98442ec 476
dylanslack 0:3f73e98442ec 477 // CTRL_REG5_M (Default value: 0x00)
dylanslack 0:3f73e98442ec 478 // [0][BDU][0][0][0][0][0][0]
dylanslack 0:3f73e98442ec 479 // BDU - Block data update for magnetic data
dylanslack 0:3f73e98442ec 480 // 0:continuous, 1:not updated until MSB/LSB are read
dylanslack 0:3f73e98442ec 481 tempRegValue = 0;
dylanslack 0:3f73e98442ec 482 mWriteByte(CTRL_REG5_M, tempRegValue);
dylanslack 0:3f73e98442ec 483 }
dylanslack 0:3f73e98442ec 484
dylanslack 0:3f73e98442ec 485 uint8_t LSM9DS1::accelAvailable()
dylanslack 0:3f73e98442ec 486 {
dylanslack 0:3f73e98442ec 487 uint8_t status = xgReadByte(STATUS_REG_1);
dylanslack 0:3f73e98442ec 488
dylanslack 0:3f73e98442ec 489 return (status & (1<<0));
dylanslack 0:3f73e98442ec 490 }
dylanslack 0:3f73e98442ec 491
dylanslack 0:3f73e98442ec 492 uint8_t LSM9DS1::gyroAvailable()
dylanslack 0:3f73e98442ec 493 {
dylanslack 0:3f73e98442ec 494 uint8_t status = xgReadByte(STATUS_REG_1);
dylanslack 0:3f73e98442ec 495
dylanslack 0:3f73e98442ec 496 return ((status & (1<<1)) >> 1);
dylanslack 0:3f73e98442ec 497 }
dylanslack 0:3f73e98442ec 498
dylanslack 0:3f73e98442ec 499 uint8_t LSM9DS1::tempAvailable()
dylanslack 0:3f73e98442ec 500 {
dylanslack 0:3f73e98442ec 501 uint8_t status = xgReadByte(STATUS_REG_1);
dylanslack 0:3f73e98442ec 502
dylanslack 0:3f73e98442ec 503 return ((status & (1<<2)) >> 2);
dylanslack 0:3f73e98442ec 504 }
dylanslack 0:3f73e98442ec 505
dylanslack 0:3f73e98442ec 506 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
dylanslack 0:3f73e98442ec 507 {
dylanslack 0:3f73e98442ec 508 uint8_t status;
dylanslack 0:3f73e98442ec 509 status = mReadByte(STATUS_REG_M);
dylanslack 0:3f73e98442ec 510
dylanslack 0:3f73e98442ec 511 return ((status & (1<<axis)) >> axis);
dylanslack 0:3f73e98442ec 512 }
dylanslack 0:3f73e98442ec 513
dylanslack 0:3f73e98442ec 514 void LSM9DS1::readAccel()
dylanslack 0:3f73e98442ec 515 {
dylanslack 0:3f73e98442ec 516 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
dylanslack 0:3f73e98442ec 517 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
dylanslack 0:3f73e98442ec 518 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
dylanslack 0:3f73e98442ec 519 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
dylanslack 0:3f73e98442ec 520 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
dylanslack 0:3f73e98442ec 521 if (_autoCalc)
dylanslack 0:3f73e98442ec 522 {
dylanslack 0:3f73e98442ec 523 ax -= aBiasRaw[X_AXIS];
dylanslack 0:3f73e98442ec 524 ay -= aBiasRaw[Y_AXIS];
dylanslack 0:3f73e98442ec 525 az -= aBiasRaw[Z_AXIS];
dylanslack 0:3f73e98442ec 526 }
dylanslack 0:3f73e98442ec 527 }
dylanslack 0:3f73e98442ec 528
dylanslack 0:3f73e98442ec 529 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
dylanslack 0:3f73e98442ec 530 {
dylanslack 0:3f73e98442ec 531 uint8_t temp[2];
dylanslack 0:3f73e98442ec 532 int16_t value;
dylanslack 0:3f73e98442ec 533 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
dylanslack 0:3f73e98442ec 534 value = (temp[1] << 8) | temp[0];
dylanslack 0:3f73e98442ec 535
dylanslack 0:3f73e98442ec 536 if (_autoCalc)
dylanslack 0:3f73e98442ec 537 value -= aBiasRaw[axis];
dylanslack 0:3f73e98442ec 538
dylanslack 0:3f73e98442ec 539 return value;
dylanslack 0:3f73e98442ec 540 }
dylanslack 0:3f73e98442ec 541
dylanslack 0:3f73e98442ec 542 void LSM9DS1::readMag()
dylanslack 0:3f73e98442ec 543 {
dylanslack 0:3f73e98442ec 544 uint8_t temp[6]; // We'll read six bytes from the mag into temp
dylanslack 0:3f73e98442ec 545 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
dylanslack 0:3f73e98442ec 546 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
dylanslack 0:3f73e98442ec 547 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
dylanslack 0:3f73e98442ec 548 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
dylanslack 0:3f73e98442ec 549 }
dylanslack 0:3f73e98442ec 550
dylanslack 0:3f73e98442ec 551 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
dylanslack 0:3f73e98442ec 552 {
dylanslack 0:3f73e98442ec 553 uint8_t temp[2];
dylanslack 0:3f73e98442ec 554 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
dylanslack 0:3f73e98442ec 555 return (temp[1] << 8) | temp[0];
dylanslack 0:3f73e98442ec 556 }
dylanslack 0:3f73e98442ec 557
dylanslack 0:3f73e98442ec 558 void LSM9DS1::readTemp()
dylanslack 0:3f73e98442ec 559 {
dylanslack 0:3f73e98442ec 560 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
dylanslack 0:3f73e98442ec 561 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
dylanslack 0:3f73e98442ec 562 temperature = ((int16_t)temp[1] << 8) | temp[0];
dylanslack 0:3f73e98442ec 563 }
dylanslack 0:3f73e98442ec 564
dylanslack 0:3f73e98442ec 565 void LSM9DS1::readGyro()
dylanslack 0:3f73e98442ec 566 {
dylanslack 0:3f73e98442ec 567 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
dylanslack 0:3f73e98442ec 568 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
dylanslack 0:3f73e98442ec 569 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
dylanslack 0:3f73e98442ec 570 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
dylanslack 0:3f73e98442ec 571 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
dylanslack 0:3f73e98442ec 572 if (_autoCalc)
dylanslack 0:3f73e98442ec 573 {
dylanslack 0:3f73e98442ec 574 gx -= gBiasRaw[X_AXIS];
dylanslack 0:3f73e98442ec 575 gy -= gBiasRaw[Y_AXIS];
dylanslack 0:3f73e98442ec 576 gz -= gBiasRaw[Z_AXIS];
dylanslack 0:3f73e98442ec 577 }
dylanslack 0:3f73e98442ec 578 }
dylanslack 0:3f73e98442ec 579
dylanslack 0:3f73e98442ec 580 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
dylanslack 0:3f73e98442ec 581 {
dylanslack 0:3f73e98442ec 582 uint8_t temp[2];
dylanslack 0:3f73e98442ec 583 int16_t value;
dylanslack 0:3f73e98442ec 584
dylanslack 0:3f73e98442ec 585 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
dylanslack 0:3f73e98442ec 586
dylanslack 0:3f73e98442ec 587 value = (temp[1] << 8) | temp[0];
dylanslack 0:3f73e98442ec 588
dylanslack 0:3f73e98442ec 589 if (_autoCalc)
dylanslack 0:3f73e98442ec 590 value -= gBiasRaw[axis];
dylanslack 0:3f73e98442ec 591
dylanslack 0:3f73e98442ec 592 return value;
dylanslack 0:3f73e98442ec 593 }
dylanslack 0:3f73e98442ec 594
dylanslack 0:3f73e98442ec 595 float LSM9DS1::calcGyro(int16_t gyro)
dylanslack 0:3f73e98442ec 596 {
dylanslack 0:3f73e98442ec 597 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
dylanslack 0:3f73e98442ec 598 return gRes * gyro;
dylanslack 0:3f73e98442ec 599 }
dylanslack 0:3f73e98442ec 600
dylanslack 0:3f73e98442ec 601 float LSM9DS1::calcAccel(int16_t accel)
dylanslack 0:3f73e98442ec 602 {
dylanslack 0:3f73e98442ec 603 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
dylanslack 0:3f73e98442ec 604 return aRes * accel;
dylanslack 0:3f73e98442ec 605 }
dylanslack 0:3f73e98442ec 606
dylanslack 0:3f73e98442ec 607 float LSM9DS1::calcMag(int16_t mag)
dylanslack 0:3f73e98442ec 608 {
dylanslack 0:3f73e98442ec 609 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
dylanslack 0:3f73e98442ec 610 return mRes * mag;
dylanslack 0:3f73e98442ec 611 }
dylanslack 0:3f73e98442ec 612
dylanslack 0:3f73e98442ec 613 void LSM9DS1::setGyroScale(uint16_t gScl)
dylanslack 0:3f73e98442ec 614 {
dylanslack 0:3f73e98442ec 615 // Read current value of CTRL_REG1_G:
dylanslack 0:3f73e98442ec 616 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
dylanslack 0:3f73e98442ec 617 // Mask out scale bits (3 & 4):
dylanslack 0:3f73e98442ec 618 ctrl1RegValue &= 0xE7;
dylanslack 0:3f73e98442ec 619 switch (gScl)
dylanslack 0:3f73e98442ec 620 {
dylanslack 0:3f73e98442ec 621 case 500:
dylanslack 0:3f73e98442ec 622 ctrl1RegValue |= (0x1 << 3);
dylanslack 0:3f73e98442ec 623 settings.gyro.scale = 500;
dylanslack 0:3f73e98442ec 624 break;
dylanslack 0:3f73e98442ec 625 case 2000:
dylanslack 0:3f73e98442ec 626 ctrl1RegValue |= (0x3 << 3);
dylanslack 0:3f73e98442ec 627 settings.gyro.scale = 2000;
dylanslack 0:3f73e98442ec 628 break;
dylanslack 0:3f73e98442ec 629 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
dylanslack 0:3f73e98442ec 630 settings.gyro.scale = 245;
dylanslack 0:3f73e98442ec 631 break;
dylanslack 0:3f73e98442ec 632 }
dylanslack 0:3f73e98442ec 633 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
dylanslack 0:3f73e98442ec 634
dylanslack 0:3f73e98442ec 635 calcgRes();
dylanslack 0:3f73e98442ec 636 }
dylanslack 0:3f73e98442ec 637
dylanslack 0:3f73e98442ec 638 void LSM9DS1::setAccelScale(uint8_t aScl)
dylanslack 0:3f73e98442ec 639 {
dylanslack 0:3f73e98442ec 640 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
dylanslack 0:3f73e98442ec 641 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
dylanslack 0:3f73e98442ec 642 // Mask out accel scale bits:
dylanslack 0:3f73e98442ec 643 tempRegValue &= 0xE7;
dylanslack 0:3f73e98442ec 644
dylanslack 0:3f73e98442ec 645 switch (aScl)
dylanslack 0:3f73e98442ec 646 {
dylanslack 0:3f73e98442ec 647 case 4:
dylanslack 0:3f73e98442ec 648 tempRegValue |= (0x2 << 3);
dylanslack 0:3f73e98442ec 649 settings.accel.scale = 4;
dylanslack 0:3f73e98442ec 650 break;
dylanslack 0:3f73e98442ec 651 case 8:
dylanslack 0:3f73e98442ec 652 tempRegValue |= (0x3 << 3);
dylanslack 0:3f73e98442ec 653 settings.accel.scale = 8;
dylanslack 0:3f73e98442ec 654 break;
dylanslack 0:3f73e98442ec 655 case 16:
dylanslack 0:3f73e98442ec 656 tempRegValue |= (0x1 << 3);
dylanslack 0:3f73e98442ec 657 settings.accel.scale = 16;
dylanslack 0:3f73e98442ec 658 break;
dylanslack 0:3f73e98442ec 659 default: // Otherwise it'll be set to 2g (0x0 << 3)
dylanslack 0:3f73e98442ec 660 settings.accel.scale = 2;
dylanslack 0:3f73e98442ec 661 break;
dylanslack 0:3f73e98442ec 662 }
dylanslack 0:3f73e98442ec 663 xgWriteByte(CTRL_REG6_XL, tempRegValue);
dylanslack 0:3f73e98442ec 664
dylanslack 0:3f73e98442ec 665 // Then calculate a new aRes, which relies on aScale being set correctly:
dylanslack 0:3f73e98442ec 666 calcaRes();
dylanslack 0:3f73e98442ec 667 }
dylanslack 0:3f73e98442ec 668
dylanslack 0:3f73e98442ec 669 void LSM9DS1::setMagScale(uint8_t mScl)
dylanslack 0:3f73e98442ec 670 {
dylanslack 0:3f73e98442ec 671 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
dylanslack 0:3f73e98442ec 672 uint8_t temp = mReadByte(CTRL_REG2_M);
dylanslack 0:3f73e98442ec 673 // Then mask out the mag scale bits:
dylanslack 0:3f73e98442ec 674 temp &= 0xFF^(0x3 << 5);
dylanslack 0:3f73e98442ec 675
dylanslack 0:3f73e98442ec 676 switch (mScl)
dylanslack 0:3f73e98442ec 677 {
dylanslack 0:3f73e98442ec 678 case 8:
dylanslack 0:3f73e98442ec 679 temp |= (0x1 << 5);
dylanslack 0:3f73e98442ec 680 settings.mag.scale = 8;
dylanslack 0:3f73e98442ec 681 break;
dylanslack 0:3f73e98442ec 682 case 12:
dylanslack 0:3f73e98442ec 683 temp |= (0x2 << 5);
dylanslack 0:3f73e98442ec 684 settings.mag.scale = 12;
dylanslack 0:3f73e98442ec 685 break;
dylanslack 0:3f73e98442ec 686 case 16:
dylanslack 0:3f73e98442ec 687 temp |= (0x3 << 5);
dylanslack 0:3f73e98442ec 688 settings.mag.scale = 16;
dylanslack 0:3f73e98442ec 689 break;
dylanslack 0:3f73e98442ec 690 default: // Otherwise we'll default to 4 gauss (00)
dylanslack 0:3f73e98442ec 691 settings.mag.scale = 4;
dylanslack 0:3f73e98442ec 692 break;
dylanslack 0:3f73e98442ec 693 }
dylanslack 0:3f73e98442ec 694
dylanslack 0:3f73e98442ec 695 // And write the new register value back into CTRL_REG6_XM:
dylanslack 0:3f73e98442ec 696 mWriteByte(CTRL_REG2_M, temp);
dylanslack 0:3f73e98442ec 697
dylanslack 0:3f73e98442ec 698 // We've updated the sensor, but we also need to update our class variables
dylanslack 0:3f73e98442ec 699 // First update mScale:
dylanslack 0:3f73e98442ec 700 //mScale = mScl;
dylanslack 0:3f73e98442ec 701 // Then calculate a new mRes, which relies on mScale being set correctly:
dylanslack 0:3f73e98442ec 702 calcmRes();
dylanslack 0:3f73e98442ec 703 }
dylanslack 0:3f73e98442ec 704
dylanslack 0:3f73e98442ec 705 void LSM9DS1::setGyroODR(uint8_t gRate)
dylanslack 0:3f73e98442ec 706 {
dylanslack 0:3f73e98442ec 707 // Only do this if gRate is not 0 (which would disable the gyro)
dylanslack 0:3f73e98442ec 708 if ((gRate & 0x07) != 0)
dylanslack 0:3f73e98442ec 709 {
dylanslack 0:3f73e98442ec 710 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
dylanslack 0:3f73e98442ec 711 uint8_t temp = xgReadByte(CTRL_REG1_G);
dylanslack 0:3f73e98442ec 712 // Then mask out the gyro ODR bits:
dylanslack 0:3f73e98442ec 713 temp &= 0xFF^(0x7 << 5);
dylanslack 0:3f73e98442ec 714 temp |= (gRate & 0x07) << 5;
dylanslack 0:3f73e98442ec 715 // Update our settings struct
dylanslack 0:3f73e98442ec 716 settings.gyro.sampleRate = gRate & 0x07;
dylanslack 0:3f73e98442ec 717 // And write the new register value back into CTRL_REG1_G:
dylanslack 0:3f73e98442ec 718 xgWriteByte(CTRL_REG1_G, temp);
dylanslack 0:3f73e98442ec 719 }
dylanslack 0:3f73e98442ec 720 }
dylanslack 0:3f73e98442ec 721
dylanslack 0:3f73e98442ec 722 void LSM9DS1::setAccelODR(uint8_t aRate)
dylanslack 0:3f73e98442ec 723 {
dylanslack 0:3f73e98442ec 724 // Only do this if aRate is not 0 (which would disable the accel)
dylanslack 0:3f73e98442ec 725 if ((aRate & 0x07) != 0)
dylanslack 0:3f73e98442ec 726 {
dylanslack 0:3f73e98442ec 727 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
dylanslack 0:3f73e98442ec 728 uint8_t temp = xgReadByte(CTRL_REG6_XL);
dylanslack 0:3f73e98442ec 729 // Then mask out the accel ODR bits:
dylanslack 0:3f73e98442ec 730 temp &= 0x1F;
dylanslack 0:3f73e98442ec 731 // Then shift in our new ODR bits:
dylanslack 0:3f73e98442ec 732 temp |= ((aRate & 0x07) << 5);
dylanslack 0:3f73e98442ec 733 settings.accel.sampleRate = aRate & 0x07;
dylanslack 0:3f73e98442ec 734 // And write the new register value back into CTRL_REG1_XM:
dylanslack 0:3f73e98442ec 735 xgWriteByte(CTRL_REG6_XL, temp);
dylanslack 0:3f73e98442ec 736 }
dylanslack 0:3f73e98442ec 737 }
dylanslack 0:3f73e98442ec 738
dylanslack 0:3f73e98442ec 739 void LSM9DS1::setMagODR(uint8_t mRate)
dylanslack 0:3f73e98442ec 740 {
dylanslack 0:3f73e98442ec 741 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
dylanslack 0:3f73e98442ec 742 uint8_t temp = mReadByte(CTRL_REG1_M);
dylanslack 0:3f73e98442ec 743 // Then mask out the mag ODR bits:
dylanslack 0:3f73e98442ec 744 temp &= 0xFF^(0x7 << 2);
dylanslack 0:3f73e98442ec 745 // Then shift in our new ODR bits:
dylanslack 0:3f73e98442ec 746 temp |= ((mRate & 0x07) << 2);
dylanslack 0:3f73e98442ec 747 settings.mag.sampleRate = mRate & 0x07;
dylanslack 0:3f73e98442ec 748 // And write the new register value back into CTRL_REG5_XM:
dylanslack 0:3f73e98442ec 749 mWriteByte(CTRL_REG1_M, temp);
dylanslack 0:3f73e98442ec 750 }
dylanslack 0:3f73e98442ec 751
dylanslack 0:3f73e98442ec 752 void LSM9DS1::calcgRes()
dylanslack 0:3f73e98442ec 753 {
dylanslack 0:3f73e98442ec 754 gRes = ((float) settings.gyro.scale) / 32768.0;
dylanslack 0:3f73e98442ec 755 }
dylanslack 0:3f73e98442ec 756
dylanslack 0:3f73e98442ec 757 void LSM9DS1::calcaRes()
dylanslack 0:3f73e98442ec 758 {
dylanslack 0:3f73e98442ec 759 aRes = ((float) settings.accel.scale) / 32768.0;
dylanslack 0:3f73e98442ec 760 }
dylanslack 0:3f73e98442ec 761
dylanslack 0:3f73e98442ec 762 void LSM9DS1::calcmRes()
dylanslack 0:3f73e98442ec 763 {
dylanslack 0:3f73e98442ec 764 //mRes = ((float) settings.mag.scale) / 32768.0;
dylanslack 0:3f73e98442ec 765 switch (settings.mag.scale)
dylanslack 0:3f73e98442ec 766 {
dylanslack 0:3f73e98442ec 767 case 4:
dylanslack 0:3f73e98442ec 768 mRes = magSensitivity[0];
dylanslack 0:3f73e98442ec 769 break;
dylanslack 0:3f73e98442ec 770 case 8:
dylanslack 0:3f73e98442ec 771 mRes = magSensitivity[1];
dylanslack 0:3f73e98442ec 772 break;
dylanslack 0:3f73e98442ec 773 case 12:
dylanslack 0:3f73e98442ec 774 mRes = magSensitivity[2];
dylanslack 0:3f73e98442ec 775 break;
dylanslack 0:3f73e98442ec 776 case 16:
dylanslack 0:3f73e98442ec 777 mRes = magSensitivity[3];
dylanslack 0:3f73e98442ec 778 break;
dylanslack 0:3f73e98442ec 779 }
dylanslack 0:3f73e98442ec 780
dylanslack 0:3f73e98442ec 781 }
dylanslack 0:3f73e98442ec 782
dylanslack 0:3f73e98442ec 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
dylanslack 0:3f73e98442ec 784 h_lactive activeLow, pp_od pushPull)
dylanslack 0:3f73e98442ec 785 {
dylanslack 0:3f73e98442ec 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
dylanslack 0:3f73e98442ec 787 // those two values.
dylanslack 0:3f73e98442ec 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
dylanslack 0:3f73e98442ec 789 xgWriteByte(interrupt, generator);
dylanslack 0:3f73e98442ec 790
dylanslack 0:3f73e98442ec 791 // Configure CTRL_REG8
dylanslack 0:3f73e98442ec 792 uint8_t temp;
dylanslack 0:3f73e98442ec 793 temp = xgReadByte(CTRL_REG8);
dylanslack 0:3f73e98442ec 794
dylanslack 0:3f73e98442ec 795 if (activeLow) temp |= (1<<5);
dylanslack 0:3f73e98442ec 796 else temp &= ~(1<<5);
dylanslack 0:3f73e98442ec 797
dylanslack 0:3f73e98442ec 798 if (pushPull) temp &= ~(1<<4);
dylanslack 0:3f73e98442ec 799 else temp |= (1<<4);
dylanslack 0:3f73e98442ec 800
dylanslack 0:3f73e98442ec 801 xgWriteByte(CTRL_REG8, temp);
dylanslack 0:3f73e98442ec 802 }
dylanslack 0:3f73e98442ec 803
dylanslack 0:3f73e98442ec 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
dylanslack 0:3f73e98442ec 805 {
dylanslack 0:3f73e98442ec 806 uint8_t temp = 0;
dylanslack 0:3f73e98442ec 807
dylanslack 0:3f73e98442ec 808 temp = threshold & 0x7F;
dylanslack 0:3f73e98442ec 809 if (sleepOn) temp |= (1<<7);
dylanslack 0:3f73e98442ec 810 xgWriteByte(ACT_THS, temp);
dylanslack 0:3f73e98442ec 811
dylanslack 0:3f73e98442ec 812 xgWriteByte(ACT_DUR, duration);
dylanslack 0:3f73e98442ec 813 }
dylanslack 0:3f73e98442ec 814
dylanslack 0:3f73e98442ec 815 uint8_t LSM9DS1::getInactivity()
dylanslack 0:3f73e98442ec 816 {
dylanslack 0:3f73e98442ec 817 uint8_t temp = xgReadByte(STATUS_REG_0);
dylanslack 0:3f73e98442ec 818 temp &= (0x10);
dylanslack 0:3f73e98442ec 819 return temp;
dylanslack 0:3f73e98442ec 820 }
dylanslack 0:3f73e98442ec 821
dylanslack 0:3f73e98442ec 822 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
dylanslack 0:3f73e98442ec 823 {
dylanslack 0:3f73e98442ec 824 // Use variables from accel_interrupt_generator, OR'd together to create
dylanslack 0:3f73e98442ec 825 // the [generator]value.
dylanslack 0:3f73e98442ec 826 uint8_t temp = generator;
dylanslack 0:3f73e98442ec 827 if (andInterrupts) temp |= 0x80;
dylanslack 0:3f73e98442ec 828 xgWriteByte(INT_GEN_CFG_XL, temp);
dylanslack 0:3f73e98442ec 829 }
dylanslack 0:3f73e98442ec 830
dylanslack 0:3f73e98442ec 831 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
dylanslack 0:3f73e98442ec 832 {
dylanslack 0:3f73e98442ec 833 // Write threshold value to INT_GEN_THS_?_XL.
dylanslack 0:3f73e98442ec 834 // axis will be 0, 1, or 2 (x, y, z respectively)
dylanslack 0:3f73e98442ec 835 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
dylanslack 0:3f73e98442ec 836
dylanslack 0:3f73e98442ec 837 // Write duration and wait to INT_GEN_DUR_XL
dylanslack 0:3f73e98442ec 838 uint8_t temp;
dylanslack 0:3f73e98442ec 839 temp = (duration & 0x7F);
dylanslack 0:3f73e98442ec 840 if (wait) temp |= 0x80;
dylanslack 0:3f73e98442ec 841 xgWriteByte(INT_GEN_DUR_XL, temp);
dylanslack 0:3f73e98442ec 842 }
dylanslack 0:3f73e98442ec 843
dylanslack 0:3f73e98442ec 844 uint8_t LSM9DS1::getAccelIntSrc()
dylanslack 0:3f73e98442ec 845 {
dylanslack 0:3f73e98442ec 846 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
dylanslack 0:3f73e98442ec 847
dylanslack 0:3f73e98442ec 848 // Check if the IA_XL (interrupt active) bit is set
dylanslack 0:3f73e98442ec 849 if (intSrc & (1<<6))
dylanslack 0:3f73e98442ec 850 {
dylanslack 0:3f73e98442ec 851 return (intSrc & 0x3F);
dylanslack 0:3f73e98442ec 852 }
dylanslack 0:3f73e98442ec 853
dylanslack 0:3f73e98442ec 854 return 0;
dylanslack 0:3f73e98442ec 855 }
dylanslack 0:3f73e98442ec 856
dylanslack 0:3f73e98442ec 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
dylanslack 0:3f73e98442ec 858 {
dylanslack 0:3f73e98442ec 859 // Use variables from accel_interrupt_generator, OR'd together to create
dylanslack 0:3f73e98442ec 860 // the [generator]value.
dylanslack 0:3f73e98442ec 861 uint8_t temp = generator;
dylanslack 0:3f73e98442ec 862 if (aoi) temp |= 0x80;
dylanslack 0:3f73e98442ec 863 if (latch) temp |= 0x40;
dylanslack 0:3f73e98442ec 864 xgWriteByte(INT_GEN_CFG_G, temp);
dylanslack 0:3f73e98442ec 865 }
dylanslack 0:3f73e98442ec 866
dylanslack 0:3f73e98442ec 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
dylanslack 0:3f73e98442ec 868 {
dylanslack 0:3f73e98442ec 869 uint8_t buffer[2];
dylanslack 0:3f73e98442ec 870 buffer[0] = (threshold & 0x7F00) >> 8;
dylanslack 0:3f73e98442ec 871 buffer[1] = (threshold & 0x00FF);
dylanslack 0:3f73e98442ec 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
dylanslack 0:3f73e98442ec 873 // axis will be 0, 1, or 2 (x, y, z respectively)
dylanslack 0:3f73e98442ec 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
dylanslack 0:3f73e98442ec 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
dylanslack 0:3f73e98442ec 876
dylanslack 0:3f73e98442ec 877 // Write duration and wait to INT_GEN_DUR_XL
dylanslack 0:3f73e98442ec 878 uint8_t temp;
dylanslack 0:3f73e98442ec 879 temp = (duration & 0x7F);
dylanslack 0:3f73e98442ec 880 if (wait) temp |= 0x80;
dylanslack 0:3f73e98442ec 881 xgWriteByte(INT_GEN_DUR_G, temp);
dylanslack 0:3f73e98442ec 882 }
dylanslack 0:3f73e98442ec 883
dylanslack 0:3f73e98442ec 884 uint8_t LSM9DS1::getGyroIntSrc()
dylanslack 0:3f73e98442ec 885 {
dylanslack 0:3f73e98442ec 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
dylanslack 0:3f73e98442ec 887
dylanslack 0:3f73e98442ec 888 // Check if the IA_G (interrupt active) bit is set
dylanslack 0:3f73e98442ec 889 if (intSrc & (1<<6))
dylanslack 0:3f73e98442ec 890 {
dylanslack 0:3f73e98442ec 891 return (intSrc & 0x3F);
dylanslack 0:3f73e98442ec 892 }
dylanslack 0:3f73e98442ec 893
dylanslack 0:3f73e98442ec 894 return 0;
dylanslack 0:3f73e98442ec 895 }
dylanslack 0:3f73e98442ec 896
dylanslack 0:3f73e98442ec 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
dylanslack 0:3f73e98442ec 898 {
dylanslack 0:3f73e98442ec 899 // Mask out non-generator bits (0-4)
dylanslack 0:3f73e98442ec 900 uint8_t config = (generator & 0xE0);
dylanslack 0:3f73e98442ec 901 // IEA bit is 0 for active-low, 1 for active-high.
dylanslack 0:3f73e98442ec 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
dylanslack 0:3f73e98442ec 903 // IEL bit is 0 for latched, 1 for not-latched
dylanslack 0:3f73e98442ec 904 if (!latch) config |= (1<<1);
dylanslack 0:3f73e98442ec 905 // As long as we have at least 1 generator, enable the interrupt
dylanslack 0:3f73e98442ec 906 if (generator != 0) config |= (1<<0);
dylanslack 0:3f73e98442ec 907
dylanslack 0:3f73e98442ec 908 mWriteByte(INT_CFG_M, config);
dylanslack 0:3f73e98442ec 909 }
dylanslack 0:3f73e98442ec 910
dylanslack 0:3f73e98442ec 911 void LSM9DS1::configMagThs(uint16_t threshold)
dylanslack 0:3f73e98442ec 912 {
dylanslack 0:3f73e98442ec 913 // Write high eight bits of [threshold] to INT_THS_H_M
dylanslack 0:3f73e98442ec 914 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
dylanslack 0:3f73e98442ec 915 // Write low eight bits of [threshold] to INT_THS_L_M
dylanslack 0:3f73e98442ec 916 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
dylanslack 0:3f73e98442ec 917 }
dylanslack 0:3f73e98442ec 918
dylanslack 0:3f73e98442ec 919 uint8_t LSM9DS1::getMagIntSrc()
dylanslack 0:3f73e98442ec 920 {
dylanslack 0:3f73e98442ec 921 uint8_t intSrc = mReadByte(INT_SRC_M);
dylanslack 0:3f73e98442ec 922
dylanslack 0:3f73e98442ec 923 // Check if the INT (interrupt active) bit is set
dylanslack 0:3f73e98442ec 924 if (intSrc & (1<<0))
dylanslack 0:3f73e98442ec 925 {
dylanslack 0:3f73e98442ec 926 return (intSrc & 0xFE);
dylanslack 0:3f73e98442ec 927 }
dylanslack 0:3f73e98442ec 928
dylanslack 0:3f73e98442ec 929 return 0;
dylanslack 0:3f73e98442ec 930 }
dylanslack 0:3f73e98442ec 931
dylanslack 0:3f73e98442ec 932 void LSM9DS1::sleepGyro(bool enable)
dylanslack 0:3f73e98442ec 933 {
dylanslack 0:3f73e98442ec 934 uint8_t temp = xgReadByte(CTRL_REG9);
dylanslack 0:3f73e98442ec 935 if (enable) temp |= (1<<6);
dylanslack 0:3f73e98442ec 936 else temp &= ~(1<<6);
dylanslack 0:3f73e98442ec 937 xgWriteByte(CTRL_REG9, temp);
dylanslack 0:3f73e98442ec 938 }
dylanslack 0:3f73e98442ec 939
dylanslack 0:3f73e98442ec 940 void LSM9DS1::enableFIFO(bool enable)
dylanslack 0:3f73e98442ec 941 {
dylanslack 0:3f73e98442ec 942 uint8_t temp = xgReadByte(CTRL_REG9);
dylanslack 0:3f73e98442ec 943 if (enable) temp |= (1<<1);
dylanslack 0:3f73e98442ec 944 else temp &= ~(1<<1);
dylanslack 0:3f73e98442ec 945 xgWriteByte(CTRL_REG9, temp);
dylanslack 0:3f73e98442ec 946 }
dylanslack 0:3f73e98442ec 947
dylanslack 0:3f73e98442ec 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
dylanslack 0:3f73e98442ec 949 {
dylanslack 0:3f73e98442ec 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
dylanslack 0:3f73e98442ec 951 // limit it to the maximum.
dylanslack 0:3f73e98442ec 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
dylanslack 0:3f73e98442ec 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
dylanslack 0:3f73e98442ec 954 }
dylanslack 0:3f73e98442ec 955
dylanslack 0:3f73e98442ec 956 uint8_t LSM9DS1::getFIFOSamples()
dylanslack 0:3f73e98442ec 957 {
dylanslack 0:3f73e98442ec 958 return (xgReadByte(FIFO_SRC) & 0x3F);
dylanslack 0:3f73e98442ec 959 }
dylanslack 0:3f73e98442ec 960
dylanslack 0:3f73e98442ec 961 void LSM9DS1::constrainScales()
dylanslack 0:3f73e98442ec 962 {
dylanslack 0:3f73e98442ec 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
dylanslack 0:3f73e98442ec 964 (settings.gyro.scale != 2000))
dylanslack 0:3f73e98442ec 965 {
dylanslack 0:3f73e98442ec 966 settings.gyro.scale = 245;
dylanslack 0:3f73e98442ec 967 }
dylanslack 0:3f73e98442ec 968
dylanslack 0:3f73e98442ec 969 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
dylanslack 0:3f73e98442ec 970 (settings.accel.scale != 8) && (settings.accel.scale != 16))
dylanslack 0:3f73e98442ec 971 {
dylanslack 0:3f73e98442ec 972 settings.accel.scale = 2;
dylanslack 0:3f73e98442ec 973 }
dylanslack 0:3f73e98442ec 974
dylanslack 0:3f73e98442ec 975 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
dylanslack 0:3f73e98442ec 976 (settings.mag.scale != 12) && (settings.mag.scale != 16))
dylanslack 0:3f73e98442ec 977 {
dylanslack 0:3f73e98442ec 978 settings.mag.scale = 4;
dylanslack 0:3f73e98442ec 979 }
dylanslack 0:3f73e98442ec 980 }
dylanslack 0:3f73e98442ec 981
dylanslack 0:3f73e98442ec 982 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
dylanslack 0:3f73e98442ec 983 {
dylanslack 0:3f73e98442ec 984 // Whether we're using I2C or SPI, write a byte using the
dylanslack 0:3f73e98442ec 985 // gyro-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 986 if (settings.device.commInterface == IMU_MODE_I2C) {
dylanslack 0:3f73e98442ec 987 printf("yo");
dylanslack 0:3f73e98442ec 988 I2CwriteByte(_xgAddress, subAddress, data);
dylanslack 0:3f73e98442ec 989 } else if (settings.device.commInterface == IMU_MODE_SPI) {
dylanslack 0:3f73e98442ec 990 SPIwriteByte(_xgAddress, subAddress, data);
dylanslack 0:3f73e98442ec 991 }
dylanslack 0:3f73e98442ec 992 }
dylanslack 0:3f73e98442ec 993
dylanslack 0:3f73e98442ec 994 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
dylanslack 0:3f73e98442ec 995 {
dylanslack 0:3f73e98442ec 996 // Whether we're using I2C or SPI, write a byte using the
dylanslack 0:3f73e98442ec 997 // accelerometer-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 998 if (settings.device.commInterface == IMU_MODE_I2C)
dylanslack 0:3f73e98442ec 999 return I2CwriteByte(_mAddress, subAddress, data);
dylanslack 0:3f73e98442ec 1000 else if (settings.device.commInterface == IMU_MODE_SPI)
dylanslack 0:3f73e98442ec 1001 return SPIwriteByte(_mAddress, subAddress, data);
dylanslack 0:3f73e98442ec 1002 }
dylanslack 0:3f73e98442ec 1003
dylanslack 0:3f73e98442ec 1004 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
dylanslack 0:3f73e98442ec 1005 {
dylanslack 0:3f73e98442ec 1006 // Whether we're using I2C or SPI, read a byte using the
dylanslack 0:3f73e98442ec 1007 // gyro-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 1008 if (settings.device.commInterface == IMU_MODE_I2C)
dylanslack 0:3f73e98442ec 1009 return I2CreadByte(_xgAddress, subAddress);
dylanslack 0:3f73e98442ec 1010 else if (settings.device.commInterface == IMU_MODE_SPI)
dylanslack 0:3f73e98442ec 1011 return SPIreadByte(_xgAddress, subAddress);
dylanslack 0:3f73e98442ec 1012 }
dylanslack 0:3f73e98442ec 1013
dylanslack 0:3f73e98442ec 1014 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
dylanslack 0:3f73e98442ec 1015 {
dylanslack 0:3f73e98442ec 1016 // Whether we're using I2C or SPI, read multiple bytes using the
dylanslack 0:3f73e98442ec 1017 // gyro-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 1018 if (settings.device.commInterface == IMU_MODE_I2C) {
dylanslack 0:3f73e98442ec 1019 I2CreadBytes(_xgAddress, subAddress, dest, count);
dylanslack 0:3f73e98442ec 1020 } else if (settings.device.commInterface == IMU_MODE_SPI) {
dylanslack 0:3f73e98442ec 1021 SPIreadBytes(_xgAddress, subAddress, dest, count);
dylanslack 0:3f73e98442ec 1022 }
dylanslack 0:3f73e98442ec 1023 }
dylanslack 0:3f73e98442ec 1024
dylanslack 0:3f73e98442ec 1025 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
dylanslack 0:3f73e98442ec 1026 {
dylanslack 0:3f73e98442ec 1027 // Whether we're using I2C or SPI, read a byte using the
dylanslack 0:3f73e98442ec 1028 // accelerometer-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 1029 if (settings.device.commInterface == IMU_MODE_I2C)
dylanslack 0:3f73e98442ec 1030 return I2CreadByte(_mAddress, subAddress);
dylanslack 0:3f73e98442ec 1031 else if (settings.device.commInterface == IMU_MODE_SPI)
dylanslack 0:3f73e98442ec 1032 return SPIreadByte(_mAddress, subAddress);
dylanslack 0:3f73e98442ec 1033 }
dylanslack 0:3f73e98442ec 1034
dylanslack 0:3f73e98442ec 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
dylanslack 0:3f73e98442ec 1036 {
dylanslack 0:3f73e98442ec 1037 // Whether we're using I2C or SPI, read multiple bytes using the
dylanslack 0:3f73e98442ec 1038 // accelerometer-specific I2C address or SPI CS pin.
dylanslack 0:3f73e98442ec 1039 if (settings.device.commInterface == IMU_MODE_I2C)
dylanslack 0:3f73e98442ec 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
dylanslack 0:3f73e98442ec 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
dylanslack 0:3f73e98442ec 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
dylanslack 0:3f73e98442ec 1043 }
dylanslack 0:3f73e98442ec 1044
dylanslack 0:3f73e98442ec 1045 void LSM9DS1::initSPI()
dylanslack 0:3f73e98442ec 1046 {
dylanslack 0:3f73e98442ec 1047 /*
dylanslack 0:3f73e98442ec 1048 pinMode(_xgAddress, OUTPUT);
dylanslack 0:3f73e98442ec 1049 digitalWrite(_xgAddress, HIGH);
dylanslack 0:3f73e98442ec 1050 pinMode(_mAddress, OUTPUT);
dylanslack 0:3f73e98442ec 1051 digitalWrite(_mAddress, HIGH);
dylanslack 0:3f73e98442ec 1052
dylanslack 0:3f73e98442ec 1053 SPI.begin();
dylanslack 0:3f73e98442ec 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
dylanslack 0:3f73e98442ec 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
dylanslack 0:3f73e98442ec 1056 // Data is read and written MSb first.
dylanslack 0:3f73e98442ec 1057 SPI.setBitOrder(MSBFIRST);
dylanslack 0:3f73e98442ec 1058 // Data is captured on rising edge of clock (CPHA = 0)
dylanslack 0:3f73e98442ec 1059 // Base value of the clock is HIGH (CPOL = 1)
dylanslack 0:3f73e98442ec 1060 SPI.setDataMode(SPI_MODE0);
dylanslack 0:3f73e98442ec 1061 */
dylanslack 0:3f73e98442ec 1062 }
dylanslack 0:3f73e98442ec 1063
dylanslack 0:3f73e98442ec 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
dylanslack 0:3f73e98442ec 1065 {
dylanslack 0:3f73e98442ec 1066 /*
dylanslack 0:3f73e98442ec 1067 digitalWrite(csPin, LOW); // Initiate communication
dylanslack 0:3f73e98442ec 1068
dylanslack 0:3f73e98442ec 1069 // If write, bit 0 (MSB) should be 0
dylanslack 0:3f73e98442ec 1070 // If single write, bit 1 should be 0
dylanslack 0:3f73e98442ec 1071 SPI.transfer(subAddress & 0x3F); // Send Address
dylanslack 0:3f73e98442ec 1072 SPI.transfer(data); // Send data
dylanslack 0:3f73e98442ec 1073
dylanslack 0:3f73e98442ec 1074 digitalWrite(csPin, HIGH); // Close communication
dylanslack 0:3f73e98442ec 1075 */
dylanslack 0:3f73e98442ec 1076 }
dylanslack 0:3f73e98442ec 1077
dylanslack 0:3f73e98442ec 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
dylanslack 0:3f73e98442ec 1079 {
dylanslack 0:3f73e98442ec 1080 uint8_t temp;
dylanslack 0:3f73e98442ec 1081 // Use the multiple read function to read 1 byte.
dylanslack 0:3f73e98442ec 1082 // Value is returned to `temp`.
dylanslack 0:3f73e98442ec 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
dylanslack 0:3f73e98442ec 1084 return temp;
dylanslack 0:3f73e98442ec 1085 }
dylanslack 0:3f73e98442ec 1086
dylanslack 0:3f73e98442ec 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
dylanslack 0:3f73e98442ec 1088 uint8_t * dest, uint8_t count)
dylanslack 0:3f73e98442ec 1089 {
dylanslack 0:3f73e98442ec 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
dylanslack 0:3f73e98442ec 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
dylanslack 0:3f73e98442ec 1092 // Mag SPI port is different. If we're reading multiple bytes,
dylanslack 0:3f73e98442ec 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
dylanslack 0:3f73e98442ec 1094 if ((csPin == _mAddress) && count > 1)
dylanslack 0:3f73e98442ec 1095 rAddress |= 0x40;
dylanslack 0:3f73e98442ec 1096
dylanslack 0:3f73e98442ec 1097 /*
dylanslack 0:3f73e98442ec 1098 digitalWrite(csPin, LOW); // Initiate communication
dylanslack 0:3f73e98442ec 1099 SPI.transfer(rAddress);
dylanslack 0:3f73e98442ec 1100 for (int i=0; i<count; i++)
dylanslack 0:3f73e98442ec 1101 {
dylanslack 0:3f73e98442ec 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
dylanslack 0:3f73e98442ec 1103 }
dylanslack 0:3f73e98442ec 1104 digitalWrite(csPin, HIGH); // Close communication
dylanslack 0:3f73e98442ec 1105 */
dylanslack 0:3f73e98442ec 1106 }
dylanslack 0:3f73e98442ec 1107
dylanslack 0:3f73e98442ec 1108 void LSM9DS1::initI2C()
dylanslack 0:3f73e98442ec 1109 {
dylanslack 0:3f73e98442ec 1110 /*
dylanslack 0:3f73e98442ec 1111 Wire.begin(); // Initialize I2C library
dylanslack 0:3f73e98442ec 1112 */
dylanslack 0:3f73e98442ec 1113
dylanslack 0:3f73e98442ec 1114 //already initialized in constructor!
dylanslack 0:3f73e98442ec 1115 }
dylanslack 0:3f73e98442ec 1116
dylanslack 0:3f73e98442ec 1117 // Wire.h read and write protocols
dylanslack 0:3f73e98442ec 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
dylanslack 0:3f73e98442ec 1119 {
dylanslack 0:3f73e98442ec 1120 /*
dylanslack 0:3f73e98442ec 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
dylanslack 0:3f73e98442ec 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
dylanslack 0:3f73e98442ec 1123 Wire.write(data); // Put data in Tx buffer
dylanslack 0:3f73e98442ec 1124 Wire.endTransmission(); // Send the Tx buffer
dylanslack 0:3f73e98442ec 1125 */
dylanslack 0:3f73e98442ec 1126 char temp_data[2] = {subAddress, data};
dylanslack 0:3f73e98442ec 1127 i2c.write(address, temp_data, 2);
dylanslack 0:3f73e98442ec 1128 }
dylanslack 0:3f73e98442ec 1129
dylanslack 0:3f73e98442ec 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
dylanslack 0:3f73e98442ec 1131 {
dylanslack 0:3f73e98442ec 1132 /*
dylanslack 0:3f73e98442ec 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
dylanslack 0:3f73e98442ec 1134 uint8_t data; // `data` will store the register data
dylanslack 0:3f73e98442ec 1135
dylanslack 0:3f73e98442ec 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
dylanslack 0:3f73e98442ec 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
dylanslack 0:3f73e98442ec 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
dylanslack 0:3f73e98442ec 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
dylanslack 0:3f73e98442ec 1140 while ((Wire.available() < 1) && (timeout-- > 0))
dylanslack 0:3f73e98442ec 1141 delay(1);
dylanslack 0:3f73e98442ec 1142
dylanslack 0:3f73e98442ec 1143 if (timeout <= 0)
dylanslack 0:3f73e98442ec 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
dylanslack 0:3f73e98442ec 1145
dylanslack 0:3f73e98442ec 1146 data = Wire.read(); // Fill Rx buffer with result
dylanslack 0:3f73e98442ec 1147 return data; // Return data read from slave register
dylanslack 0:3f73e98442ec 1148 */
dylanslack 0:3f73e98442ec 1149 char data;
dylanslack 0:3f73e98442ec 1150 char temp[1] = {subAddress};
dylanslack 0:3f73e98442ec 1151
dylanslack 0:3f73e98442ec 1152 i2c.write(address, temp, 1);
dylanslack 0:3f73e98442ec 1153 //i2c.write(address & 0xFE);
dylanslack 0:3f73e98442ec 1154 temp[1] = 0x00;
dylanslack 0:3f73e98442ec 1155 i2c.write(address, temp, 1);
dylanslack 0:3f73e98442ec 1156 //i2c.write( address | 0x01);
dylanslack 0:3f73e98442ec 1157 int a = i2c.read(address, &data, 1);
dylanslack 0:3f73e98442ec 1158 return data;
dylanslack 0:3f73e98442ec 1159 }
dylanslack 0:3f73e98442ec 1160
dylanslack 0:3f73e98442ec 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
dylanslack 0:3f73e98442ec 1162 {
dylanslack 0:3f73e98442ec 1163 /*
dylanslack 0:3f73e98442ec 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
dylanslack 0:3f73e98442ec 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
dylanslack 0:3f73e98442ec 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
dylanslack 0:3f73e98442ec 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
dylanslack 0:3f73e98442ec 1168
dylanslack 0:3f73e98442ec 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
dylanslack 0:3f73e98442ec 1170 uint8_t i = 0;
dylanslack 0:3f73e98442ec 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
dylanslack 0:3f73e98442ec 1172 while ((Wire.available() < count) && (timeout-- > 0))
dylanslack 0:3f73e98442ec 1173 delay(1);
dylanslack 0:3f73e98442ec 1174 if (timeout <= 0)
dylanslack 0:3f73e98442ec 1175 return -1;
dylanslack 0:3f73e98442ec 1176
dylanslack 0:3f73e98442ec 1177 for (int i=0; i<count;)
dylanslack 0:3f73e98442ec 1178 {
dylanslack 0:3f73e98442ec 1179 if (Wire.available())
dylanslack 0:3f73e98442ec 1180 {
dylanslack 0:3f73e98442ec 1181 dest[i++] = Wire.read();
dylanslack 0:3f73e98442ec 1182 }
dylanslack 0:3f73e98442ec 1183 }
dylanslack 0:3f73e98442ec 1184 return count;
dylanslack 0:3f73e98442ec 1185 */
dylanslack 0:3f73e98442ec 1186 int i;
dylanslack 0:3f73e98442ec 1187 char temp_dest[count];
dylanslack 0:3f73e98442ec 1188 char temp[1] = {subAddress};
dylanslack 0:3f73e98442ec 1189 i2c.write(address, temp, 1);
dylanslack 0:3f73e98442ec 1190 i2c.read(address, temp_dest, count);
dylanslack 0:3f73e98442ec 1191
dylanslack 0:3f73e98442ec 1192 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
dylanslack 0:3f73e98442ec 1193 for (i=0; i < count; i++) {
dylanslack 0:3f73e98442ec 1194 dest[i] = temp_dest[i];
dylanslack 0:3f73e98442ec 1195 }
dylanslack 0:3f73e98442ec 1196 return count;
dylanslack 0:3f73e98442ec 1197 }