Driver library for SX1272/SX1276 transceivers

Dependents:   LORA_RX LORA_TX WindConcentrator hid_test ... more

/media/uploads/dudmuck/lora.png

Driver library for SX1272 and SX1276 radio transceivers.

This device uses CSS modulation to provide much improved link budget. The RF hardware is same as in FSK devices, just with added LoRa spread-spectrum modem.

This library provides functions to configure radio chip and transmit & receive packets.

Using This Library

Library function service_radio() must be called continuously from main loop, to service interrupts from radio.

/media/uploads/dudmuck/sx1272rf1_connector_300.jpg

Board Specific implementation

FunctionPointer for rf_switch callback allows the program to implement control of RF switch unique to their board. Example options are:

  • SKY13373 for external power amplifier implementation. Requires two DigitalOut pins.
  • SKY13350 using PA_BOOST. requires two DigitalOut pins.
  • PE4259-63: controlled directly by radio chip, no software function needed. However, in the case of SX1276MB1xAS, the RXTX pin on IO2 should be driven by this callback function when R16 is installed (without R15) on this shield board.

Some configurations may need to force the use of RFO or PA_BOOST, or a board could offer both options. The rf_switch function pointer callback should support the implementation choice on the board.

further reading

sx127x_lora.cpp

Committer:
dudmuck
Date:
2015-06-02
Revision:
18:0ecb6adb7c0b
Parent:
17:59279bc8cdab
Child:
19:1ee6ef1ab73f

File content as of revision 18:0ecb6adb7c0b:

#include "sx127x_lora.h"

/* SX127x driver
 * Copyright (c) 2013 Semtech
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

SX127x_lora::SX127x_lora(SX127x& r) : m_xcvr(r)
{
    RegModemConfig.octet = m_xcvr.read_reg(REG_LR_MODEMCONFIG);
    RegModemConfig2.octet = m_xcvr.read_reg(REG_LR_MODEMCONFIG2);
    RegTest31.octet = m_xcvr.read_reg(REG_LR_TEST31);
    RegTest33.octet = m_xcvr.read_reg(REG_LR_TEST33);     // invert_i_q
    RegDriftInvert.octet = m_xcvr.read_reg(REG_LR_DRIFT_INVERT);
    
    // CRC for TX is disabled by default
    setRxPayloadCrcOn(true);
}

SX127x_lora::~SX127x_lora()
{
}
    
void SX127x_lora::write_fifo(uint8_t len)
{
    int i;
    
    m_xcvr.m_cs = 0;
    m_xcvr.m_spi.write(REG_FIFO | 0x80); // bit7 is high for writing to radio
    
    for (i = 0; i < len; i++) {
        m_xcvr.m_spi.write(m_xcvr.tx_buf[i]);
    }
    m_xcvr.m_cs = 1;
}

void SX127x_lora::read_fifo(uint8_t len)
{
    int i;
     
    m_xcvr.m_cs = 0;
    m_xcvr.m_spi.write(REG_FIFO); // bit7 is low for reading from radio
    for (i = 0; i < len; i++) {
        m_xcvr.rx_buf[i] = m_xcvr.m_spi.write(0);
    }
    m_xcvr.m_cs = 1;
}

void SX127x_lora::enable()
{
    m_xcvr.set_opmode(RF_OPMODE_SLEEP);
    
    m_xcvr.RegOpMode.bits.LongRangeMode = 1;
    m_xcvr.write_reg(REG_OPMODE, m_xcvr.RegOpMode.octet);
    
    /*RegOpMode.octet = read_reg(REG_OPMODE);
    printf("setloraon:%02x\r\n", RegOpMode.octet);*/
    

    /*                                // RxDone               RxTimeout                   FhssChangeChannel           CadDone
    SX1272LR->RegDioMapping1 = RFLR_DIOMAPPING1_DIO0_00 | RFLR_DIOMAPPING1_DIO1_00 | RFLR_DIOMAPPING1_DIO2_00 | RFLR_DIOMAPPING1_DIO3_00;
                                    // CadDetected          ModeReady
    SX1272LR->RegDioMapping2 = RFLR_DIOMAPPING2_DIO4_00 | RFLR_DIOMAPPING2_DIO5_00;
    SX1272WriteBuffer( REG_LR_DIOMAPPING1, &SX1272LR->RegDioMapping1, 2 );*/
    m_xcvr.RegDioMapping1.bits.Dio0Mapping = 0;    // DIO0 to RxDone
    m_xcvr.RegDioMapping1.bits.Dio1Mapping = 0;
    m_xcvr.write_reg(REG_DIOMAPPING1, m_xcvr.RegDioMapping1.octet);
    
    // todo: read LoRa regsiters
    //SX1272ReadBuffer( REG_LR_OPMODE, SX1272Regs + 1, 0x70 - 1 );
        
    m_xcvr.set_opmode(RF_OPMODE_STANDBY);            
}

uint8_t SX127x_lora::getCodingRate(bool from_rx)
{
    if (from_rx) {
        // expected RegModemStatus was read on RxDone interrupt
        return RegModemStatus.bits.RxCodingRate;    
    } else {    // transmitted coding rate...
        if (m_xcvr.type == SX1276)
            return RegModemConfig.sx1276bits.CodingRate;
        else if (m_xcvr.type == SX1272)
            return RegModemConfig.sx1272bits.CodingRate;
        else
            return 0;
    }
}



void SX127x_lora::setCodingRate(uint8_t cr)
{
    if (!m_xcvr.RegOpMode.bits.LongRangeMode)
        return;
        
    if (m_xcvr.type == SX1276)
        RegModemConfig.sx1276bits.CodingRate = cr;
    else if (m_xcvr.type == SX1272)
        RegModemConfig.sx1272bits.CodingRate = cr;
    else
        return;
        
    m_xcvr.write_reg(REG_LR_MODEMCONFIG, RegModemConfig.octet);
}



bool SX127x_lora::getHeaderMode(void)
{
    if (m_xcvr.type == SX1276)
        return RegModemConfig.sx1276bits.ImplicitHeaderModeOn;
    else if (m_xcvr.type == SX1272)
        return RegModemConfig.sx1272bits.ImplicitHeaderModeOn;
    else
        return false;
}

void SX127x_lora::setHeaderMode(bool hm)
{
    if (m_xcvr.type == SX1276)
        RegModemConfig.sx1276bits.ImplicitHeaderModeOn = hm;
    else if (m_xcvr.type == SX1272)
        RegModemConfig.sx1272bits.ImplicitHeaderModeOn = hm;
    else
        return;
        
    m_xcvr.write_reg(REG_LR_MODEMCONFIG, RegModemConfig.octet);
}


uint8_t SX127x_lora::getBw(void)
{
    if (m_xcvr.type == SX1276)
        return RegModemConfig.sx1276bits.Bw;
    else if (m_xcvr.type == SX1272)
        return RegModemConfig.sx1272bits.Bw;
    else
        return 0;
}

int SX127x_lora::get_freq_error_Hz()
{
    int freq_error;
    float f, khz = 0;
    freq_error = m_xcvr.read_reg(REG_LR_TEST28);
    freq_error <<= 8;
    freq_error += m_xcvr.read_reg(REG_LR_TEST29);
    freq_error <<= 8;
    freq_error += m_xcvr.read_reg(REG_LR_TEST2A);
    if (freq_error & 0x80000) {  // 20bit value is negative
        //signed 20bit to 32bit
        freq_error |= 0xfff00000;
    }   
    f = freq_error / (float)XTAL_FREQ;
    f *= (float)0x1000000; // 2^24
    if (m_xcvr.type == SX1272) {
        switch (RegModemConfig.sx1272bits.Bw) {
            case 0: khz = 125; break;
            case 1: khz = 250; break;
            case 2: khz = 500; break;                
        }
    } else if (m_xcvr.type == SX1276) {
        switch (RegModemConfig.sx1276bits.Bw) {
            case 0: khz = 7.8; break;
            case 1: khz = 10.4; break;
            case 2: khz = 15.6; break;
            case 3: khz = 20.8; break;
            case 4: khz = 31.25; break;
            case 5: khz = 41.7; break;
            case 6: khz = 62.5; break;
            case 7: khz = 125; break;
            case 8: khz = 250; break;
            case 9: khz = 500; break;            
        }
    }
    f *= khz / 500;
    return (int)f;
}

float SX127x_lora::get_symbol_period()
{
    float khz = 0;
    
    if (m_xcvr.type == SX1276) {
        switch (RegModemConfig.sx1276bits.Bw) {
            case 0: khz = 7.8; break;
            case 1: khz = 10.4; break;
            case 2: khz = 15.6; break;
            case 3: khz = 20.8; break;
            case 4: khz = 31.25; break;
            case 5: khz = 41.7; break;
            case 6: khz = 62.5; break;
            case 7: khz = 125; break;
            case 8: khz = 250; break;
            case 9: khz = 500; break;
        }
    } else if (m_xcvr.type == SX1272) {
        switch (RegModemConfig.sx1272bits.Bw) {
            case 0: khz = 125; break;
            case 1: khz = 250; break;
            case 2: khz = 500; break;            
        }
    }
    
    // return symbol duration in milliseconds
    return (1 << RegModemConfig2.sx1276bits.SpreadingFactor) / khz; 
}

void SX127x_lora::setBw_KHz(int khz)
{
    uint8_t bw = 0;
    
    if (m_xcvr.type == SX1276) {
        if (khz <= 8) bw = 0;
        else if (khz <= 11) bw = 1;
        else if (khz <= 16) bw = 2;
        else if (khz <= 21) bw = 3;
        else if (khz <= 32) bw = 4;
        else if (khz <= 42) bw = 5;
        else if (khz <= 63) bw = 6;
        else if (khz <= 125) bw = 7;
        else if (khz <= 250) bw = 8;
        else if (khz <= 500) bw = 9;
    } else if (m_xcvr.type == SX1272) {
        if (khz <= 125) bw = 0;
        else if (khz <= 250) bw = 1;
        else if (khz <= 500) bw = 2;
    }
    
    setBw(bw);
}

void SX127x_lora::setBw(uint8_t bw)
{
    if (!m_xcvr.RegOpMode.bits.LongRangeMode)
        return;
        
    if (m_xcvr.type == SX1276) {
        RegAutoDrift_t auto_drift;
        
        RegModemConfig.sx1276bits.Bw = bw;
        if (get_symbol_period() > 16)
            RegModemConfig3.sx1276bits.LowDataRateOptimize = 1;
        else
            RegModemConfig3.sx1276bits.LowDataRateOptimize = 0;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG3, RegModemConfig3.octet);  
        
        auto_drift.octet = m_xcvr.read_reg(REG_LR_SX1276_AUTO_DRIFT);
        if (bw == 9) {  // if 500KHz bw
            RegGainDrift_t gd;
            gd.octet = m_xcvr.read_reg(REG_LR_GAIN_DRIFT);
            auto_drift.bits.freq_to_time_drift_auto = 0;
            if (m_xcvr.HF) {
                // > 525MHz
                gd.bits.freq_to_time_drift = 0x24;
            } else {
                // < 525MHz
                gd.bits.freq_to_time_drift = 0x3f;
            }
            m_xcvr.write_reg(REG_LR_GAIN_DRIFT, gd.octet);
        } else {
            auto_drift.bits.freq_to_time_drift_auto = 1;
        }
        m_xcvr.write_reg(REG_LR_SX1276_AUTO_DRIFT, auto_drift.octet);
                  
    } else if (m_xcvr.type == SX1272) {
        RegModemConfig.sx1272bits.Bw = bw;
        if (get_symbol_period() > 16)
            RegModemConfig.sx1272bits.LowDataRateOptimize = 1;
        else
            RegModemConfig.sx1272bits.LowDataRateOptimize = 0;
    } else
        return;
        
    m_xcvr.write_reg(REG_LR_MODEMCONFIG, RegModemConfig.octet);
}



uint8_t SX127x_lora::getSf(void)
{
    // spreading factor same between sx127[26]
    return RegModemConfig2.sx1276bits.SpreadingFactor;
}

void SX127x_lora::set_nb_trig_peaks(int n)
{
    /* TODO: different requirements for RX_CONTINUOUS vs RX_SINGLE */
    RegTest31.bits.detect_trig_same_peaks_nb = n;
    m_xcvr.write_reg(REG_LR_TEST31, RegTest31.octet);
}


void SX127x_lora::setSf(uint8_t sf)
{
    if (!m_xcvr.RegOpMode.bits.LongRangeMode)
        return;
            
    // false detections vs missed detections tradeoff
    switch (sf) {
        case 6:
            set_nb_trig_peaks(3);
            break;
        case 7:
            set_nb_trig_peaks(4);
            break;
        default:
            set_nb_trig_peaks(5);
            break;
    }
    
    // write register at 0x37 with value 0xc if at SF6
    if (sf < 7)
        m_xcvr.write_reg(REG_LR_DETECTION_THRESHOLD, 0x0c);
    else
        m_xcvr.write_reg(REG_LR_DETECTION_THRESHOLD, 0x0a);
    
    RegModemConfig2.sx1276bits.SpreadingFactor = sf; // spreading factor same between sx127[26]
    m_xcvr.write_reg(REG_LR_MODEMCONFIG2, RegModemConfig2.octet);
    
    if (m_xcvr.type == SX1272) {
        if (get_symbol_period() > 16)
            RegModemConfig.sx1272bits.LowDataRateOptimize = 1;
        else
            RegModemConfig.sx1272bits.LowDataRateOptimize = 0;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG, RegModemConfig.octet);
    } else if (m_xcvr.type == SX1276) {
        if (get_symbol_period() > 16)
            RegModemConfig3.sx1276bits.LowDataRateOptimize = 1;
        else
            RegModemConfig3.sx1276bits.LowDataRateOptimize = 0;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG3, RegModemConfig3.octet);
    }
}


        
bool SX127x_lora::getRxPayloadCrcOn(void)
{
    if (m_xcvr.type == SX1276)
        return RegModemConfig2.sx1276bits.RxPayloadCrcOn;
    else if (m_xcvr.type == SX1272)
        return RegModemConfig.sx1272bits.RxPayloadCrcOn;
    else
        return 0;
}


void SX127x_lora::setRxPayloadCrcOn(bool on)
{
    if (m_xcvr.type == SX1276) {
        RegModemConfig2.sx1276bits.RxPayloadCrcOn = on;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG2, RegModemConfig2.octet);
    } else if (m_xcvr.type == SX1272) {
        RegModemConfig.sx1272bits.RxPayloadCrcOn = on;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG, RegModemConfig.octet);
    }   
}



bool SX127x_lora::getAgcAutoOn(void)
{
    if (m_xcvr.type == SX1276) {
        RegModemConfig3.octet = m_xcvr.read_reg(REG_LR_MODEMCONFIG3);
        return RegModemConfig3.sx1276bits.AgcAutoOn;
    } else if (m_xcvr.type == SX1272) {
        RegModemConfig2.octet = m_xcvr.read_reg(REG_LR_MODEMCONFIG2);
        return RegModemConfig2.sx1272bits.AgcAutoOn;
    } else
        return 0;
}

void SX127x_lora::setAgcAutoOn(bool on)
{
    if (m_xcvr.type == SX1276) {
        RegModemConfig3.sx1276bits.AgcAutoOn = on;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG3, RegModemConfig3.octet);
    } else if (m_xcvr.type == SX1272) {
        RegModemConfig2.sx1272bits.AgcAutoOn = on;
        m_xcvr.write_reg(REG_LR_MODEMCONFIG2, RegModemConfig2.octet);
    }
    
}

void SX127x_lora::invert_tx(bool inv)
{
    RegTest33.bits.chirp_invert_tx = !inv;
    m_xcvr.write_reg(REG_LR_TEST33, RegTest33.octet);    
}

void SX127x_lora::invert_rx(bool inv)
{
    RegTest33.bits.invert_i_q = inv;
    m_xcvr.write_reg(REG_LR_TEST33, RegTest33.octet);
    /**/
    RegDriftInvert.bits.invert_timing_error_per_symbol = !RegTest33.bits.invert_i_q;    
    m_xcvr.write_reg(REG_LR_DRIFT_INVERT, RegDriftInvert.octet);
}

void SX127x_lora::start_tx(uint8_t len)
{                   
    // DIO0 to TxDone
    if (m_xcvr.RegDioMapping1.bits.Dio0Mapping != 1) {
        m_xcvr.RegDioMapping1.bits.Dio0Mapping = 1;
        m_xcvr.write_reg(REG_DIOMAPPING1, m_xcvr.RegDioMapping1.octet);
    }
    
    // set FifoPtrAddr to FifoTxPtrBase
    m_xcvr.write_reg(REG_LR_FIFOADDRPTR, m_xcvr.read_reg(REG_LR_FIFOTXBASEADDR));
    
    // write PayloadLength bytes to fifo
    write_fifo(len);
       
    m_xcvr.set_opmode(RF_OPMODE_TRANSMITTER);
}

void SX127x_lora::start_rx()
{
    if (!m_xcvr.RegOpMode.bits.LongRangeMode)
        return; // fsk mode
    if (m_xcvr.RegOpMode.sx1276LORAbits.AccessSharedReg)
        return; // fsk page
        
    m_xcvr.set_opmode(RF_OPMODE_RECEIVER);

    if (m_xcvr.RegDioMapping1.bits.Dio0Mapping != 0) {
        m_xcvr.RegDioMapping1.bits.Dio0Mapping = 0;    // DIO0 to RxDone
        m_xcvr.write_reg(REG_DIOMAPPING1, m_xcvr.RegDioMapping1.octet);
    }
    
    m_xcvr.write_reg(REG_LR_FIFOADDRPTR, m_xcvr.read_reg(REG_LR_FIFORXBASEADDR));
}

float SX127x_lora::get_pkt_rssi()
{
    /* TODO: calculating with pktSNR to give meaningful result below noise floor */
    if (m_xcvr.type == SX1276)
        return RegPktRssiValue - 137;
    else
        return RegPktRssiValue - 125;
}

service_action_e SX127x_lora::service()
{
    if (m_xcvr.RegOpMode.bits.Mode == RF_OPMODE_RECEIVER) {
        if (poll_vh) {
            RegIrqFlags.octet = m_xcvr.read_reg(REG_LR_IRQFLAGS);
            if (RegIrqFlags.bits.ValidHeader) {
                RegIrqFlags.octet = 0;
                RegIrqFlags.bits.ValidHeader = 1;
                m_xcvr.write_reg(REG_LR_IRQFLAGS, RegIrqFlags.octet);
                printf("VH\r\n");
            }
        }
    }
       
    if (m_xcvr.dio0 == 0)
        return SERVICE_NONE;
        
    switch (m_xcvr.RegDioMapping1.bits.Dio0Mapping) {
        case 0: // RxDone
            /* user checks for CRC error in IrqFlags */
            RegIrqFlags.octet = m_xcvr.read_reg(REG_LR_IRQFLAGS);  // save flags
            RegHopChannel.octet = m_xcvr.read_reg(REG_LR_HOPCHANNEL);
            //printf("[%02x]", RegIrqFlags.octet);
            m_xcvr.write_reg(REG_LR_IRQFLAGS, RegIrqFlags.octet); // clear flags in radio
            
            /* any register of interest on received packet is read(saved) here */        
            RegModemStatus.octet = m_xcvr.read_reg(REG_LR_MODEMSTAT);          
            RegPktSnrValue = m_xcvr.read_reg(REG_LR_PKTSNRVALUE);
            RegPktRssiValue = m_xcvr.read_reg(REG_LR_PKTRSSIVALUE);
            RegRxNbBytes = m_xcvr.read_reg(REG_LR_RXNBBYTES);
    
            m_xcvr.write_reg(REG_LR_FIFOADDRPTR, m_xcvr.read_reg(REG_LR_FIFORXCURRENTADDR));
            read_fifo(RegRxNbBytes);
            return SERVICE_READ_FIFO;
        case 1: // TxDone
            RegIrqFlags.octet = 0;
            RegIrqFlags.bits.TxDone = 1;
            m_xcvr.write_reg(REG_LR_IRQFLAGS, RegIrqFlags.octet);                  
            return SERVICE_TX_DONE;        
    } // ...switch (RegDioMapping1.bits.Dio0Mapping)
    
    return SERVICE_ERROR;    
}