Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: SX127x sx12xx_hal TSL2561
mac/LoRaMac.cpp
- Committer:
- dudmuck
- Date:
- 2017-05-26
- Revision:
- 5:c108560af4c3
- Parent:
- 2:f2d9aa163652
- Child:
- 6:240fd4938d51
File content as of revision 5:c108560af4c3:
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jäckle ( STACKFORCE )
*/
#include <math.h>
#include "board.h"
#include "LoRaMacCrypto.h"
#include "LoRaMac.h"
#include "LoRaMacTest.h"
#define PING_SLOT_RESOLUTION_us 30000
/*!
* Maximum PHY layer payload size
*/
#define LORAMAC_PHY_MAXPAYLOAD 255
/*!
* Maximum MAC commands buffer size
*/
#define LORA_MAC_COMMAND_MAX_LENGTH 15
/*!
* FRMPayload overhead to be used when setting the Radio.SetMaxPayloadLength
* in RxWindowSetup function.
* Maximum PHYPayload = MaxPayloadOfDatarate/MaxPayloadOfDatarateRepeater + LORA_MAC_FRMPAYLOAD_OVERHEAD
*/
#define LORA_MAC_FRMPAYLOAD_OVERHEAD 13 // MHDR(1) + FHDR(7) + Port(1) + MIC(4)
/*!
* LoRaMac duty cycle for the back-off procedure during the first hour.
*/
#define BACKOFF_DC_1_HOUR 100
/*!
* LoRaMac duty cycle for the back-off procedure during the next 10 hours.
*/
#define BACKOFF_DC_10_HOURS 1000
/*!
* LoRaMac duty cycle for the back-off procedure during the next 24 hours.
*/
#define BACKOFF_DC_24_HOURS 10000
/*!
* Device IEEE EUI
*/
static uint8_t *LoRaMacDevEui;
/*!
* Application IEEE EUI
*/
static uint8_t *LoRaMacAppEui;
/*!
* AES encryption/decryption cipher application key
*/
static uint8_t *LoRaMacAppKey;
/*!
* AES encryption/decryption cipher network session key
*/
static uint8_t LoRaMacNwkSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* AES encryption/decryption cipher application session key
*/
static uint8_t LoRaMacAppSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* Device nonce is a random value extracted by issuing a sequence of RSSI
* measurements
*/
static uint16_t LoRaMacDevNonce;
/*!
* Network ID ( 3 bytes )
*/
static uint32_t LoRaMacNetID;
/*!
* Mote Address
*/
static uint32_t LoRaMacDevAddr;
/*!
* Multicast channels linked list
*/
static MulticastParams_t *MulticastChannels = NULL;
/*!
* Actual device class
*/
static DeviceClass_t LoRaMacDeviceClass;
/*!
* Indicates if the node is connected to a private or public network
*/
static bool PublicNetwork;
/*!
* Buffer containing the data to be sent or received.
*/
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
/*!
* Length of packet in LoRaMacBuffer
*/
static uint16_t LoRaMacBufferPktLen = 0;
/*!
* Length of the payload in LoRaMacBuffer
*/
static uint8_t LoRaMacTxPayloadLen = 0;
/*!
* Buffer containing the upper layer data.
*/
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
/*!
* LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
* Only the 16 LSB bits are sent
*/
static uint32_t UpLinkCounter = 0;
/*!
* LoRaMAC frame counter. Each time a packet is received the counter is incremented.
* Only the 16 LSB bits are received
*/
static uint32_t DownLinkCounter = 0;
/*!
* IsPacketCounterFixed enables the MIC field tests by fixing the
* UpLinkCounter value
*/
static bool IsUpLinkCounterFixed = false;
/*!
* Used for test purposes. Disables the opening of the reception windows.
*/
static bool IsRxWindowsEnabled = true;
LowPowerTimeout rx_timeout;
/*!
* Indicates if the MAC layer has already joined a network.
*/
static bool IsLoRaMacNetworkJoined = false;
/*!
* If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
* if the nodes needs to manage the server acknowledgement.
*/
static bool NodeAckRequested = false;
/*!
* If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
* if the ACK bit must be set for the next transmission
*/
static bool SrvAckRequested = false;
/*!
* Indicates if the MAC layer wants to send MAC commands
*/
static bool MacCommandsInNextTx = false;
/*!
* Contains the current MacCommandsBuffer index
*/
static uint8_t MacCommandsBufferIndex = 0;
/*!
* Contains the current MacCommandsBuffer index for MAC commands to repeat
*/
static uint8_t MacCommandsBufferToRepeatIndex = 0;
/*!
* Buffer containing the MAC layer commands
*/
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];
/*!
* Buffer containing the MAC layer commands which must be repeated
*/
static uint8_t MacCommandsBufferToRepeat[LORA_MAC_COMMAND_MAX_LENGTH];
#if defined( USE_BAND_915_SINGLE )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 10, 9, 8, 7, 8, 0, 0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125000, 125000, 125000, 125000, 500000, 0, 0, 0, 500000, 500000, 500000, 500000, 500000, 500000, 0, 0 };
/*!
* LoRaMac bands
*/
/*static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};*/
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };
#define LORAMAC_FIRST_CHANNEL ( (uint32_t)910.0e6 )
#define LORAMAC_STEPWIDTH_CHANNEL ( (uint32_t)800e3 )
#define BEACON_SIZE 6 /* bytes */
#define BEACON_CHANNEL_BW 2 /* 2=500KHz */
#define BEACON_CHANNEL_DR LORAMAC_DEFAULT_DATARATE
/* measured beacon duration (all at bw500)
* latency assigned for correct rx-before-tx measurement */
#if (LORAMAC_DEFAULT_DATARATE == DR_8)
#define BEACON_RXDONE_LATENCY_us 6000
#define BEACON_TOA_us 209000
#elif (LORAMAC_DEFAULT_DATARATE == DR_9)
#define BEACON_RXDONE_LATENCY_us 3500
#define BEACON_TOA_us 105000
#elif (LORAMAC_DEFAULT_DATARATE == DR_10)
#define BEACON_RXDONE_LATENCY_us 1460
#define BEACON_TOA_us 52800
#elif (LORAMAC_DEFAULT_DATARATE == DR_11)
#define BEACON_RXDONE_LATENCY_us 2000
#define BEACON_TOA_us 26000
#elif (LORAMAC_DEFAULT_DATARATE == DR_12)
#define BEACON_RXDONE_LATENCY_us 1500
#define BEACON_TOA_us 12800
#elif (LORAMAC_DEFAULT_DATARATE == DR_13)
#define BEACON_RXDONE_LATENCY_us 1300
#define BEACON_TOA_us 6560
#endif
#define BEACON_GUARD_us 2000000 // pre-beacon start
#define BEACON_RESERVED_us 2120000 // post-beacon start
//#define BEACON_SYMBOL_TIMEOUT_UNLOCKED 100
#else
#error "Please define a frequency band in the compiler options."
#endif
#define BEACON_MIN_SYMBOL_TIMEOUT 8
LowPowerTimer lp_timer;
/*!
* LoRaMac parameters
*/
LoRaMacParams_t LoRaMacParams;
/*!
* LoRaMac default parameters
*/
LoRaMacParams_t LoRaMacParamsDefaults;
/*!
* Uplink messages repetitions counter
*/
static uint8_t ChannelsNbRepCounter = 0;
static uint32_t AggregatedLastTxDoneTime_us;
/*!
* Current channel index
*/
static uint8_t Channel;
/*!
* Stores the time at LoRaMac initialization.
*
* \remark Used for the BACKOFF_DC computation.
*/
//static TimerTime_t LoRaMacInitializationTime = 0;
/*!
* LoRaMac internal states
*/
enum eLoRaMacState
{
LORAMAC_IDLE = 0x00000000,
LORAMAC_TX_RUNNING = 0x00000001,
LORAMAC_RX = 0x00000002,
LORAMAC_ACK_REQ = 0x00000004,
LORAMAC_ACK_RETRY = 0x00000008,
LORAMAC_TX_DELAYED = 0x00000010,
LORAMAC_TX_CONFIG = 0x00000020,
LORAMAC_RX_ABORT = 0x00000040,
LORAMAC_TX_SCHED = 0x00000080,
};
/*!
* LoRaMac internal state
*/
uint32_t LoRaMacState = LORAMAC_IDLE;
/*!
* LoRaMac timer used to check the LoRaMacState (runs every second)
*/
static LowPowerTimeout MacStateCheckTimer;
/*!
* LoRaMac upper layer event functions
*/
static LoRaMacPrimitives_t *LoRaMacPrimitives;
/*!
* LoRaMac upper layer callback functions
*/
static LoRaMacCallback_t *LoRaMacCallbacks;
/*!
* Radio events function pointer
*/
static RadioEvents_t RadioEvents;
/*!
* LoRaMac duty cycle delayed Tx timer
*/
static LowPowerTimeout TxDelayedTimer;
LowPowerTimeout tx_timeout;
/*!
* LoRaMac reception windows delay
* \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
* join frame : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
*/
static uint32_t RxWindowDelay_us;
typedef enum {
BEACON_STATE_NONE = 0,
BEACON_STATE_FIRST_ACQ,
BEACON_STATE_ACQ_ERROR,
BEACON_STATE_LOCKED_,
} beacon_state_e;
struct beacon_struct {
int rx_precession_us; // positive: rxing before tx start, negative: rxing after tx start
unsigned int RxBeaconSetupAt_us;
unsigned int LastBeaconRx_us; // updated only at beacon reception
unsigned int LastBeaconStart_us; // updated at beacon reception and beacon reception timeout
unsigned int next_beacon_expected_us;
int BeaconRxTimerError_us;
float symbol_period_secs;
uint8_t Precess_symbols; // how many symbols we want to start receiver before expected transmitter
uint8_t SymbolTimeout;
float SymbolTimeout_sec;
uint8_t num_missed;
beacon_state_e state;
uint16_t tx_slot_offset;
uint16_t periodicity_slots;
LowPowerTimeout timeout;
bool have_beacon;
} BeaconCtx;
/*!
* Rx window parameters
*/
typedef struct
{
int8_t Datarate;
uint8_t Bandwidth;
uint32_t RxWindowTimeout;
int32_t RxOffset;
}RxConfigParams_t;
/*!
* Rx windows params
*/
static RxConfigParams_t RxWindowsParam;
static bool expecting_beacon;
/*!
* Acknowledge timeout timer. Used for packet retransmissions.
*/
static LowPowerTimeout AckTimeoutTimer;
uint32_t TxTimeOnAir = 0;
/*!
* Number of trials for the Join Request
*/
static uint8_t JoinRequestTrials;
/*!
* Maximum number of trials for the Join Request
*/
static uint8_t MaxJoinRequestTrials;
/*!
* Structure to hold an MCPS indication data.
*/
static McpsIndication_t McpsIndication;
/*!
* Structure to hold MCPS confirm data.
*/
static McpsConfirm_t McpsConfirm;
/*!
* Structure to hold MLME confirm data.
*/
static MlmeConfirm_t MlmeConfirm;
/*!
* Structure to hold MLME indication data.
*/
static MlmeIndication_t MlmeIndication;
/*!
* LoRaMac tx/rx operation state
*/
LoRaMacFlags_t LoRaMacFlags;
/*!
* \brief Function to be executed on Radio Tx Done event
*/
static void OnRadioTxDone( unsigned int tx_done_us );
unsigned int TxDone_us;
/*!
* \brief This function prepares the MAC to abort the execution of function
* OnRadioRxDone in case of a reception error.
*/
static void PrepareRxDoneAbort( void );
/*!
* \brief Function to be executed on Radio Rx Done event
*/
static void OnRadioRxDone(unsigned rx_us, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
/*!
* \brief Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void );
/*!
* \brief Function executed on Radio Rx error event
*/
static void OnRadioRxError( void );
/*!
* \brief Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void );
/*!
* \brief Function executed on Resend Frame timer event.
*/
static void OnMacStateCheckTimerEvent( void );
/*!
* \brief Function executed on duty cycle delayed Tx timer event
*/
static void OnTxDelayedTimerEvent( void );
static void OnRxWindowTimerEvent( void );
/*!
* \brief Function executed on AckTimeout timer event
*/
static void OnAckTimeoutTimerEvent( void );
/*!
* \brief Initializes and opens the reception window
*
* \param [IN] freq window channel frequency
* \param [IN] datarate window channel datarate
* \param [IN] bandwidth window channel bandwidth
* \param [IN] timeout window channel timeout
*
* \retval status Operation status [true: Success, false: Fail]
*/
static bool RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous );
/*!
* \brief Verifies if the RX window 2 frequency is in range
*
* \param [IN] freq window channel frequency
*
* \retval status Function status [1: OK, 0: Frequency not applicable]
*/
//static bool Rx2FreqInRange( uint32_t freq );
/*!
* \brief Adds a new MAC command to be sent.
*
* \Remark MAC layer internal function
*
* \param [in] cmd MAC command to be added
* [MOTE_MAC_LINK_CHECK_REQ,
* MOTE_MAC_LINK_ADR_ANS,
* MOTE_MAC_DUTY_CYCLE_ANS,
* MOTE_MAC_RX2_PARAM_SET_ANS,
* MOTE_MAC_DEV_STATUS_ANS
* MOTE_MAC_NEW_CHANNEL_ANS]
* \param [in] p1 1st parameter ( optional depends on the command )
* \param [in] p2 2nd parameter ( optional depends on the command )
*
* \retval status Function status [0: OK, 1: Unknown command, 2: Buffer full]
*/
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 );
/*!
* \brief Parses the MAC commands which must be repeated.
*
* \Remark MAC layer internal function
*
* \param [IN] cmdBufIn Buffer which stores the MAC commands to send
* \param [IN] length Length of the input buffer to parse
* \param [OUT] cmdBufOut Buffer which stores the MAC commands which must be
* repeated.
*
* \retval Size of the MAC commands to repeat.
*/
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut );
/*!
* \brief Verifies, if a value is in a given range.
*
* \param value Value to verify, if it is in range
*
* \param min Minimum possible value
*
* \param max Maximum possible value
*
* \retval Returns the maximum valid tx power
*/
static bool ValueInRange( int8_t value, int8_t min, int8_t max );
/*!
* \brief Decodes MAC commands in the fOpts field and in the payload
*/
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr );
/*!
* \brief LoRaMAC layer generic send frame
*
* \param [IN] macHdr MAC header field
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*!
* \brief LoRaMAC layer frame buffer initialization
*
* \param [IN] macHdr MAC header field
* \param [IN] fCtrl MAC frame control field
* \param [IN] fOpts MAC commands buffer
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*
* \brief Schedules the frame according to the duty cycle
*
* \retval Status of the operation
*/
static LoRaMacStatus_t ScheduleTx( void );
/*!
* \brief LoRaMAC layer prepared frame buffer transmission with channel specification
*
* \remark PrepareFrame must be called at least once before calling this
* function.
*
* \param [IN] channel Channel parameters
* \retval status Status of the operation.
*/
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \param [IN] frequency RF frequency to be set.
* \param [IN] power RF ouptput power to be set.
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power );
/*!
* \brief Resets MAC specific parameters to default
*/
static void ResetMacParameters( void );
void
loramac_print_status()
{
isr_printf("LoRaMacState:%lx\r\n", LoRaMacState);
}
/*
* Rx window precise timing
*
* For more details please consult the following document, chapter 3.1.2.
* http://www.semtech.com/images/datasheet/SX1272_settings_for_LoRaWAN_v2.0.pdf
* or
* http://www.semtech.com/images/datasheet/SX1276_settings_for_LoRaWAN_v2.0.pdf
*
* Downlink start: T = Tx + 1s (+/- 20 us)
* |
* TRxEarly | TRxLate
* | | |
* | | +---+---+---+---+---+---+---+---+
* | | | Latest Rx window |
* | | +---+---+---+---+---+---+---+---+
* | | |
* +---+---+---+---+---+---+---+---+
* | Earliest Rx window |
* +---+---+---+---+---+---+---+---+
* |
* +---+---+---+---+---+---+---+---+
*Downlink preamble 8 symbols | | | | | | | | |
* +---+---+---+---+---+---+---+---+
*
* Worst case Rx window timings
*
* TRxLate = DEFAULT_MIN_RX_SYMBOLS * tSymbol - RADIO_WAKEUP_TIME
* TRxEarly = 8 - DEFAULT_MIN_RX_SYMBOLS * tSymbol - RxWindowTimeout - RADIO_WAKEUP_TIME
*
* TRxLate - TRxEarly = 2 * DEFAULT_SYSTEM_MAX_RX_ERROR
*
* RxOffset = ( TRxLate + TRxEarly ) / 2
*
* RxWindowTimeout = ( 2 * DEFAULT_MIN_RX_SYMBOLS - 8 ) * tSymbol + 2 * DEFAULT_SYSTEM_MAX_RX_ERROR
* RxOffset = 4 * tSymbol - RxWindowTimeout / 2 - RADIO_WAKE_UP_TIME
*
* Minimal value of RxWindowTimeout must be 5 symbols which implies that the system always tolerates at least an error of 1.5 * tSymbol
*/
/*!
* Computes the Rx window parameters.
*
* \param [IN] datarate Rx window datarate to be used
* \param [IN] rxError Maximum timing error of the receiver. in milliseconds
* The receiver will turn on in a [-rxError : +rxError] ms
* interval around RxOffset
*
* \retval rxConfigParams Returns a RxConfigParams_t structure.
*/
static RxConfigParams_t ComputeRxWindowParameters( int8_t datarate, uint32_t rxError );
static void OnRadioTxDone( unsigned int tx_done_us )
{
Radio.Sleep( );
TxDone_us = tx_done_us;
// Setup timers
if( IsRxWindowsEnabled == true )
{
rx_timeout.attach_us(&OnRxWindowTimerEvent, RxWindowDelay_us);
if( NodeAckRequested == true )
{
AckTimeoutTimer.attach_us(&OnAckTimeoutTimerEvent, (RxWindowDelay_us/1000) + ACK_TIMEOUT_us + randr(-ACK_TIMEOUT_RND_us, ACK_TIMEOUT_RND_us));
}
}
else
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX_TIMEOUT;
if( LoRaMacFlags.Value == 0 )
{
LoRaMacFlags.Bits.McpsReq = 1;
}
LoRaMacFlags.Bits.MacDone = 1;
}
// Update last tx done time for the current channel
//Bands[Channels[Channel].Band].last_tx_done_us = tx_done_us;
// Update Aggregated last tx done time
AggregatedLastTxDoneTime_us = tx_done_us;
// Update Backoff
if( NodeAckRequested == false )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
static void PrepareRxDoneAbort( void )
{
LoRaMacState |= LORAMAC_RX_ABORT;
if( NodeAckRequested )
{
OnAckTimeoutTimerEvent( );
}
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
OnMacStateCheckTimerEvent();
}
void send_callback()
{
Radio.SetTxConfig(
/* RadioModems_t modem */ MODEM_LORA,
/* int8_t power */ TxPowers[LoRaMacParams.ChannelsTxPower],
/* uint32_t fdev */ 0,
/* uint32_t bandwidth */ 2,
/* uint32_t datarate */ Datarates[LoRaMacParams.ChannelsDatarate_fixed],
/* uint8_t coderate */ 1,
/* uint16_t preambleLen */ 8,
/* bool fixLen */ false,
/* bool crcOn */ true,
/* bool freqHopOn */ 0,
/* uint8_t hopPeriod */ 0,
/* bool iqInverted */ false,
/* uint32_t timeout */ 3e3
);
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
LoRaMacState &= ~LORAMAC_TX_SCHED;
LoRaMacState |= LORAMAC_TX_RUNNING;
// Starts the MAC layer status check timer
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT_us);
/*
unsigned int now_us = lp_timer.read_us();
int us_since_beacon_start = now_us - BeaconCtx.LastBeaconStart_us;
int now_slot = (us_since_beacon_start - BEACON_RESERVED_us) / 30000;
isr_printf("send now slot:%u\r\n", now_slot);
*/
}
void OnRxBeaconSetup()
{
BeaconCtx.RxBeaconSetupAt_us = lp_timer.read_us();
Radio.SetRxConfig(
/* RadioModems_t */ MODEM_LORA,
/* uint32_t bandwidth */ BEACON_CHANNEL_BW,
/* uint32_t datarate */ Datarates[BEACON_CHANNEL_DR],
/* uint8_t coderate */ 1,
/* uint32_t bandwidthAfc */ 0,
/* uint16_t preambleLen */ 10,
/* uint16_t symbTimeout */ BeaconCtx.SymbolTimeout,
/* bool fixLen */ true,
/* uint8_t payloadLen */ BEACON_SIZE,
/* bool crcOn */ false,
/* bool freqHopOn */ 0,
/* uint8_t hopPeriod */ 0,
/* bool iqInverted */ false,
/* bool rxContinuous */false
);
Radio.Rx(2000);
expecting_beacon = true;
//isr_printf("OnRxBeaconSetup() %u\r\n", BeaconCtx.SymbolTimeout);
}
static void set_beacon_symbol_timeout(float secs)
{
BeaconCtx.SymbolTimeout = secs / BeaconCtx.symbol_period_secs;
if (BeaconCtx.SymbolTimeout < (BEACON_MIN_SYMBOL_TIMEOUT+BeaconCtx.Precess_symbols)) {
BeaconCtx.SymbolTimeout = BEACON_MIN_SYMBOL_TIMEOUT+BeaconCtx.Precess_symbols;
BeaconCtx.SymbolTimeout_sec = BeaconCtx.SymbolTimeout * BeaconCtx.symbol_period_secs;
}
}
static uint16_t beacon_crc( uint8_t *buffer, uint16_t length )
{
// The CRC calculation follows CCITT
const uint16_t polynom = 0x1021;
// CRC initial value
uint16_t crc = 0x0000;
if( buffer == NULL )
{
return 0;
}
for( uint16_t i = 0; i < length; ++i )
{
crc ^= ( uint16_t ) buffer[i] << 8;
for( uint16_t j = 0; j < 8; ++j )
{
crc = ( crc & 0x8000 ) ? ( crc << 1 ) ^ polynom : ( crc << 1 );
}
}
return crc;
}
/* low power timer needs larger value due to poor resolution */
#define TARGET_PRECESSION_US 3000
#define BEACON_RX_TIMEOUT_LOCKED 0.008
void rx_beacon(unsigned int rx_us, uint8_t* payload, uint16_t size)
{
static bool compensate_precession = false;
int32_t compensation = 0;
unsigned ThisBeaconRx_us = rx_us - (BEACON_TOA_us + BEACON_RXDONE_LATENCY_us);
BeaconCtx.rx_precession_us = ThisBeaconRx_us - BeaconCtx.RxBeaconSetupAt_us;
if (BeaconCtx.state != BEACON_STATE_FIRST_ACQ) {
unsigned int intervals_since_last = (ThisBeaconRx_us / BEACON_INTERVAL_us) - (BeaconCtx.LastBeaconRx_us / BEACON_INTERVAL_us);
/* get average of error history */
BeaconCtx.BeaconRxTimerError_us = (ThisBeaconRx_us - BeaconCtx.LastBeaconRx_us) % BEACON_INTERVAL_us;
/* BeaconRxTimerError: positive means our clock is fast
* negative means our clock is slow */
if (BeaconCtx.BeaconRxTimerError_us > (BEACON_INTERVAL_us/2))
BeaconCtx.BeaconRxTimerError_us -= BEACON_INTERVAL_us; // negative value representing slow crystal
if (intervals_since_last > 1) {
/* timer error is measured over more than one beacon period */
BeaconCtx.BeaconRxTimerError_us /= intervals_since_last;
}
if (BeaconCtx.state == BEACON_STATE_ACQ_ERROR) {
isr_printf("-->LOCKED ");
BeaconCtx.state = BEACON_STATE_LOCKED_;
compensate_precession = true;
set_beacon_symbol_timeout(BEACON_RX_TIMEOUT_LOCKED);
}
} else {
/* ignore precession at first acquisition because it has slot resolution added */
isr_printf("-->ACQ_ERROR ");
// next beacon will give us our crystal error
BeaconCtx.state = BEACON_STATE_ACQ_ERROR;
}
isr_printf("err%d=%u-%u ", BeaconCtx.BeaconRxTimerError_us, ThisBeaconRx_us, BeaconCtx.LastBeaconRx_us);
isr_printf(" rx-before-tx:%d ", BeaconCtx.rx_precession_us);
BeaconCtx.LastBeaconRx_us = ThisBeaconRx_us;
BeaconCtx.LastBeaconStart_us = BeaconCtx.LastBeaconRx_us;
if (BeaconCtx.state == BEACON_STATE_LOCKED_) {
if (compensate_precession) {
compensation = BeaconCtx.rx_precession_us - TARGET_PRECESSION_US + BeaconCtx.BeaconRxTimerError_us;
isr_printf(" comp%ld", compensation);
}
}
isr_printf("\r\n");
BeaconCtx.next_beacon_expected_us = BEACON_INTERVAL_us + compensation;
unsigned now_us = lp_timer.read_us();
unsigned us_since_rx_setup = now_us - BeaconCtx.RxBeaconSetupAt_us;
BeaconCtx.timeout.attach_us(&OnRxBeaconSetup, BeaconCtx.next_beacon_expected_us - us_since_rx_setup);
if (BeaconCtx.num_missed > 0) {
/* restore rx symbol timeout */
set_beacon_symbol_timeout(BEACON_RX_TIMEOUT_LOCKED);
}
BeaconCtx.num_missed = 0;
BeaconCtx.have_beacon = true;
MlmeIndication.MlmeIndication = MLME_BEACON;
MlmeIndication.Status = LORAMAC_EVENT_INFO_STATUS_BEACON_LOCKED;
LoRaMacPrimitives->MacMlmeIndication( &MlmeIndication );
//LoRaMacFlags.Bits.MlmeInd = 1;
/* check beacon payload */
uint16_t calc_crc = beacon_crc(payload, 4);
uint16_t rx_crc = payload[4];
rx_crc |= payload[5] << 8;
if (rx_crc == calc_crc) {
unsigned int rx = payload[0];
rx |= payload[1] << 8;
rx |= payload[2] << 16;
rx |= payload[3] << 24;
if (rx != 0)
isr_printf("beacon payload:%08x\r\n", rx);
} else
isr_printf("calc_crc:%04x rx_crc:%04x\r\n", calc_crc, rx_crc);
}
float get_symbol_period(uint8_t bw, uint8_t sf)
{
//bw:, // 0=125kHz, 1=250kHz, 2=500KHz
float hz;
switch( bw )
{
//case 0: // 7.8 kHz
// bw = 78e2;
// break;
//case 1: // 10.4 kHz
// bw = 104e2;
// break;
//case 2: // 15.6 kHz
// bw = 156e2;
// break;
//case 3: // 20.8 kHz
// bw = 208e2;
// break;
//case 4: // 31.2 kHz
// bw = 312e2;
// break;
//case 5: // 41.4 kHz
// bw = 414e2;
// break;
//case 6: // 62.5 kHz
// bw = 625e2;
// break;
case 0: // 125 kHz
hz = 125e3;
break;
case 1: // 250 kHz
hz = 250e3;
break;
case 2: // 500 kHz
hz = 500e3;
break;
default:
return 0;
}
// return symbol period in seconds
return (1 << sf) / hz;
}
static uint32_t GetRxBandwidth( int8_t datarate )
{
return 2; /* always 500KHz */
}
static void OnRadioRxDone(unsigned rx_us, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
bool skipIndication = false;
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
uint8_t multicast = 0;
bool isMicOk = false;
McpsConfirm.AckReceived = false;
McpsIndication.Rssi = rssi;
McpsIndication.Snr = snr;
McpsIndication.Port = 0;
McpsIndication.Multicast = 0;
McpsIndication.FramePending = 0;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.RxData = false;
McpsIndication.AckReceived = false;
McpsIndication.DownLinkCounter = 0;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
Radio.Sleep( );
if (expecting_beacon) {
rx_beacon(rx_us, payload, size);
expecting_beacon = false;
return;
}
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_JOIN_ACCEPT;
PrepareRxDoneAbort( );
return;
}
LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );
LoRaMacRxPayload[0] = macHdr.Value;
LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );
isr_printf("decr%u:", size);
for (mic = 0; mic < size; mic++)
isr_printf("%02x ", LoRaMacRxPayload[mic]);
isr_printf("\r\n");
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
LoRaMacParams.Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
LoRaMacParams.ReceiveDelay_us = ( LoRaMacRxPayload[12] & 0x0F );
if( LoRaMacParams.ReceiveDelay_us == 0 )
LoRaMacParams.ReceiveDelay_us = RECEIVE_DELAY_us;
else
LoRaMacParams.ReceiveDelay_us *= 10;
uint16_t beaconTimingDelay = LoRaMacRxPayload[13] & 0xff;
beaconTimingDelay |= LoRaMacRxPayload[14] << 8;
isr_printf("%lx slots:%x (rxdelay %lu)", LoRaMacDevAddr, beaconTimingDelay, LoRaMacParams.ReceiveDelay_us);
// how long from tx-done of join-request is beacon going to occur at
uint32_t us_to_beacon = ( PING_SLOT_RESOLUTION_us * beaconTimingDelay );
// get time elapsed since last tx-done
unsigned int now_us = lp_timer.read_us();
unsigned int us_since_TxDone = now_us - TxDone_us;
BeaconCtx.timeout.attach_us(&OnRxBeaconSetup, us_to_beacon - us_since_TxDone);
BeaconCtx.next_beacon_expected_us = now_us + us_to_beacon;
isr_printf("us_to_beacon:%lu, since_tx_done:%u\r\n", us_to_beacon, us_since_TxDone);
BeaconCtx.have_beacon = false;
BeaconCtx.state = BEACON_STATE_FIRST_ACQ;
BeaconCtx.num_missed = 0;
BeaconCtx.rx_precession_us = 0;
BeaconCtx.BeaconRxTimerError_us = -PPM_100_BEACON_INTERVAL;
BeaconCtx.symbol_period_secs = get_symbol_period(GetRxBandwidth(LORAMAC_DEFAULT_DATARATE), Datarates[LORAMAC_DEFAULT_DATARATE]);
// N-ms: slot resolution + minimum for preamble detector + 100ppm fast crystal rxing 12ms early
BeaconCtx.Precess_symbols = TARGET_PRECESSION_US * (BeaconCtx.symbol_period_secs);
BeaconCtx.SymbolTimeout_sec = 0.050 + (BEACON_MIN_SYMBOL_TIMEOUT * BeaconCtx.symbol_period_secs);
BeaconCtx.SymbolTimeout = BeaconCtx.SymbolTimeout_sec / BeaconCtx.symbol_period_secs;
isr_printf("sp:%f sto:%d\r\n", BeaconCtx.symbol_period_secs, BeaconCtx.SymbolTimeout);
BeaconCtx.tx_slot_offset = LoRaMacRxPayload[15];
BeaconCtx.tx_slot_offset |= LoRaMacRxPayload[16] << 8;
BeaconCtx.periodicity_slots = LoRaMacRxPayload[17];
BeaconCtx.periodicity_slots |= LoRaMacRxPayload[18] << 8;
isr_printf("tso:%u, PS:%u\r\n", BeaconCtx.tx_slot_offset, BeaconCtx.periodicity_slots);
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
IsLoRaMacNetworkJoined = true;
LoRaMacParams.ChannelsDatarate_fixed = LoRaMacParamsDefaults.ChannelsDatarate_fixed;
}
else
{
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
isr_printf("join-mic-fail\r\n");
JoinRequestTrials = MaxJoinRequestTrials; // stop trying
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( multicast == 0 )
{
// We are not the destination of this frame.
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
PrepareRxDoneAbort( );
return;
}
}
else
{
multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for sequence roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
// Check for a the maximum allowed counter difference
if( sequenceCounterDiff >= MAX_FCNT_GAP )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
if( isMicOk == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Multicast = multicast;
McpsIndication.FramePending = fCtrl.Bits.FPending;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.DownLinkCounter = downLinkCounter;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MacCommandsBufferToRepeatIndex = 0;
// Update 32 bits downlink counter
if( multicast == 1 )
{
McpsIndication.McpsIndication = MCPS_MULTICAST;
if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
( curMulticastParams->DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
McpsIndication.McpsIndication = MCPS_CONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
// Duplicated confirmed downlink. Skip indication.
// In this case, the MAC layer shall accept the MAC commands
// which are included in the downlink retransmission.
// It should not provide the same frame to the application
// layer again.
skipIndication = true;
}
}
else
{
SrvAckRequested = false;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
}
DownLinkCounter = downLinkCounter;
}
// This must be done before parsing the payload and the MAC commands.
// We need to reset the MacCommandsBufferIndex here, since we need
// to take retransmissions and repititions into account. Error cases
// will be handled in function OnMacStateCheckTimerEvent.
if( McpsConfirm.McpsRequest == MCPS_CONFIRMED )
{
if( fCtrl.Bits.Ack == 1 )
{// Reset MacCommandsBufferIndex when we have received an ACK.
MacCommandsBufferIndex = 0;
}
}
else
{// Reset the variable if we have received any valid frame.
MacCommandsBufferIndex = 0;
}
// Process payload and MAC commands
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
McpsIndication.Port = port;
if( port == 0 )
{
// Only allow frames which do not have fOpts
if( fCtrl.Bits.FOptsLen == 0 )
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
// Decode frame payload MAC commands
ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );
}
else
{
skipIndication = true;
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands. Omit the fPort.
ProcessMacCommands( payload, 8, appPayloadStartIndex - 1, snr );
}
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
if( skipIndication == false )
{
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = frameLen;
McpsIndication.RxData = true;
}
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
ProcessMacCommands( payload, 8, appPayloadStartIndex, snr );
}
}
if( skipIndication == false )
{
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
McpsConfirm.AckReceived = true;
McpsIndication.AckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
}
else
{
McpsConfirm.AckReceived = false;
}
}
// Provide always an indication, skip the callback to the user application,
// in case of a confirmed downlink retransmission.
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.McpsIndSkip = skipIndication;
}
else
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
PrepareRxDoneAbort( );
return;
}
}
break;
case FRAME_TYPE_PROPRIETARY:
{
memcpy1( LoRaMacRxPayload, &payload[pktHeaderLen], size );
McpsIndication.McpsIndication = MCPS_PROPRIETARY;
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = size - pktHeaderLen;
LoRaMacFlags.Bits.McpsInd = 1;
break;
}
default:
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_RX_MTYPE;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_RX_MTYPE;
PrepareRxDoneAbort( );
break;
}
LoRaMacFlags.Bits.MacDone = 1;
/* run mac check quickly, but not immedately (for isr_printf) */
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, 50000);
} // ..OnRadioRxDone();
static void OnRadioTxTimeout( void )
{
Radio.Sleep( );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
static void OnRadioRxError( void )
{
Radio.Sleep( );
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX_ERROR;
if ((lp_timer.read_us() - AggregatedLastTxDoneTime_us) >= RxWindowDelay_us )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnRadioRxTimeout( void )
{
Radio.Sleep( );
if (expecting_beacon) {
/* generate simulated last beacon start */
BeaconCtx.LastBeaconStart_us += BEACON_INTERVAL_us + BeaconCtx.BeaconRxTimerError_us;
BeaconCtx.next_beacon_expected_us = BEACON_INTERVAL_us;
BeaconCtx.num_missed++;
unsigned now_us = lp_timer.read_us();
if (BeaconCtx.state == BEACON_STATE_FIRST_ACQ) {
BeaconCtx.next_beacon_expected_us -= 1000000;
set_beacon_symbol_timeout(2.000);
} else {
BeaconCtx.next_beacon_expected_us += BeaconCtx.BeaconRxTimerError_us;
// for measurement resolution and temperature drift while missing beacons:
BeaconCtx.next_beacon_expected_us -= 3000;
set_beacon_symbol_timeout(BeaconCtx.SymbolTimeout_sec + 0.003);
}
unsigned us_since_rx_setup = now_us - BeaconCtx.RxBeaconSetupAt_us;
BeaconCtx.timeout.attach_us(&OnRxBeaconSetup, BeaconCtx.next_beacon_expected_us - us_since_rx_setup);
isr_printf("beacon-rx-timeout %u %u next in %uus (%u)\r\n", BeaconCtx.num_missed, BeaconCtx.SymbolTimeout, BeaconCtx.next_beacon_expected_us, us_since_rx_setup);
MlmeIndication.MlmeIndication = MLME_BEACON;
MlmeIndication.Status = LORAMAC_EVENT_INFO_STATUS_BEACON_LOST;
LoRaMacPrimitives->MacMlmeIndication( &MlmeIndication );
//LoRaMacFlags.Bits.MlmeInd = 1;
expecting_beacon = false;
}
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
/* run mac check quickly, but not immedately (for isr_printf) */
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, 50000);
} // ..OnRadioRxTimeout();
static void OnMacStateCheckTimerEvent( void )
{
bool txTimeout = false;
//isr_printf("mac-check:%d McpsInd%d ", LoRaMacFlags.Bits.MacDone, LoRaMacFlags.Bits.McpsInd);
if( LoRaMacFlags.Bits.MacDone == 1 )
{
if( ( LoRaMacState & LORAMAC_RX_ABORT ) == LORAMAC_RX_ABORT )
{
LoRaMacState &= ~LORAMAC_RX_ABORT;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
//isr_printf("tx-run-A\r\n");
}
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
{
// Stop transmit cycle due to tx timeout.
LoRaMacState &= ~LORAMAC_TX_RUNNING;
//isr_printf("tx-run-B\r\n");
MacCommandsBufferIndex = 0;
McpsConfirm.AckReceived = false;
McpsConfirm.TxTimeOnAir = 0;
txTimeout = true;
}
}
if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{ // Procedure for the join request
if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
{ // Node joined successfully
isr_printf("mac-check-join ok ");
UpLinkCounter = 0;
ChannelsNbRepCounter = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
isr_printf("jrt:%u, maxjrt:%u\r\n", JoinRequestTrials, MaxJoinRequestTrials);
if( JoinRequestTrials >= MaxJoinRequestTrials )
{
LoRaMacState &= ~LORAMAC_TX_RUNNING;
isr_printf("tx-run-D\r\n");
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
OnTxDelayedTimerEvent( );
}
}
}
} // ..if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
} // ..if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
if( LoRaMacFlags.Bits.McpsInd == 1 )
{// Procedure if we received a frame
if( ( McpsConfirm.AckReceived == true ) /*|| ( AckTimeoutRetriesCounter > AckTimeoutRetries )*/ )
{
NodeAckRequested = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~LORAMAC_TX_RUNNING;
//isr_printf("tx-run-E\r\n");
}
}
} // ...if( LoRaMacFlags.Bits.MacDone == 1 )
// Handle reception for Class B and Class C
if( ( LoRaMacState & LORAMAC_RX ) == LORAMAC_RX )
{
LoRaMacState &= ~LORAMAC_RX;
}
//isr_printf("LoRaMacState:%lx ", LoRaMacState);
if( LoRaMacState == LORAMAC_IDLE )
{
//isr_printf("McpsReq%d ", LoRaMacFlags.Bits.McpsReq);
if( LoRaMacFlags.Bits.McpsReq == 1 )
{
LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
LoRaMacFlags.Bits.McpsReq = 0;
}
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
LoRaMacFlags.Bits.MlmeReq = 0;
}
if( LoRaMacFlags.Bits.MlmeInd == 1 )
{
LoRaMacPrimitives->MacMlmeIndication( &MlmeIndication );
LoRaMacFlags.Bits.MlmeInd = 0;
}
// Procedure done. Reset variables.
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// Operation not finished restart timer
//isr_printf("mac-restart-%lx ", LoRaMacState);
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT_us);
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
if( LoRaMacFlags.Bits.McpsIndSkip == 0 )
{
LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
}
LoRaMacFlags.Bits.McpsIndSkip = 0;
LoRaMacFlags.Bits.McpsInd = 0;
}
//isr_printf("\r\n");
} // ..OnMacStateCheckTimerEvent( void )
static void OnTxDelayedTimerEvent( void )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
LoRaMacState &= ~LORAMAC_TX_DELAYED;
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
ResetMacParameters( );
if (++Channel == LORA_MAX_NB_CHANNELS)
Channel = 0;
isr_printf("<ch%u>", Channel);
isr_printf("tx-delayed join ch%u\r\n", Channel);
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
fCtrl.Value = 0;
fCtrl.Bits.Adr = 0;
/* In case of join request retransmissions, the stack must prepare
* the frame again, because the network server keeps track of the random
* LoRaMacDevNonce values to prevent reply attacks. */
PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 );
}
ScheduleTx( );
}
static void OnRxWindowTimerEvent( void )
{
Radio.Standby( );
RxWindowSetup( LORAMAC_FIRST_CHANNEL + ( Channel * LORAMAC_STEPWIDTH_CHANNEL), RxWindowsParam.Datarate, RxWindowsParam.Bandwidth, RxWindowsParam.RxWindowTimeout, false );
//isr_printf("rx-ch%u, %lu\r\n", Channel, RxWindowsParam.RxWindowTimeout);
/* no retrying TX in this class of operation */
LoRaMacState &= ~LORAMAC_TX_RUNNING;
//isr_printf("rx-window ");
}
static void OnAckTimeoutTimerEvent( void )
{
if( NodeAckRequested == true )
{
LoRaMacState &= ~LORAMAC_ACK_REQ;
}
}
static bool RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
uint8_t downlinkDatarate = Datarates[datarate];
RadioModems_t modem;
if( Radio.GetStatus( ) == RF_IDLE )
{
Radio.SetChannel( freq );
// Store downlink datarate
McpsIndication.RxDatarate = ( uint8_t ) datarate;
modem = MODEM_LORA;
Radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
Radio.SetMaxPayloadLength( MODEM_LORA, 255 );
if( rxContinuous == false )
{
Radio.Rx( LoRaMacParams.MaxRxWindow );
}
else
{
Radio.Rx( 0 ); // Continuous mode
}
//isr_printf("rx-setup %u %lu\r\n", timeout, LoRaMacParams.MaxRxWindow);
//isr_printf("rx:%luhz sf%u bw%lu\r\n", freq, downlinkDatarate, bandwidth);
return true;
}
return false;
}
static bool ValueInRange( int8_t value, int8_t min, int8_t max )
{
if( ( value >= min ) && ( value <= max ) )
{
return true;
}
return false;
}
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
LoRaMacStatus_t status = LORAMAC_STATUS_BUSY;
// The maximum buffer length must take MAC commands to re-send into account.
uint8_t bufLen = LORA_MAC_COMMAND_MAX_LENGTH - MacCommandsBufferToRepeatIndex;
switch( cmd )
{
case MOTE_MAC_LINK_CHECK_REQ:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this command
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate ACK, Channel ACK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DEV_STATUS_ANS:
if( MacCommandsBufferIndex < ( bufLen - 2 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// 1st byte Battery
// 2nd byte Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_TIMING_SETUP_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
if( status == LORAMAC_STATUS_OK )
{
MacCommandsInNextTx = true;
}
return status;
}
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut )
{
uint8_t i = 0;
uint8_t cmdCount = 0;
if( ( cmdBufIn == NULL ) || ( cmdBufOut == NULL ) )
{
return 0;
}
for( i = 0; i < length; i++ )
{
switch( cmdBufIn[i] )
{
// STICKY
case MOTE_MAC_RX_PARAM_SETUP_ANS:
{
cmdBufOut[cmdCount++] = cmdBufIn[i++];
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
case MOTE_MAC_RX_TIMING_SETUP_ANS:
{
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
// NON-STICKY
case MOTE_MAC_DEV_STATUS_ANS:
{ // 2 bytes payload
i += 2;
break;
}
case MOTE_MAC_LINK_CHECK_REQ:
{ // 0 byte payload
break;
}
default:
break;
}
}
return cmdCount;
}
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr )
{
while( macIndex < commandsSize )
{
// Decode Frame MAC commands
switch( payload[macIndex++] )
{
case SRV_MAC_LINK_CHECK_ANS:
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.DemodMargin = payload[macIndex++];
MlmeConfirm.NbGateways = payload[macIndex++];
break;
case SRV_MAC_DEV_STATUS_REQ:
{
uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
{
batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
}
AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr );
break;
}
case SRV_MAC_RX_TIMING_SETUP_REQ:
{
uint8_t delay = payload[macIndex++] & 0x0F;
if( delay == 0 )
{
delay++;
}
LoRaMacParams.ReceiveDelay_us = delay * 1e6;
AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
}
break;
default:
// Unknown command. ABORT MAC commands processing
return;
}
}
}
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = false;
// Prepare the frame
status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );
// Validate status
if( status != LORAMAC_STATUS_OK )
{
return status;
}
// Reset confirm parameters
McpsConfirm.AckReceived = false;
McpsConfirm.UpLinkCounter = UpLinkCounter;
status = ScheduleTx( );
return status;
}
static LoRaMacStatus_t ScheduleTx( void )
{
// Compute Rx1 windows parameters
if( IsLoRaMacNetworkJoined == false )
{
RxWindowDelay_us = LoRaMacParams.JoinAcceptDelay_us + RxWindowsParam.RxOffset; // dont care
}
else
{
RxWindowDelay_us = LoRaMacParams.ReceiveDelay_us + RxWindowsParam.RxOffset;
}
// Schedule transmission of frame
// Try to send now
return SendFrameOnChannel( Channels[Channel] );
}
static void ResetMacParameters( void )
{
IsLoRaMacNetworkJoined = false;
// Counters
UpLinkCounter = 0;
DownLinkCounter = 0;
ChannelsNbRepCounter = 0;
MacCommandsBufferIndex = 0;
MacCommandsBufferToRepeatIndex = 0;
IsRxWindowsEnabled = true;
LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
LoRaMacParams.ChannelsDatarate_fixed = LoRaMacParamsDefaults.ChannelsDatarate_fixed;
LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset;
NodeAckRequested = false;
SrvAckRequested = false;
MacCommandsInNextTx = false;
// Reset Multicast downlink counters
MulticastParams_t *cur = MulticastChannels;
while( cur != NULL )
{
cur->DownLinkCounter = 0;
cur = cur->Next;
}
}
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
const void* payload = fBuffer;
uint8_t framePort = fPort;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
LoRaMacTxPayloadLen = fBufferSize;
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
LoRaMacBufferPktLen = pktHeaderLen;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
LoRaMacBufferPktLen += 8;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = Radio.Random( );
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional fallthrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
if( IsLoRaMacNetworkJoined == false )
{
return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
}
fCtrl->Bits.AdrAckReq = 0;
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
// Copy the MAC commands which must be re-send into the MAC command buffer
memcpy1( &MacCommandsBuffer[MacCommandsBufferIndex], MacCommandsBufferToRepeat, MacCommandsBufferToRepeatIndex );
MacCommandsBufferIndex += MacCommandsBufferToRepeatIndex;
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_LENGTH ) && ( MacCommandsInNextTx == true ) )
{
fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
for( i = 0; i < MacCommandsBufferIndex; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
}
}
}
else
{
if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsInNextTx ) )
{
LoRaMacTxPayloadLen = MacCommandsBufferIndex;
payload = MacCommandsBuffer;
framePort = 0;
}
}
MacCommandsInNextTx = false;
// Store MAC commands which must be re-send in case the device does not receive a downlink anymore
MacCommandsBufferToRepeatIndex = ParseMacCommandsToRepeat( MacCommandsBuffer, MacCommandsBufferIndex, MacCommandsBufferToRepeat );
if( MacCommandsBufferToRepeatIndex > 0 )
{
MacCommandsInNextTx = true;
}
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
LoRaMacBuffer[pktHeaderLen++] = framePort;
if( framePort == 0 )
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
else
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
}
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
break;
case FRAME_TYPE_PROPRIETARY:
if( ( fBuffer != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
memcpy1( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, LoRaMacTxPayloadLen );
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
return LORAMAC_STATUS_OK;
}
//TxPowers[LoRaMacParams.ChannelsTxPower]
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel )
{
int8_t datarate = Datarates[LoRaMacParams.ChannelsDatarate_fixed];
int8_t txPowerIndex = 0;
int8_t txPower = 0;
if (LoRaMacState & LORAMAC_TX_SCHED) {
return LORAMAC_STATUS_BUSY;
}
txPowerIndex = LoRaMacParams.ChannelsTxPower;
txPower = TxPowers[txPowerIndex];
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_SEND;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_SEND;
McpsConfirm.TxPower = txPowerIndex;
McpsConfirm.UpLinkFrequency = channel.Frequency;
Radio.SetChannel( channel.Frequency );
if( LoRaMacParams.ChannelsDatarate_fixed >= DR_8 )
{ // High speed LoRa channel BW500 kHz
//Radio.SetTxConfig( MODEM_LORA, txPower, 0, 2, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
} else
return LORAMAC_STATUS_DATARATE_INVALID;
// Store the time on air
McpsConfirm.TxTimeOnAir = TxTimeOnAir;
MlmeConfirm.TxTimeOnAir = TxTimeOnAir;
if( IsLoRaMacNetworkJoined == false )
{
JoinRequestTrials++;
isr_printf("join %luhz try%u len%u\r\n", channel.Frequency, JoinRequestTrials, LoRaMacBufferPktLen);
}
/* anything not join request is sent at permitted time slot */
LoRaMacHeader_t* macHdr = (LoRaMacHeader_t*)&LoRaMacBuffer[0];
if (macHdr->Bits.MType == FRAME_TYPE_JOIN_REQ) {
// Send now
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 2, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
LoRaMacState |= LORAMAC_TX_RUNNING;
// Starts the MAC layer status check timer
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT_us);
} else if (BeaconCtx.have_beacon) {
/* find now ping slot */
unsigned int target_us, now_us = lp_timer.read_us();
int us_since_beacon_start = now_us - BeaconCtx.LastBeaconStart_us;
int use_slot = BeaconCtx.tx_slot_offset;
int now_slot = (us_since_beacon_start - BEACON_RESERVED_us) / 30000;
int use_slot_us;
while (use_slot < now_slot)
use_slot += BeaconCtx.periodicity_slots;
use_slot_us = (use_slot * 30000);
#ifdef TX_DEBUG
isr_printf("now_slot:%d, to-guard:%u use_slot:%u ", now_slot, BeaconCtx.next_beacon_expected_us - use_slot_us, use_slot);
#endif
if ((BeaconCtx.next_beacon_expected_us - use_slot_us) > BEACON_GUARD_us) {
target_us = (use_slot * 30000) + BEACON_RESERVED_us;
tx_timeout.attach_us(&send_callback, target_us - us_since_beacon_start);
#ifdef TX_DEBUG
isr_printf(" : tx in %uus\r\n", target_us - us_since_beacon_start);
#endif
} else {
//#ifdef TX_DEBUG
isr_printf("sf-busy\r\n");
//#endif
return LORAMAC_STATUS_BUSY;
}
LoRaMacState |= LORAMAC_TX_SCHED;
} else {
isr_printf("dropped tx\r\n");
return LORAMAC_STATUS_SERVICE_UNKNOWN; // TODO use correct failure
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout )
{
int8_t txPowerIndex = 0;
int8_t txPower = 0;
txPowerIndex = LoRaMacParams.ChannelsTxPower;
txPower = TxPowers[txPowerIndex];
// Starts the MAC layer status check timer
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT_us);
Radio.SetTxContinuousWave( Channels[Channel].Frequency, txPower, timeout );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power )
{
Radio.SetTxContinuousWave( frequency, power, timeout );
// Starts the MAC layer status check timer
MacStateCheckTimer.attach_us(&OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT_us);
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
void seconds()
{
isr_printf("second\r\n");
}
LoRaMacStatus_t LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks )
{
if( primitives == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( primitives->MacMcpsConfirm == NULL ) ||
( primitives->MacMcpsIndication == NULL ) ||
( primitives->MacMlmeConfirm == NULL ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
LoRaMacPrimitives = primitives;
LoRaMacCallbacks = callbacks;
LoRaMacFlags.Value = 0;
LoRaMacDeviceClass = CLASS_A;
LoRaMacState = LORAMAC_IDLE;
JoinRequestTrials = 0;
MaxJoinRequestTrials = 255;
// Reset to defaults
LoRaMacParamsDefaults.ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
LoRaMacParamsDefaults.ChannelsDatarate_fixed = LORAMAC_DEFAULT_DATARATE;
LoRaMacParamsDefaults.SystemMaxRxError = 10;
LoRaMacParamsDefaults.MinRxSymbols = 6; // TODO XXX increase
LoRaMacParamsDefaults.MaxRxWindow = MAX_RX_WINDOW;
LoRaMacParamsDefaults.ReceiveDelay_us = RECEIVE_DELAY_us;
LoRaMacParamsDefaults.JoinAcceptDelay_us = JOIN_ACCEPT_DELAY_us;
LoRaMacParamsDefaults.ChannelsNbRep = 1;
LoRaMacParamsDefaults.Rx1DrOffset = 0;
#if defined(USE_BAND_915_SINGLE)
// 500 kHz channels
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
{
Channels[i].Frequency = LORAMAC_FIRST_CHANNEL + (i * LORAMAC_STEPWIDTH_CHANNEL);
Channels[i].DrRange.Value = ( DR_13 << 4 ) | DR_8;
Channels[i].Band = 0;
}
#endif
// Init parameters which are not set in function ResetMacParameters
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError;
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols;
LoRaMacParams.MaxRxWindow = LoRaMacParamsDefaults.MaxRxWindow;
LoRaMacParams.ReceiveDelay_us = LoRaMacParamsDefaults.ReceiveDelay_us;
LoRaMacParams.JoinAcceptDelay_us = LoRaMacParamsDefaults.JoinAcceptDelay_us;
LoRaMacParams.ChannelsNbRep = LoRaMacParamsDefaults.ChannelsNbRep;
ResetMacParameters( );
// Initialize Radio driver
RadioEvents.TxDone = OnRadioTxDone;
RadioEvents.RxDone = OnRadioRxDone;
RadioEvents.RxError = OnRadioRxError;
RadioEvents.TxTimeout = OnRadioTxTimeout;
RadioEvents.RxTimeout = OnRadioRxTimeout;
Radio.Init( &RadioEvents );
// Random seed initialization
srand1( Radio.Random( ) );
PublicNetwork = true;
Radio.SetPublicNetwork( PublicNetwork );
Radio.Sleep( );
lp_timer.start();
RxWindowsParam = ComputeRxWindowParameters(LORAMAC_DEFAULT_DATARATE, LoRaMacParams.SystemMaxRxError);
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
uint8_t fOptLen = MacCommandsBufferIndex + MacCommandsBufferToRepeatIndex;
if( txInfo == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
txInfo->CurrentPayloadSize = 255;
if( txInfo->CurrentPayloadSize >= fOptLen )
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen;
}
else
{
return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibGet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibGet->Type )
{
case MIB_DEVICE_CLASS:
{
mibGet->Param.Class = LoRaMacDeviceClass;
break;
}
case MIB_NETWORK_JOINED:
{
mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
break;
}
case MIB_NET_ID:
{
mibGet->Param.NetID = LoRaMacNetID;
break;
}
case MIB_DEV_ADDR:
{
mibGet->Param.DevAddr = LoRaMacDevAddr;
break;
}
case MIB_NWK_SKEY:
{
mibGet->Param.NwkSKey = LoRaMacNwkSKey;
break;
}
case MIB_APP_SKEY:
{
mibGet->Param.AppSKey = LoRaMacAppSKey;
break;
}
case MIB_PUBLIC_NETWORK:
{
mibGet->Param.EnablePublicNetwork = PublicNetwork;
break;
}
case MIB_CHANNELS_NB_REP:
{
mibGet->Param.ChannelNbRep = LoRaMacParams.ChannelsNbRep;
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
mibGet->Param.MaxRxWindow = LoRaMacParams.MaxRxWindow;
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
mibGet->Param.ChannelsDefaultTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
break;
}
case MIB_CHANNELS_TX_POWER:
{
mibGet->Param.ChannelsTxPower = LoRaMacParams.ChannelsTxPower;
break;
}
case MIB_UPLINK_COUNTER:
{
mibGet->Param.UpLinkCounter = UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
mibGet->Param.DownLinkCounter = DownLinkCounter;
break;
}
case MIB_MULTICAST_CHANNEL:
{
mibGet->Param.MulticastList = MulticastChannels;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
mibGet->Param.SystemMaxRxError = LoRaMacParams.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
mibGet->Param.MinRxSymbols = LoRaMacParams.MinRxSymbols;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibSet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
switch( mibSet->Type )
{
case MIB_DEVICE_CLASS:
{
LoRaMacDeviceClass = mibSet->Param.Class;
switch( LoRaMacDeviceClass )
{
case CLASS_A:
{
// Set the radio into sleep to setup a defined state
Radio.Sleep( );
break;
}
case CLASS_B:
{
break;
}
case CLASS_D:
isr_printf("TODO MIB_DEVICE_CLASS:D\r\n");
break;
}
break;
}
case MIB_NETWORK_JOINED:
{
IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
break;
}
case MIB_NET_ID:
{
LoRaMacNetID = mibSet->Param.NetID;
break;
}
case MIB_DEV_ADDR:
{
LoRaMacDevAddr = mibSet->Param.DevAddr;
break;
}
case MIB_NWK_SKEY:
{
if( mibSet->Param.NwkSKey != NULL )
{
memcpy1( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
sizeof( LoRaMacNwkSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_APP_SKEY:
{
if( mibSet->Param.AppSKey != NULL )
{
memcpy1( LoRaMacAppSKey, mibSet->Param.AppSKey,
sizeof( LoRaMacAppSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_PUBLIC_NETWORK:
{
PublicNetwork = mibSet->Param.EnablePublicNetwork;
Radio.SetPublicNetwork( PublicNetwork );
break;
}
case MIB_CHANNELS_NB_REP:
{
if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
( mibSet->Param.ChannelNbRep <= 15 ) )
{
LoRaMacParams.ChannelsNbRep = mibSet->Param.ChannelNbRep;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
LoRaMacParams.MaxRxWindow = mibSet->Param.MaxRxWindow;
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
if( ValueInRange( mibSet->Param.ChannelsDefaultTxPower,
LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
{
LoRaMacParamsDefaults.ChannelsTxPower = mibSet->Param.ChannelsDefaultTxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_TX_POWER:
{
if( ValueInRange( mibSet->Param.ChannelsTxPower,
LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
{
LoRaMacParams.ChannelsTxPower = mibSet->Param.ChannelsTxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_UPLINK_COUNTER:
{
UpLinkCounter = mibSet->Param.UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
DownLinkCounter = mibSet->Param.DownLinkCounter;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError = mibSet->Param.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols = mibSet->Param.MinRxSymbols;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
// New node is the fist element
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the last node in the list
while( cur->Next != NULL )
{
cur = cur->Next;
}
// This function always finds the last node
cur->Next = channelParam;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
if( MulticastChannels != NULL )
{
if( MulticastChannels == channelParam )
{
// First element
MulticastChannels = channelParam->Next;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the node in the list
while( cur->Next && cur->Next != channelParam )
{
cur = cur->Next;
}
// If we found the node, remove it
if( cur->Next )
{
cur->Next = channelParam->Next;
}
}
channelParam->Next = NULL;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
if( mlmeRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
memset1( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_MLMEREQ;
switch( mlmeRequest->Type )
{
case MLME_JOIN:
{
if( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED )
{
return LORAMAC_STATUS_BUSY;
}
if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
( mlmeRequest->Req.Join.AppEui == NULL ) ||
( mlmeRequest->Req.Join.AppKey == NULL ) ||
( mlmeRequest->Req.Join.NbTrials == 0 ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Enables at least the usage of all datarates.
if( mlmeRequest->Req.Join.NbTrials < 48 )
{
mlmeRequest->Req.Join.NbTrials = 48;
}
LoRaMacFlags.Bits.MlmeReq = 1;
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;
MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials;
// Reset variable JoinRequestTrials
JoinRequestTrials = 0;
// Setup header information
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
ResetMacParameters( );
Channel = 0; // start with first channel
isr_printf("<ch0>");
isr_printf("mlme-join-send ch%u\r\n", Channel);
status = Send( &macHdr, 0, NULL, 0 );
break;
}
case MLME_LINK_CHECK:
{
LoRaMacFlags.Bits.MlmeReq = 1;
// LoRaMac will send this command piggy-pack
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
break;
}
case MLME_TXCW:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout );
break;
}
case MLME_TXCW_1:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave1( mlmeRequest->Req.TxCw.Timeout, mlmeRequest->Req.TxCw.Frequency, mlmeRequest->Req.TxCw.Power );
break;
}
default:
break;
}
if( status != LORAMAC_STATUS_OK )
{
NodeAckRequested = false;
LoRaMacFlags.Bits.MlmeReq = 0;
}
return status;
}
LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
uint8_t fPort = 0;
void *fBuffer;
uint16_t fBufferSize;
bool readyToSend = false;
if( mcpsRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) ||
( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED ) )
{
return LORAMAC_STATUS_BUSY;
}
macHdr.Value = 0;
memset1 ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR_MCPSREQ;
switch( mcpsRequest->Type )
{
case MCPS_UNCONFIRMED:
{
readyToSend = true;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
fPort = mcpsRequest->Req.Unconfirmed.fPort;
fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
break;
}
case MCPS_CONFIRMED:
{
readyToSend = true;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
fPort = mcpsRequest->Req.Confirmed.fPort;
fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
break;
}
case MCPS_PROPRIETARY:
{
readyToSend = true;
macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
break;
}
default:
break;
}
if( readyToSend == true )
{
status = Send( &macHdr, fPort, fBuffer, fBufferSize );
if( status == LORAMAC_STATUS_OK )
{
McpsConfirm.McpsRequest = mcpsRequest->Type;
LoRaMacFlags.Bits.McpsReq = 1;
}
else
{
NodeAckRequested = false;
}
}
return status;
}
void LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMacTestSetMic( uint16_t txPacketCounter )
{
UpLinkCounter = txPacketCounter;
IsUpLinkCounterFixed = true;
}
void LoRaMacTestSetChannel( uint8_t channel )
{
isr_printf("set-testch%u\r\n", channel);
Channel = channel;
}
static RxConfigParams_t ComputeRxWindowParameters( int8_t datarate, uint32_t rxError )
{
RxConfigParams_t rxConfigParams = { 0, 0, 0, 0 };
double tSymbol = 0.0;
rxConfigParams.Datarate = datarate;
switch( Bandwidths[datarate] )
{
default:
case 125000:
rxConfigParams.Bandwidth = 0;
break;
case 250000:
rxConfigParams.Bandwidth = 1;
break;
case 500000:
rxConfigParams.Bandwidth = 2;
break;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate == DR_7 )
{ // FSK
tSymbol = ( 1.0 / ( double )Datarates[datarate] ) * 8.0; // 1 symbol equals 1 byte
}
else
#endif
{ // LoRa
tSymbol = ( ( double )( 1 << Datarates[datarate] ) / ( double )Bandwidths[datarate] ) * 1e3;
}
rxConfigParams.RxWindowTimeout = MAX( ( uint32_t )ceil( ( ( 2 * LoRaMacParams.MinRxSymbols - 8 ) * tSymbol + 2 * rxError ) / tSymbol ), LoRaMacParams.MinRxSymbols ); // Computed number of symbols
rxConfigParams.RxOffset = ( int32_t )ceil( ( 4.0 * tSymbol ) - ( ( rxConfigParams.RxWindowTimeout * tSymbol ) / 2.0 ) - RADIO_WAKEUP_TIME );
return rxConfigParams;
}