Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- dragica
- Date:
- 2020-03-20
- Revision:
- 0:f49f58e4b0c9
- Child:
- 1:1214d9ff2f14
File content as of revision 0:f49f58e4b0c9:
#include "mbed.h"
#include <string>
using std::string;
//PITATI GDE SE DEFINISU FRAMEOVI
#define FRMWRT_SGL_R 0x80 // single device read with response
#define FRMWRT_SGL_NR 0x90 // single device write without response
#define FRMWRT_ALL_R 0xC0 // general broadcast read with response
#define FRMWRT_ALL_NR 0xD0 // general broadcast write without response
#define CONFIG 0x001
#define COMM_CTRL 0x20
#define ECC_TEST 0x11D
#define CONTROL1 0x105
#define COMM_TO 0x23
#define TX_HOLD_OFF 0x22
#define CONTROL2 0x106
typedef unsigned char BYTE;
//CRC TABELA REKLA MARTA DA JE ISTA, PROVERITI!
const uint16_t crc16_table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
//PROVERITI PINOVE
DigitalOut bmsLVWakeUp(PB_0);//PC_9);
DigitalIn bmsFault(PA_4);//PC_8);
Serial pc(PA_0, PA_1, 250000);//PA_9, PA_10,250000);
Serial pc1(USBTX, USBRX, 9600);//PC_10, PC_11,9600);
void wakeUp()
{
bmsLVWakeUp=0;
wait_us(300);
bmsLVWakeUp=1;
wait_ms(12);
}
uint16_t CRC16(BYTE *pBuf, int nLen)
{
uint16_t wCRC = 0;
int i;
for (i = 0; i < nLen; i++)
{
wCRC ^= (*pBuf++) & 0x00FF;
wCRC = crc16_table[wCRC & 0x00FF] ^ (wCRC >> 8);
}
return wCRC;
}
void posaljiUARTu(int length, uint8_t * data)
{
for(int i=0;i<length;i++)
pc.putc(data[i]);
wait_ms(1);
}
int WriteFrame(BYTE bID, uint16_t& wAddr, BYTE * pData, BYTE bLen, BYTE bWriteType)//pitati Martu!!
{
int bPktLen = 0;
BYTE pFrame[32];
BYTE * pBuf = pFrame;
uint16_t wCRC;
if (bLen == 7 || bLen > 8)
return 0;
memset(pFrame, 0x7F, sizeof(pFrame));
if (wAddr > 255) {
*pBuf++ = 0x88 | bWriteType | bLen; // use 16-bit address
if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR )//(bWriteType != FRMWRT_ALL_NR)// || (bWriteType != FRMWRT_ALL_R))
{
*pBuf++ = (bID & 0x00FF);
}
*pBuf++ = (wAddr & 0xFF00) >> 8;
*pBuf++ = wAddr & 0x00FF;
}
else {
*pBuf++ = 0x80 | bWriteType | bLen; // use 8-bit address
if (bWriteType == FRMWRT_SGL_R || bWriteType == FRMWRT_SGL_NR )
{
*pBuf++ = (bID & 0x00FF);
}
*pBuf++ = wAddr & 0x00FF;
}
while(bLen--)
*pBuf++ = *pData++;
bPktLen = pBuf - pFrame;
wCRC = CRC16(pFrame, bPktLen);
*pBuf++ = wCRC & 0x00FF;
*pBuf++ = (wCRC & 0xFF00) >> 8;
bPktLen += 2;
//sciSend(scilinREG, bPktLen, pFrame);
posaljiUARTu(bPktLen,pFrame);
return bPktLen;
}
int WriteReg(BYTE DevID, uint16_t wAddr, uint64_t dwData, BYTE numDATAb, BYTE bWriteType)// eg: WriteReg(nDev_ID,0x0106,0x01,1, FRMWRT_SGL_NR)
{
//Kopija Martinog koda
int bRes = 0;
BYTE bBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
switch(numDATAb)
{
case 1:
bBuf[0] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 1, bWriteType);
break;
case 2:
bBuf[0] = (dwData & 0x000000000000FF00) >> 8;
bBuf[1] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 2, bWriteType);
break;
case 3:
bBuf[0] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[1] = (dwData & 0x000000000000FF00) >> 8;
bBuf[2] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 3, bWriteType);
break;
case 4:
bBuf[0] = (dwData & 0x00000000FF000000) >> 24;
bBuf[1] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[2] = (dwData & 0x000000000000FF00) >> 8;
bBuf[3] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 4, bWriteType);
break;
case 5:
bBuf[0] = (dwData & 0x000000FF00000000) >> 32;
bBuf[1] = (dwData & 0x00000000FF000000) >> 24;
bBuf[2] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[3] = (dwData & 0x000000000000FF00) >> 8;
bBuf[4] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 5, bWriteType);
break;
case 6:
bBuf[0] = (dwData & 0x0000FF0000000000) >> 40;
bBuf[1] = (dwData & 0x000000FF00000000) >> 32;
bBuf[2] = (dwData & 0x00000000FF000000) >> 24;
bBuf[3] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[4] = (dwData & 0x000000000000FF00) >> 8;
bBuf[5] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 6, bWriteType);
break;
case 7:
bBuf[0] = (dwData & 0x00FF000000000000) >> 48;
bBuf[1] = (dwData & 0x0000FF0000000000) >> 40;
bBuf[2] = (dwData & 0x000000FF00000000) >> 32;
bBuf[3] = (dwData & 0x00000000FF000000) >> 24;
bBuf[4] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[5] = (dwData & 0x000000000000FF00) >> 8;
bBuf[6] = dwData & 0x00000000000000FF;;
bRes = WriteFrame(DevID, wAddr, bBuf, 7, bWriteType);
break;
case 8:
bBuf[0] = (dwData & 0xFF00000000000000) >> 56;
bBuf[1] = (dwData & 0x00FF000000000000) >> 48;
bBuf[2] = (dwData & 0x0000FF0000000000) >> 40;
bBuf[3] = (dwData & 0x000000FF00000000) >> 32;
bBuf[4] = (dwData & 0x00000000FF000000) >> 24;
bBuf[5] = (dwData & 0x0000000000FF0000) >> 16;
bBuf[6] = (dwData & 0x000000000000FF00) >> 8;
bBuf[7] = dwData & 0x00000000000000FF;
bRes = WriteFrame(DevID, wAddr, bBuf, 8, bWriteType);
break;
default:
break;
}
return bRes;
}
int ReadFrameReq(BYTE bID, uint16_t wAddr, BYTE bByteToReturn)
{
BYTE bReturn = bByteToReturn - 1;
if (bReturn > 127)
return 0;
return WriteFrame(bID, wAddr, &bReturn, 1, FRMWRT_SGL_R);
}
// eg: ReadReg(nDev_ID,0x0207,bFrame,12, 0, FRMWRT_SGL_R)
int ReadReg(BYTE DevID, uint16_t wAddr, void * bufferData, BYTE numDATAb, uint32_t dwTimeOut, BYTE FRMWRT_SGL_R)
{
//Kopija Martinog koda
int bRes = 0;
switch(numDATAb)
{
case 1:
bRes = ReadFrameReq(DevID, wAddr, 1);
break;
case 2:
bRes = ReadFrameReq(DevID, wAddr, 2);
break;
case 3:
bRes = ReadFrameReq(DevID, wAddr, 3);
break;
case 4:
bRes = ReadFrameReq(DevID, wAddr, 4);
break;
default:
break;
}
return bRes;
}
void shutDown()
{
WriteReg(0,CONTROL1,0x08,1, FRMWRT_ALL_NR);
}
BYTE recBuff[1024];
int recLen=0;
int expected=0;
volatile bool full = false;
int rdLen=0;
void callback() {
// Note: you need to actually read from the serial to clear the RX interrupt
//pc1.printf("* * * Uspesan PRIJEM! * * *\n");
while(pc.readable()){
//pc1.printf("jepse");
//pc1.printf("%d\n", pc.getc());
recBuff[recLen++]=pc.getc();
if(expected==0) expected = recBuff[0]+4;
if(expected==recLen){
full=true;
rdLen=expected;
expected=0;
recLen=0;
}
}
}
int main()
{
pc.attach(&callback);//sta radi callback?
sciSetBaudrate(scilinREG,250000);
pc1.printf("INICIJALIZACIJA START \n");
wakeUp();
sciSetBaudrate(scilinREG,250000);
CommReset();
WriteReg(0,COMM_CTRL,0x3C3C,2, FRMWRT_ALL_NR);//setting the baud rate to device
sciSetBaudrate(scilinREG,1000000);
WriteReg(0,ECC_TEST,0x00,1, FRMWRT_ALL_NR); //dummy write to the ECC_TESTregisterto syncthe DLL
WriteReg(0,CONFIG,0x00,1, FRMWRT_ALL_NR);//making sure auto-address mode is set on all devices(and NOT GPIO address mode)
WriteReg(0,CONTROL1,0x01,1, FRMWRT_ALL_NR);//enabling and entering auto-addressing mode on the devices by setting the CONTROL1 register
WriteReg(0,CONFIG, 0x01 ,1, FRMWRT_SGL_NR);//If there is only one device,you can instead do one command to assign the device as both the base AND top of stack(set CONFIG to 0x01)
//****
ReadReg(0, uint16_t wAddr, void * bufferData, 1, uint32_t dwTimeOut, FRMWRT_SGL_R)//dummy read of ECC_TEST DORADITI!
//****
WriteReg(0, COMM_TO, 0x56, 1, FRMWRT_ALL_NR);//Setting Communications Timeout (10 minute short communication timeout, sleep mode on long communication timeout, long timeout length of 30 minutes)
WriteReg(0, TX_HOLD_OFF, 0x00, 1, FRMWRT_ALL_NR);//Communications transmit delay set to zero
//masking all low level faults (zakomentovacemo ono sto nam ne treba)
WriteReg(0, 0x0002, 0x3F, 1, FRMWRT_ALL_NR);//GPIO
WriteReg(0, 0x0003, 0x3F, 1, FRMWRT_ALL_NR);//UV
WriteReg(0, 0x0004, 0x3F, 1, FRMWRT_ALL_NR);//OV
WriteReg(0, 0x0005, 0x3F, 1, FRMWRT_ALL_NR);//UT
WriteReg(0, 0x0006, 0x3F, 1, FRMWRT_ALL_NR);//OT
WriteReg(0, 0x0007, 0x07, 1, FRMWRT_ALL_NR);//all tone faults
WriteReg(0, 0x0008, 0x07, 1, FRMWRT_ALL_NR);//UART
WriteReg(0, 0x0009, 0x3F, 1, FRMWRT_ALL_NR);//UART
WriteReg(0, 0x000A, 0x3F, 1, FRMWRT_ALL_NR);//UART
WriteReg(0, 0x000B, 0x03, 1, FRMWRT_ALL_NR);//UART
WriteReg(0, 0x000C, 0x3F, 1, FRMWRT_ALL_NR);//COMH
WriteReg(0, 0x000D, 0x3F, 1, FRMWRT_ALL_NR);//COMH
WriteReg(0, 0x000E, 0x3F, 1, FRMWRT_ALL_NR);//COMH
WriteReg(0, 0x000F, 0x03, 1, FRMWRT_ALL_NR);//COMH
WriteReg(0, 0x0010, 0x3F, 1, FRMWRT_ALL_NR);//COML
WriteReg(0, 0x0011, 0x3F, 1, FRMWRT_ALL_NR);//COML
WriteReg(0, 0x0012, 0x3F, 1, FRMWRT_ALL_NR);//COML
WriteReg(0, 0x0013, 0x03, 1, FRMWRT_ALL_NR);//COML
WriteReg(0, 0x0014, 0x07, 1, FRMWRT_ALL_NR);//OTP
WriteReg(0, 0x0015, 0xFF, 1, FRMWRT_ALL_NR);//POWER RAIL
WriteReg(0, 0x0016, 0x7F, 1, FRMWRT_ALL_NR);//SYS_FAULT1
WriteReg(0, 0x0017, 0xFF, 1, FRMWRT_ALL_NR);//SYS_FAULT2
WriteReg(0, 0x0018, 0x7F, 1, FRMWRT_ALL_NR);//SYS_FAULT3
WriteReg(0, 0x0019, 0x03, 1, FRMWRT_ALL_NR);//OVUV BIST
WriteReg(0, 0x001A, 0xFF, 1, FRMWRT_ALL_NR);//OTUT BIST
//MASKING_END
pc1.printf("INICIJALIZACIJA END \n");
pc1.printf("Response? \n");
// read device ID to see if there is a response
ReadReg(0, 10, &wTemp, 1, 0);
wait_ms(10);
wait(1);
WriteReg(0, CONTROL2, 0x00, 1, FRMWRT_ALL_NR);//Set OVUV_EN=0 before changing settings
WriteReg(0, 0x29, 0x3F, 1, FRMWRT_ALL_NR);//enabling over voltage under voltage for all 6? cell channels
WriteReg(0, 0x2A, 0x53, 1, FRMWRT_ALL_NR);//set cell UV to 2.8 V
WriteReg(0, 0x2B, 0x5B, 1, FRMWRT_ALL_NR);// set cell OV to 4.3V
WriteReg(0, CONTROL2, 0x04, 1, FRMWRT_ALL_NR);//OVUV_EN=1
WriteReg(0, 0x28, 0x3F, 1, FRMWRT_ALL_NR);//configure GPIO as AUX voltage(absolute voltage INSTEAD OF RATIOMETRIC) if necessary
WriteReg(0, 0x27, 0x00, 1, FRMWRT_SGL_NR);//modifying the ADC delay of each device individually, since there is only one...modify device 0 delay
WriteReg(0, 0x26, 0x08, 1, FRMWRT_ALL_NR);//AUX sample rate 1 MHz,128 decimation ratio
WriteReg(0, 0x24, 0x23, 1, FRMWRT_ALL_NR);//1 MHz sample rate,64 decimation ratio,19.7Hz LPF
WriteReg(0, 0x25, 0x02, 1, FRMWRT_ALL_NR);//5 ms conversion interval if continuous conversion enabled
/*
nSent= WriteReg(0,CONTROL2,0x10,1, FRMWRT_ALL_NR);// enable TSREF-external temperature sensors
delayms(2);// provides settling time for TSREF
*/
WriteReg(0, 0x109, 0x3F, 1, FRMWRT_ALL_NR);// enables ADC for all 6 cell channels
delayms(5);// ensure proper settling time for best accuracy
//WHICHEVER WE NEED
//One-Shot ADC Conversions
WriteReg(0, CONTROL2, 0x01, 1, FRMWRT_ALL_NR);//set the CELL_ADC_GO bit
delayms(5);//delay for ADC accuracy
//DORADI!
ReadReg(0, 0x215, void * bufferData, 12, 0, FRMWRT_SGL_R);// will return 6 overhead byte sand 12 data bytes per device, highest device address responds first
delayms(1);
//Continuous ADC Conversions
WriteReg(0, 0x25, 0x0A, 1, FRMWRT_ALL_NR);// enable continuous conversion with 5ms conversion interval
WriteReg(0, CONTROL2, 0x01, 1, FRMWRT_ALL_NR);//set the CELL_ADC_GO bit
delayms(5);//delay for ADC accuracy
//da li je ovo ispod isto sto i Martin waitFrame? Ako jeste staviti ga u posebnu funkciju, ako nije proveriti da li je uopste potrebno
ReadReg(0, 0x215, void * bufferData, 12, 0, FRMWRT_SGL_R);// will return 6 overhead byte sand 12 data bytes per device, highest device address responds first
delayms(1);//ISTA STVAR KAO IZNAD KOD ONE-SHOT
//martin deo koda
while (1) {
pc1.printf("Main Code \n");
wait(2);
nDev_ID = 0;
//*****
WriteReg(nDev_ID, 2, 0x20, 1, FRMWRT_SGL_R); // send read sampled values command, OVO TREBA PROMENITI AKO VEC ZADRZAVAS OVAJ KOD!!!!!
//*****
waitFrame();
if(bmsFault)
pc1.printf("- - - GRESKA FAULT! - - -\n");
}
}