File content as of revision 30:033048611c01:
/* mbed TextLCD Library, for a 4-bit LCD based on HD44780
* Copyright (c) 2007-2010, sford, http://mbed.org
* 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs
* 2013, v02: WH, Added I2C and SPI bus interfaces
* 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers
* 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess
* 2013, v05: WH, Added support for 8x2B, added some UDCs
* 2013, v06: WH, Added support for devices that use internal DC/DC converters
* 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT
* 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins
* 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032
* 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module
* 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "TextLCD.h"
#include "mbed.h"
//For Testing only
//DigitalOut led1(LED1);
//DigitalOut led2(LED2);
// led2=!led2;
/** Some sample User Defined Chars 5x7 dots */
const char udc_ae[] = {0x00, 0x00, 0x1B, 0x05, 0x1F, 0x14, 0x1F, 0x00}; //æ
const char udc_0e[] = {0x00, 0x00, 0x0E, 0x13, 0x15, 0x19, 0x0E, 0x00}; //ø
const char udc_ao[] = {0x0E, 0x0A, 0x0E, 0x01, 0x0F, 0x11, 0x0F, 0x00}; //å
const char udc_AE[] = {0x0F, 0x14, 0x14, 0x1F, 0x14, 0x14, 0x17, 0x00}; //Æ
const char udc_0E[] = {0x0E, 0x13, 0x15, 0x15, 0x15, 0x19, 0x0E, 0x00}; //Ø
const char udc_Ao[] = {0x0E, 0x0A, 0x0E, 0x11, 0x1F, 0x11, 0x11, 0x00}; //Å
const char udc_PO[] = {0x04, 0x0A, 0x0A, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Open
const char udc_PC[] = {0x1C, 0x10, 0x08, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Closed
const char udc_0[] = {0x18, 0x14, 0x12, 0x11, 0x12, 0x14, 0x18, 0x00}; // |>
const char udc_1[] = {0x03, 0x05, 0x09, 0x11, 0x09, 0x05, 0x03, 0x00}; // <|
const char udc_2[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // |
const char udc_3[] = {0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00}; // ||
const char udc_4[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00}; // |||
const char udc_5[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x00}; // =
const char udc_6[] = {0x15, 0x0a, 0x15, 0x0a, 0x15, 0x0a, 0x15, 0x00}; // checkerboard
const char udc_7[] = {0x10, 0x08, 0x04, 0x02, 0x01, 0x00, 0x10, 0x00}; // \
const char udc_degr[] = {0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00, 0x00}; // Degree symbol
const char udc_TM_T[] = {0x1F, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00}; // Trademark T
const char udc_TM_M[] = {0x11, 0x1B, 0x15, 0x11, 0x00, 0x00, 0x00, 0x00}; // Trademark M
//const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full
//const char udc_Bat_Ha[] = {0x0E, 0x11, 0x13, 0x17, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half
//const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x00}; // Battery Low
const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full
const char udc_Bat_Ha[] = {0x0E, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half
const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x00}; // Battery Low
const char udc_AC[] = {0x0A, 0x0A, 0x1F, 0x11, 0x0E, 0x04, 0x04, 0x00}; // AC Power
//const char udc_smiley[] = {0x00, 0x0A, 0x00, 0x04, 0x11, 0x0E, 0x00, 0x00}; // Smiley
//const char udc_droopy[] = {0x00, 0x0A, 0x00, 0x04, 0x00, 0x0E, 0x11, 0x00}; // Droopey
//const char udc_note[] = {0x01, 0x03, 0x05, 0x09, 0x0B, 0x1B, 0x18, 0x00}; // Note
//const char udc_bar_1[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // Bar 1
//const char udc_bar_2[] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x00}; // Bar 11
//const char udc_bar_3[] = {0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x00}; // Bar 111
//const char udc_bar_4[] = {0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x00}; // Bar 1111
//const char udc_bar_5[] = {0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Bar 11111
//const char udc_ch_1[] = {0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00}; // Hor bars 4
//const char udc_ch_2[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f}; // Hor bars 4 (inverted)
//const char udc_ch_3[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15}; // Ver bars 3
//const char udc_ch_4[] = {0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a}; // Ver bars 3 (inverted)
//const char udc_ch_yr[] = {0x08, 0x0f, 0x12, 0x0f, 0x0a, 0x1f, 0x02, 0x02}; // Year (kana)
//const char udc_ch_mo[] = {0x0f, 0x09, 0x0f, 0x09, 0x0f, 0x09, 0x09, 0x13}; // Month (kana)
//const char udc_ch_dy[] = {0x1f, 0x11, 0x11, 0x1f, 0x11, 0x11, 0x11, 0x1F}; // Day (kana)
//const char udc_ch_mi[] = {0x0C, 0x0a, 0x11, 0x1f, 0x09, 0x09, 0x09, 0x13}; // minute (kana)
/** Create a TextLCD_Base interface
*
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) {
// Extract LCDType data
// Columns encoded in b7..b0
_nr_cols = (_type & 0xFF);
// Rows encoded in b15..b8
_nr_rows = ((_type >> 8) & 0xFF);
// Addressing mode encoded in b19..b16
_addr_mode = _type & LCD_T_ADR_MSK;
}
/** Init the LCD Controller(s)
* Clear display
*/
void TextLCD_Base::_init() {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_ctrl_idx=_LCDCtrl_1; // Select 2nd controller
_initCtrl(); // Init 2nd controller
}
// Select and configure primary LCD controller
_ctrl_idx=_LCDCtrl_0; // Select primary controller
_initCtrl(); // Init primary controller
// Reset Cursor location
_row=0;
_column=0;
}
/** Init the LCD controller
* 4-bit mode, number of lines, fonttype, no cursor etc
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
void TextLCD_Base::_initCtrl() {
this->_setRS(false); // command mode
wait_ms(20); // Wait 20ms to ensure powered up
// send "Display Settings" 3 times (Only top nibble of 0x30 as we've got 4-bit bus)
for (int i=0; i<3; i++) {
_writeNibble(0x3);
wait_ms(15); // This command takes 1.64ms, so wait for it
}
_writeNibble(0x2); // 4-bit mode
wait_us(40); // most instructions take 40us
// Display is now in 4-bit mode
// Note: 4 bit mode is ignored for native SPI and I2C devices
// Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc
switch (_ctrl) {
case KS0078:
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
_writeCommand(0x20); // Function set 001 DL N RE(0) DH REV
// DL=0 (4 bits bus)
// N=0 (1 line)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=0 (Disp shift=disable, special mode for KS0078)
// REV=0 (Reverse=Normal, special mode for KS0078)
break;
// case LCD12x3D: // Special mode for KS0078
// case LCD12x3D1: // Special mode for KS0078
// case LCD12x4D: // Special mode for KS0078
// case LCD16x3D:
// case LCD16x4D:
// case LCD24x3D: // Special mode for KS0078
// case LCD24x3D1: // Special mode for KS0078
case LCD24x4D: // Special mode for KS0078
_writeCommand(0x2A); // Function set 001 DL N RE(0) DH REV
// DL=0 (4 bits bus)
// N=1 (Dont care for KS0078 in 4-line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift=enable, special mode for KS0078)
// REV=0 (Reverse=Normal, special mode for KS0078)
_writeCommand(0x2E); // Function set 001 DL N RE(1) BE 0
// DL=0 (4 bits bus)
// N=1 (Dont care for KS0078 in 4-line mode)
// RE=1 (Ena Extended Regs, special mode for KS0078)
// BE=1 (Blink Enable, CG/SEG RAM, special mode for KS0078)
// X=0 (Reverse, special mode for KS0078)
_writeCommand(0x09); // Ext Function set 0000 1 FW BW NW
// FW=0 (5-dot font, special mode for KS0078)
// BW=0 (Cur BW invert disable, special mode for KS0078)
// NW=1 (4 Line, special mode for KS0078)
_writeCommand(0x2A); // Function set 001 DL N RE(0) DH REV
// DL=0 (4 bits bus)
// N=1 (Dont care for KS0078 in 4 line mode)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=1 (Disp shift enable, special mode for KS0078)
// REV=0 (Reverse normal, special mode for KS0078)
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_writeCommand(0x28); // Function set 001 DL N RE(0) DH REV
// DL=0 (4 bits bus)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 (2 lines)
// RE=0 (Dis. Extended Regs, special mode for KS0078)
// DH=0 (Disp shift=disable, special mode for KS0078)
// REV=0 (Reverse=Normal, special mode for KS0078)
break;
} // switch type
break; // case KS0078 Controller
case ST7032_3V3:
// ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
_writeCommand(0x21); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Select Instruction Set = 1
//Note: 4 bit mode is ignored for native SPI and I2C devices
_writeCommand(0x1C); //Internal OSC frequency adjustment Framefreq=183HZ, bias will be 1/4
_writeCommand(0x73); //Contrast control low byte
_writeCommand(0x57); //booster circuit is turned on. /ICON display off. /Contrast control high byte
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x6C); //Follower control
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x20); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Return to Instruction Set = 0
//Note: 4 bit mode is ignored for native SPI and I2C devices
break;
case LCD12x3D: // Special mode for PCF2116
case LCD12x3D1: // Special mode for PCF2116
case LCD12x4D: // Special mode for PCF2116
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays
_writeCommand(0x29); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Select Instruction Set = 1
//Note: 4 bit mode is ignored for native SPI and I2C devices
_writeCommand(0x1C); //Internal OSC frequency adjustment Framefreq=183HZ, bias will be 1/4
_writeCommand(0x73); //Contrast control low byte
_writeCommand(0x57); //booster circuit is turned on. /ICON display off. /Contrast control high byte
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x6C); //Follower control
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x28); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Return to Instruction Set = 0
//Note: 4 bit mode is ignored for native SPI and I2C devices
} // switch type
break; // case ST7032_3V3 Controller
case ST7032_5V:
// ST7032 controller: Disable Voltage booster for VLCD. VDD=5V
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
_writeCommand(0x21); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Select Instruction Set = 1
//Note: 4 bit mode is ignored for native SPI and I2C devices
_writeCommand(0x1C); //Internal OSC frequency adjustment Framefreq=183HZ, bias will be 1/4
_writeCommand(0x73); //Contrast control low byte
_writeCommand(0x53); //booster circuit is turned off. /ICON display off. /Contrast control high byte
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x6C); //Follower control
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x20); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Return to Instruction Set = 0
//Note: 4 bit mode is ignored for native SPI and I2C devices
break;
case LCD12x3D: // Special mode for PCF2116
case LCD12x3D1: // Special mode for PCF2116
case LCD12x4D: // Special mode for PCF2116
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays
_writeCommand(0x29); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Select Instruction Set = 1
//Note: 4 bit mode is ignored for native SPI and I2C devices
_writeCommand(0x1C); //Internal OSC frequency adjustment Framefreq=183HZ, bias will be 1/4
_writeCommand(0x73); //Contrast control low byte
_writeCommand(0x53); //booster circuit is turned off. /ICON display off. /Contrast control high byte
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x6C); //Follower control
wait_ms(10); // Wait 10ms to ensure powered up
_writeCommand(0x28); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Return to Instruction Set = 0
//Note: 4 bit mode is ignored for native SPI and I2C devices
} // switch type
break; // case ST7032_5V Controller
case ST7036:
// ST7036 controller: Initialise Voltage booster for VLCD. VDD=5V
// Note: supports 1,2 or 3 lines
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2D is a special case of 16x1
// case LCD12x1:
case LCD16x1:
case LCD24x1:
_writeCommand(0x21); // 4-bit Databus, N=0 1 Line, DH=0 5x7font, IS2,IS1 = 01 Select Instruction Set = 1
wait_ms(30); // > 26,3ms
_writeCommand(0x14); // Bias: 1/5, 1 or 2-Lines LCD
// _writeCommand(0x15); // Bias: 1/5, 3-Lines LCD
wait_ms(30); // > 26,3ms
_writeCommand(0x55); // Icon off, Booster on, Set Contrast C5, C4
wait_ms(30); // > 26,3ms
_writeCommand(0x6D); // Voltagefollower On, Ampl ratio Rab2, Rab1, Rab0
wait_ms(200); // > 200ms!
_writeCommand(0x78); // Set Contrast C3, C2, C1, C0
wait_ms(30); // > 26,3ms
_writeCommand(0x20); // Return to Instruction Set = 0
wait_ms(50);
break;
#if(0)
// case LCD12x3:
case LCD16x3:
_writeCommand(0x29); // 4-bit Databus, N=1 2 Line, DH=0 5x7font, IS2,IS1 = 01 Select Instruction Set = 1
wait_ms(30); // > 26,3ms
// _writeCommand(0x14); // Bias: 1/5, 1 or 2-Lines LCD
_writeCommand(0x15); // Bias: 1/5, 3-Lines LCD
wait_ms(30); // > 26,3ms
_writeCommand(0x55); // Icon off, Booster on, Set Contrast C5, C4
wait_ms(30); // > 26,3ms
_writeCommand(0x6D); // Voltagefollower On, Ampl ratio Rab2, Rab1, Rab0
wait_ms(200); // > 200ms!
_writeCommand(0x78); // Set Contrast C3, C2, C1, C0
wait_ms(30); // > 26,3ms
_writeCommand(0x28); // Return to Instruction Set = 0
wait_ms(50);
break;
#endif
case LCD12x3D: // Special mode for PCF2116
case LCD12x3D1: // Special mode for PCF2116
case LCD12x4D: // Special mode for PCF2116
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_writeCommand(0x29); // 4-bit Databus, N=1 2 Line, DH=0 5x7font, IS2,IS1 = 01 Select Instruction Set = 1
wait_ms(30); // > 26,3ms
_writeCommand(0x14); // Bias: 1/5, 2-Lines LCD
// _writeCommand(0x15); // Bias: 1/5, 3-Lines LCD
wait_ms(30); // > 26,3ms
_writeCommand(0x55); // Icon off, Booster on, Set Contrast C5, C4
wait_ms(30); // > 26,3ms
_writeCommand(0x6D); // Voltagefollower On, Ampl ratio Rab2, Rab1, Rab0
wait_ms(200); // > 200ms!
_writeCommand(0x78); // Set Contrast C3, C2, C1, C0
wait_ms(30); // > 26,3ms
_writeCommand(0x28); // Return to Instruction Set = 0
wait_ms(50);
} // switch type
break; // case ST7036 Controller
case PCF2113_3V3:
// PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3
// Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
// You must supply this LCD voltage externally and not enable VGen.
// Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
// You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
// More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
// Note3: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
// Note4: See datasheet, you can also disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
// Note5: PCF2113 is different wrt to VLCD generator !
// Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange text when not corrected..
// Initialise Display configuration
switch (_type) {
// case LCD12x1:
case LCD24x1:
_writeCommand(0x21); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode, extended IS
//Note: 4 bit mode is ignored for I2C mode
_writeCommand(0x9F); //Set VLCD A : VGen for Chars and Icons
_writeCommand(0xDF); //Set VLCD B : VGen for Icons Only
_writeCommand(0x20); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode
// _writeCommand(0x24); //FUNCTION SET 4 bit, M=1 2-line/12 chars display mode, standard IS
wait_ms(10); // Wait 10ms to ensure powered up
break;
//Tested OK for PCF2113
//Note: PCF2113 is different wrt to VLCD generator !
case LCD12x2:
_writeCommand(0x21); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode, extended IS
//Note: 4 bit mode is ignored for I2C mode
_writeCommand(0x9F); //Set VLCD A : VGen for Chars and Icons
_writeCommand(0xDF); //Set VLCD B : VGen for Icons Only
// _writeCommand(0x20); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode
_writeCommand(0x24); //FUNCTION SET 4 bit, M=1 2-line/12 chars display mode, standard IS
wait_ms(10); // Wait 10ms to ensure powered up
break;
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
break; // case PCF2113_3V3 Controller
case PCF2116_3V3:
// PCF2116 controller: Initialise Voltage booster for VLCD. VDD=3V3
// Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
// You must supply this LCD voltage externally and not enable VGen.
// Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
// You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
// More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
// Note3: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
// Note4: See datasheet, you can also disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
// Note5: PCF2113 is different wrt to VLCD generator !
// Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange text when not corrected..
// Initialise Display configuration
switch (_type) {
// case LCD12x1:
// case LCD12x2:
case LCD24x1:
_writeCommand(0x22); //FUNCTION SET 4 bit, N=0/M=0 1-line/24 chars display mode, G=1 VGen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
case LCD12x3D:
case LCD12x3D1:
case LCD12x4D:
_writeCommand(0x2E); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
break;
case LCD24x2:
_writeCommand(0x2A); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on
//Note: 4 bit mode is ignored for I2C mode
wait_ms(10); // Wait 10ms to ensure powered up
default:
error("Error: LCD Controller type does not support this Display type\n\r");
break;
} // switch type
break; // case PCF2116_3V3 Controller
// case PCF21XX_5V:
// PCF21XX controller: No Voltage generator for VLCD. VDD=5V
//@TODO
case WS0010:
// WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs
// Note1: Identical to RS0010
// Note2: supports 1 or 2 lines (and 16x100 graphics)
// supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II)
// Cursor/Disp shift set 0001 SC RL 0 0
//
// Mode and Power set 0001 GC PWR 1 1
// GC = 0 (Graph Mode=1, Char Mode=0)
// PWR = 1 (DC/DC On/Off)
//@Todo: This may be needed to enable a warm reboot
//_writeCommand(0x13); // DC/DC off
//wait_ms(10); // Wait 10ms to ensure powered down
_writeCommand(0x17); // DC/DC on
wait_ms(10); // Wait 10ms to ensure powered up
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
case LCD24x1:
_writeCommand(0x20); // Function set 001 DL N F FT1 FT0
// DL=0 (4 bits bus)
// N=0 (1 line)
// F=0 (5x7 dots font)
// FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
break;
case LCD12x3D: // Special mode for PCF2116
case LCD12x3D1: // Special mode for PCF2116
case LCD12x4D: // Special mode for PCF2116
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
default:
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
_writeCommand(0x28); // Function set 001 DL N F FT1 FT0
// DL=0 (4 bits bus)
// N=1 (2 lines)
// F=0 (5x7 dots font)
// FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
break;
} // switch type
break; // case WS0100 Controller
default:
// Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD
// Initialise Display configuration
switch (_type) {
case LCD8x1: //8x1 is a regular 1 line display
case LCD8x2B: //8x2B is a special case of 16x1
// case LCD12x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
// case LCD40x1:
_writeCommand(0x20); // Function set 001 DL N F - -
// DL=0 (4 bits bus)
// N=0 (1 line)
// F=0 (5x7 dots font)
break;
// case LCD12x3D: // Special mode for PCF2116
// case LCD12x3D1: // Special mode for PCF2116
// case LCD12x4D: // Special mode for PCF2116
// case LCD24x3D: // Special mode for KS0078
case LCD24x4D: // Special mode for KS0078
error("Error: LCD Controller type does not support this Display type\n\r");
break;
// All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
default:
_writeCommand(0x28); // Function set 001 DL N F - -
// DL=0 (4 bits bus)
// Note: 4 bit mode is ignored for native SPI and I2C devices
// N=1 (2 lines)
// F=0 (5x7 dots font, only option for 2 line display)
// - (Don't care)
break;
} // switch type
break; // case default Controller
} // switch Controller specific initialisations
// Controller general initialisations
_writeCommand(0x01); // cls, and set cursor to 0
wait_ms(10); // The CLS command takes 1.64 ms.
// Since we are not using the Busy flag, Lets be safe and take 10 ms
_writeCommand(0x02); // Return Home
// Cursor Home, DDRAM Address to Origin
_writeCommand(0x06); // Entry Mode 0000 0 1 I/D S
// Cursor Direction and Display Shift
// I/D=1 (Cur incr)
// S=0 (No display shift)
_writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x
// S/C=0 Cursor moves
// R/L=1 Right
//
// _writeCommand(0x0C); // Display Ctrl 0000 1 D C B
// // Display On, Cursor Off, Blink Off
setCursor(CurOff_BlkOff);
setMode(DispOn);
}
/** Clear the screen, Cursor home.
*/
void TextLCD_Base::cls() {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_ctrl_idx=_LCDCtrl_1; // Select 2nd controller
// Second LCD controller Cursor always Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Second LCD controller Clearscreen
_writeCommand(0x01); // cls, and set cursor to 0
wait_ms(10); // The CLS command takes 1.64 ms.
// Since we are not using the Busy flag, Lets be safe and take 10 ms
_ctrl_idx=_LCDCtrl_0; // Select primary controller
}
// Primary LCD controller Clearscreen
_writeCommand(0x01); // cls, and set cursor to 0
wait_ms(10); // The CLS command takes 1.64 ms.
// Since we are not using the Busy flag, Lets be safe and take 10 ms
// Restore cursormode on primary LCD controller when needed
if(_type==LCD40x4) {
_setCursorAndDisplayMode(_currentMode,_currentCursor);
}
setAddress(0, 0); // Reset Cursor location
// Note: this is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode.
}
/** Locate cursor to a screen column and row
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
*/
void TextLCD_Base::locate(int column, int row) {
// setAddress() does all the heavy lifting:
// check column and row sanity,
// switch controllers for LCD40x4 if needed
// switch cursor for LCD40x4 if needed
// set the new memory address to show cursor at correct location
setAddress(column, row);
}
/** Write a single character (Stream implementation)
*/
int TextLCD_Base::_putc(int value) {
int addr;
if (value == '\n') {
//No character to write
//Update Cursor
_column = 0;
_row++;
if (_row >= rows()) {
_row = 0;
}
}
else {
//Character to write
_writeData(value);
//Update Cursor
_column++;
if (_column >= columns()) {
_column = 0;
_row++;
if (_row >= rows()) {
_row = 0;
}
}
} //else
//Set next memoryaddress, make sure cursor blinks at next location
addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
return value;
}
// get a single character (Stream implementation)
int TextLCD_Base::_getc() {
return -1;
}
// Write a nibble using the 4-bit interface
void TextLCD_Base::_writeNibble(int value) {
// Enable is Low
this->_setEnable(true);
this->_setData(value & 0x0F); // Low nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Datahold time
// Enable is Low
}
// Write a byte using the 4-bit interface
void TextLCD_Base::_writeByte(int value) {
// Enable is Low
this->_setEnable(true);
this->_setData(value >> 4); // High nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Data hold time
this->_setEnable(true);
this->_setData(value >> 0); // Low nibble
wait_us(1); // Data setup time
this->_setEnable(false);
wait_us(1); // Datahold time
// Enable is Low
}
// Write a command byte to the LCD controller
void TextLCD_Base::_writeCommand(int command) {
this->_setRS(false);
wait_us(1); // Data setup time for RS
this->_writeByte(command);
wait_us(40); // most instructions take 40us
}
// Write a data byte to the LCD controller
void TextLCD_Base::_writeData(int data) {
this->_setRS(true);
wait_us(1); // Data setup time for RS
this->_writeByte(data);
wait_us(40); // data writes take 40us
}
#if (0)
// This is the original _address() method.
// It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80.
// Left it in here for compatibility with older code. New applications should use getAddress() instead.
//
int TextLCD_Base::_address(int column, int row) {
switch (_type) {
case LCD20x4:
switch (row) {
case 0:
return 0x80 + column;
case 1:
return 0xc0 + column;
case 2:
return 0x94 + column;
case 3:
return 0xd4 + column;
}
case LCD16x2B:
return 0x80 + (row * 40) + column;
case LCD16x2:
case LCD20x2:
default:
return 0x80 + (row * 0x40) + column;
}
}
#endif
// This replaces the original _address() method.
// Left it in here for compatibility with older code. New applications should use getAddress() instead.
int TextLCD_Base::_address(int column, int row) {
return 0x80 | getAddress(column, row);
}
#if(0)
// This is new method to return the memory address based on row, column and displaytype.
//
/** Return the memoryaddress of screen column and row location
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
* @param return The memoryaddress of screen column and row location
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::getAddress(int column, int row) {
switch (_type) {
case LCD8x1:
// case LCD12x1:
// case LCD16x1B:
// case LCD20x1:
case LCD24x1:
// case LCD40x1:
return 0x00 + column;
case LCD16x1:
// LCD16x1 is a special layout of LCD8x2
if (column<8)
return 0x00 + column;
else
return 0x40 + (column - 8);
case LCD8x2D:
// LCD8x2B is a special layout of LCD16x1
if (row==0)
return 0x00 + column;
else
return 0x08 + column;
case LCD8x2:
case LCD12x2:
case LCD16x2:
case LCD20x2:
case LCD24x2:
case LCD40x2:
return 0x00 + (row * 0x40) + column;
// Not sure about this one, seems wrong.
// Left in for compatibility with original library
case LCD16x2B:
return 0x00 + (row * 40) + column;
// Special mode for ST7036
// case LCD16x3:
// Special mode for PCF2116
case LCD12x3B:
//Display bottom three rows of four
switch (row) {
case 0:
return 0x20 + column;
case 1:
return 0x40 + column;
case 2:
return 0x60 + column;
}
#if(0)
case LCD12x3C:
//Display top three rows of four
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x20 + column;
case 2:
return 0x40 + column;
}
#endif
case LCD12x4:
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
return 0x0C + column;
case 3:
return 0x4C + column;
}
// Special mode for PCF2116 (and KS0078)
case LCD12x4B:
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x20 + column;
case 2:
return 0x40 + column;
case 3:
return 0x60 + column;
}
case LCD16x4:
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
return 0x10 + column;
case 3:
return 0x50 + column;
}
case LCD20x4:
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
return 0x14 + column;
case 3:
return 0x54 + column;
}
// Special mode for KS0078
case LCD24x4B:
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x20 + column;
case 2:
return 0x40 + column;
case 3:
return 0x60 + column;
}
case LCD40x4:
// LCD40x4 is a special case since it has 2 controllers
// Each controller is configured as 40x2
if (row<2) {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_0) {
// Second LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select primary controller
_ctrl_idx = _LCDCtrl_0;
// Restore cursormode on primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + (row * 0x40) + column;
}
else {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_1) {
// Primary LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select secondary controller
_ctrl_idx = _LCDCtrl_1;
// Restore cursormode on secondary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + ((row-2) * 0x40) + column;
}
// Should never get here.
default:
return 0x00;
}
}
#else
//Test of Addressing Mode encoded in LCDType
// This is new method to return the memory address based on row, column and displaytype.
//
/** Return the memoryaddress of screen column and row location
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
* @param return The memoryaddress of screen column and row location
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::getAddress(int column, int row) {
switch (_addr_mode) {
case LCD_T_A:
//Default addressing mode for 1, 2 and 4 rows (except 40x4)
//The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split.
//Displays top rows when less than four are used.
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x40 + column;
case 2:
return 0x00 + _nr_cols + column;
case 3:
return 0x40 + _nr_cols + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_B:
// LCD8x2B is a special layout of LCD16x1
if (row==0)
return 0x00 + column;
else
// return _nr_cols + column;
return 0x08 + column;
case LCD_T_C:
// LCD16x1C is a special layout of LCD8x2
if (column<8)
return 0x00 + column;
else
return 0x40 + (column - 8);
// Not sure about this one, seems wrong.
// Left in for compatibility with original library
// case LCD16x2B:
// return 0x00 + (row * 40) + column;
case LCD_T_D:
//Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0078
//The 4 available rows start at a hardcoded address.
//Displays top rows when less than four are used.
switch (row) {
case 0:
return 0x00 + column;
case 1:
return 0x20 + column;
case 2:
return 0x40 + column;
case 3:
return 0x60 + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_D1:
//Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0078
//The 4 available rows start at a hardcoded address.
//Skips top row of 4 row display and starts display at row 1
switch (row) {
case 0:
return 0x20 + column;
case 1:
return 0x40 + column;
case 2:
return 0x60 + column;
// Should never get here.
default:
return 0x00;
}
case LCD_T_E:
// LCD40x4 is a special case since it has 2 controllers.
// Each controller is configured as 40x2 (Type A)
if (row<2) {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_0) {
// Second LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select primary controller
_ctrl_idx = _LCDCtrl_0;
// Restore cursormode on primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + (row * 0x40) + column;
}
else {
// Test to see if we need to switch between controllers
if (_ctrl_idx != _LCDCtrl_1) {
// Primary LCD controller Cursor Off
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Select secondary controller
_ctrl_idx = _LCDCtrl_1;
// Restore cursormode on secondary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
return 0x00 + ((row-2) * 0x40) + column;
}
// Should never get here.
default:
return 0x00;
}
}
#endif
/** Set the memoryaddress of screen column and row location
*
* @param column The horizontal position from the left, indexed from 0
* @param row The vertical position from the top, indexed from 0
*/
void TextLCD_Base::setAddress(int column, int row) {
// Sanity Check column
if (column < 0) {
_column = 0;
}
else if (column >= columns()) {
_column = columns() - 1;
} else _column = column;
// Sanity Check row
if (row < 0) {
_row = 0;
}
else if (row >= rows()) {
_row = rows() - 1;
} else _row = row;
// Compute the memory address
// For LCD40x4: switch controllers if needed
// switch cursor if needed
int addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
}
/** Return the number of columns
*
* @param return The number of columns
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::columns() {
// Columns encoded in b7..b0
//return (_type & 0xFF);
return _nr_cols;
#if(0)
switch (_type) {
case LCD8x1:
case LCD8x2:
case LCD8x2B:
return 8;
case LCD12x2:
case LCD12x3B:
// case LCD12x3C:
case LCD12x4:
case LCD12x4B:
return 12;
case LCD16x1:
case LCD16x2:
case LCD16x2B:
// case LCD16x3:
case LCD16x4:
return 16;
// case LCD20x1:
case LCD20x2:
case LCD20x4:
return 20;
case LCD24x1:
case LCD24x2:
// case LCD24x3B:
case LCD24x4B:
return 24;
// case LCD40x1:
case LCD40x2:
case LCD40x4:
return 40;
// Should never get here.
default:
return 0;
}
#endif
}
/** Return the number of rows
*
* @param return The number of rows
*
* Note: some configurations are commented out because they have not yet been tested due to lack of hardware
*/
int TextLCD_Base::rows() {
// Rows encoded in b15..b8
//return ((_type >> 8) & 0xFF);
return _nr_rows;
#if(0)
switch (_type) {
case LCD8x1:
case LCD16x1:
// case LCD20x1:
case LCD24x1:
// case LCD40x1:
return 1;
case LCD8x2:
case LCD8x2B:
case LCD12x2:
case LCD16x2:
case LCD16x2B:
case LCD20x2:
case LCD24x2:
case LCD40x2:
return 2;
case LCD12x3B:
// case LCD12x3C:
// case LCD16x3:
// case LCD24x3B:
return 3;
case LCD12x4:
case LCD12x4B:
case LCD16x4:
case LCD20x4:
case LCD24x4B:
case LCD40x4:
return 4;
// Should never get here.
default:
return 0;
}
#endif
}
/** Set the Cursormode
*
* @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn)
*/
void TextLCD_Base::setCursor(LCDCursor cursorMode) {
// Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on
_currentCursor = cursorMode;
// Configure only current LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
/** Set the Displaymode
*
* @param displayMode The Display mode (DispOff, DispOn)
*/
void TextLCD_Base::setMode(LCDMode displayMode) {
// Save new displayMode, needed when 2 controllers are in use or when cursor is changed
_currentMode = displayMode;
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
if (_ctrl_idx==_LCDCtrl_0) {
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
// Select 2nd controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Restore current controller
_ctrl_idx=_LCDCtrl_0;
}
else {
// Select primary controller
_ctrl_idx=_LCDCtrl_0;
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
// Restore current controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
}
else {
// Configure primary LCD controller
_setCursorAndDisplayMode(_currentMode, _currentCursor);
}
}
/** Low level method to restore the cursortype and display mode for current controller
*/
void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) {
// Configure current LCD controller
_writeCommand(0x08 | displayMode | cursorType);
}
/** Set the Backlight mode
*
* @param backlightMode The Backlight mode (LightOff, LightOn)
*/
void TextLCD_Base::setBacklight(LCDBacklight backlightMode) {
if (backlightMode == LightOn) {
this->_setBL(true);
}
else {
this->_setBL(false);
}
}
/** Set User Defined Characters
*
* @param unsigned char c The Index of the UDC (0..7)
* @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits)
*/
void TextLCD_Base::setUDC(unsigned char c, char *udc_data) {
// Select and configure second LCD controller when needed
if(_type==LCD40x4) {
_LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller
// Select primary controller
_ctrl_idx=_LCDCtrl_0;
// Configure primary LCD controller
_setUDC(c, udc_data);
// Select 2nd controller
_ctrl_idx=_LCDCtrl_1;
// Configure secondary LCD controller
_setUDC(c, udc_data);
// Restore current controller
_ctrl_idx=current_ctrl_idx;
}
else {
// Configure primary LCD controller
_setUDC(c, udc_data);
}
}
/** Low level method to store user defined characters for current controller
*/
void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) {
// Select CG RAM for current LCD controller
_writeCommand(0x40 + ((c & 0x07) << 3)); //Set CG-RAM address,
//8 sequential locations needed per UDC
// Store UDC pattern
for (int i=0; i<8; i++) {
_writeData(*udc_data++);
}
//Select DD RAM again for current LCD controller
int addr = getAddress(_column, _row);
_writeCommand(0x80 | addr);
}
//--------- End TextLCD_Base -----------
//--------- Start TextLCD Bus -----------
/* Create a TextLCD interface for using regular mbed pins
*
* @param rs Instruction/data control line
* @param e Enable line (clock)
* @param d4-d7 Data lines for using as a 4-bit interface
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param e2 Enable2 line (clock for second controller, LCD40x4 only)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD::TextLCD(PinName rs, PinName e,
PinName d4, PinName d5, PinName d6, PinName d7,
LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_rs(rs), _e(e), _d(d4, d5, d6, d7) {
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
// The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access.
if (e2 != NC) {
_e2 = new DigitalOut(e2); //Construct new pin
_e2->write(0); //Deactivate
}
else {
// No Hardware Enable pin
_e2 = NULL; //Construct dummy pin
}
_init();
}
/** Destruct a TextLCD interface for using regular mbed pins
*
* @param none
* @return none
*/
TextLCD::~TextLCD() {
if (_bl != NULL) {delete _bl;} // BL pin
if (_e2 != NULL) {delete _e2;} // E2 pin
}
/** Set E pin (or E2 pin)
* Used for mbed pins, I2C bus expander or SPI shiftregister
* Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
* @param value true or false
* @return none
*/
void TextLCD::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_e = 1; // Set E bit
}
else {
_e = 0; // Reset E bit
}
}
else {
if (value) {
if (_e2 != NULL) {_e2->write(1);} //Set E2 bit
}
else {
if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit
}
}
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD::_setRS(bool value) {
if (value) {
_rs = 1; // Set RS bit
}
else {
_rs = 0; // Reset RS bit
}
}
/** Set BL pin
* Used for mbed pins, I2C bus expander or SPI shiftregister
* Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
* @param value true or false
* @return none
*/
void TextLCD::_setBL(bool value) {
if (value) {
if (_bl != NULL) {_bl->write(1);} //Set BL bit
}
else {
if (_bl != NULL) {_bl->write(0);} //Reset BL bit
}
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shifregister
void TextLCD::_setData(int value) {
_d = value & 0x0F; // Write Databits
}
//----------- End TextLCD ---------------
//--------- Start TextLCD_I2C -----------
/** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 portexpander
*
* @param i2c I2C Bus
* @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008, default = 0x40)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_i2c(i2c){
_slaveAddress = deviceAddress & 0xFE;
// Setup the I2C bus
// The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit,
// _i2c->frequency(100000);
#if (MCP23008==1)
// MCP23008 portexpander Init
_write_register(IODIR, 0x00); // All outputs
_write_register(IPOL, 0x00); // No reverse polarity
_write_register(GPINTEN, 0x00); // No interrupt
_write_register(DEFVAL, 0x00); // Default value to compare against for interrupts
_write_register(INTCON, 0x00); // No interrupt on changes
_write_register(IOCON, 0x00); // Interrupt polarity
_write_register(GPPU, 0x00); // No Pullup
_write_register(INTF, 0x00); //
_write_register(INTCAP, 0x00); //
_write_register(GPIO, 0x00); // Output/Input pins
_write_register(OLAT, 0x00); // Output Latch
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
_init();
}
// Set E pin (or E2 pin)
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_lcd_bus |= D_LCD_E; // Set E bit
}
else {
_lcd_bus &= ~D_LCD_E; // Reset E bit
}
}
else {
if (value) {
_lcd_bus |= D_LCD_E2; // Set E2 bit
}
else {
_lcd_bus &= ~D_LCD_E2; // Reset E2bit
}
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setRS(bool value) {
if (value) {
_lcd_bus |= D_LCD_RS; // Set RS bit
}
else {
_lcd_bus &= ~D_LCD_RS; // Reset RS bit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Set BL pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_I2C::_setBL(bool value) {
if (value) {
_lcd_bus |= D_LCD_BL; // Set BL bit
}
else {
_lcd_bus &= ~D_LCD_BL; // Reset BL bit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shifregister
void TextLCD_I2C::_setData(int value) {
int data;
// Set bit by bit to support any mapping of expander portpins to LCD pins
data = value & 0x0F;
if (data & 0x01){
_lcd_bus |= D_LCD_D4; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D4; // Reset Databit
}
if (data & 0x02){
_lcd_bus |= D_LCD_D5; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D5; // Reset Databit
}
if (data & 0x04) {
_lcd_bus |= D_LCD_D6; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D6; // Reset Databit
}
if (data & 0x08) {
_lcd_bus |= D_LCD_D7; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D7; // Reset Databit
}
#if (MCP23008==1)
// MCP23008 portexpander
// write the new data to the portexpander
_write_register(GPIO, _lcd_bus);
#else
// PCF8574 of PCF8574A portexpander
// write the new data to the I2C portexpander
_i2c->write(_slaveAddress, &_lcd_bus, 1);
#endif
}
// Write data to MCP23008 I2C portexpander
void TextLCD_I2C::_write_register (int reg, int value) {
char data[] = {reg, value};
_i2c->write(_slaveAddress, data, 2);
}
//---------- End TextLCD_I2C ------------
//--------- Start TextLCD_I2C_N ---------
/** Create a TextLCD interface using a controller with native I2C interface
*
* @param i2c I2C Bus
* @param deviceAddress I2C slave address (default = 0x7C)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = ST7032_3V3)
*/
TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_i2c(i2c){
_slaveAddress = deviceAddress & 0xFE;
// Setup the I2C bus
// The max bitrate for ST7032i is 400kbit, lets stick to default here
_i2c->frequency(100000);
// _i2c->frequency(50000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
#if(0)
//Sanity check
switch (_ctrl) {
case ST7032_3V3:
case ST7032_5V:
case PCF21XX_3V3:
// case PCF21XX_5V:
_init();
break;
default:
error("Error: LCD Controller type does not support native I2C interface\n\r");
}
#endif
//Sanity check
if (_ctrl & LCD_C_I2C) {
_init();
}
else {
error("Error: LCD Controller type does not support native I2C interface\n\r");
}
}
TextLCD_I2C_N::~TextLCD_I2C_N() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_I2C_N::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI
void TextLCD_I2C_N::_setRS(bool value) {
// The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
// Co RS RW 0 0 0 0 0 command or data
//
// C0=1 indicates that another controlbyte will follow after the next data or command byte
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
// Many native I2C controllers dont support this option and it is not used by this lib.
//
if (value) {
_controlbyte = 0x40; // Next byte is data, No more control bytes will follow
}
else {
_controlbyte = 0x00; // Next byte is command, No more control bytes will follow
}
}
// Set BL pin
void TextLCD_I2C_N::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_I2C_N::_setData(int value) {
}
// Write a byte using I2C
void TextLCD_I2C_N::_writeByte(int value) {
// The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
// Co RS RW 0 0 0 0 0 command or data
//
// C0=1 indicates that another controlbyte will follow after the next data or command byte
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
// Many native I2C controllers dont support this option and it is not used by this lib.
//
char data[] = {_controlbyte, value};
_i2c->write(_slaveAddress, data, 2);
}
//-------- End TextLCD_I2C_N ------------
//--------- Start TextLCD_SPI -----------
/** Create a TextLCD interface using an SPI 74595 portexpander
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param ctrl LCD controller (default = HD44780)
*/
TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(500000);
//_spi.frequency(1000000);
// Init the portexpander bus
_lcd_bus = D_LCD_BUS_DEF;
// write the new data to the portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
_init();
}
// Set E pin (or E2 pin)
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setEnable(bool value) {
if(_ctrl_idx==_LCDCtrl_0) {
if (value) {
_lcd_bus |= D_LCD_E; // Set E bit
}
else {
_lcd_bus &= ~D_LCD_E; // Reset E bit
}
}
else {
if (value) {
_lcd_bus |= D_LCD_E2; // Set E2 bit
}
else {
_lcd_bus &= ~D_LCD_E2; // Reset E2 bit
}
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setRS(bool value) {
if (value) {
_lcd_bus |= D_LCD_RS; // Set RS bit
}
else {
_lcd_bus &= ~D_LCD_RS; // Reset RS bit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set BL pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setBL(bool value) {
if (value) {
_lcd_bus |= D_LCD_BL; // Set BL bit
}
else {
_lcd_bus &= ~D_LCD_BL; // Reset BL bit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Place the 4bit data on the databus
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI::_setData(int value) {
int data;
// Set bit by bit to support any mapping of expander portpins to LCD pins
data = value & 0x0F;
if (data & 0x01) {
_lcd_bus |= D_LCD_D4; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D4; // Reset Databit
}
if (data & 0x02) {
_lcd_bus |= D_LCD_D5; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D5; // Reset Databit
}
if (data & 0x04) {
_lcd_bus |= D_LCD_D6; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D6; // Reset Databit
}
if (data & 0x08) {
_lcd_bus |= D_LCD_D7; // Set Databit
}
else {
_lcd_bus &= ~D_LCD_D7; // Reset Databit
}
// write the new data to the SPI portexpander
_setCS(false);
_spi->write(_lcd_bus);
_setCS(true);
}
// Set CS line.
// Only used for SPI bus
void TextLCD_SPI::_setCS(bool value) {
if (value) {
_cs = 1; // Set CS pin
}
else {
_cs = 0; // Reset CS pin
}
}
//---------- End TextLCD_SPI ------------
//--------- Start TextLCD_SPI_N ---------
/** Create a TextLCD interface using a controller with a native SPI4 interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param rs Instruction/data control line
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = ST7032_3V3)
*/
TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs),
_rs(rs) {
// Setup the spi for 8 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(8,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
#if(0)
//Sanity check
switch (_ctrl) {
case ST7032_3V3:
case ST7032_5V:
case WS0010:
_init();
break;
default:
error("Error: LCD Controller type does not support native SPI4 interface\n\r");
}
#endif
//Sanity check
if (_ctrl & LCD_C_SPI4) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI4 interface\n\r");
}
}
TextLCD_SPI_N::~TextLCD_SPI_N() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N::_setRS(bool value) {
_rs = value;
}
// Set BL pin
void TextLCD_SPI_N::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N::_setData(int value) {
}
// Write a byte using SPI
void TextLCD_SPI_N::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write(value);
wait_us(1);
_cs = 1;
}
//-------- End TextLCD_SPI_N ------------
#if(0)
//Code checked out on logic analyser. Not yet tested on hardware..
//-------- Start TextLCD_SPI_N_3_9 --------
/** Create a TextLCD interface using a controller with a native SPI3 9 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = AIP31068)
*/
TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Setup the spi for 9 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(9,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_9) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r");
}
}
TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_9::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_9::_setRS(bool value) {
// The controlbits define the meaning of the next byte. This next byte can either be data or command.
// b8 b7...........b0
// RS command or data
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
//
if (value) {
_controlbyte = 0x01; // Next byte is data
}
else {
_controlbyte = 0x00; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_9::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_9::_setData(int value) {
}
// Write a byte using SPI3 9 bits mode
void TextLCD_SPI_N_3_9::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write( (_controlbyte << 8) | (value & 0xFF));
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_9 -----------
#endif
#if(0)
//Code checked out on logic analyser. Not yet tested on hardware..
//------- Start TextLCD_SPI_N_3_10 --------
/** Create a TextLCD interface using a controller with a native SPI3 10 bits interface
*
* @param spi SPI Bus
* @param cs chip select pin (active low)
* @param type Sets the panel size/addressing mode (default = LCD16x2)
* @param bl Backlight control line (optional, default = NC)
* @param ctrl LCD controller (default = AIP31068)
*/
TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
TextLCD_Base(type, ctrl),
_spi(spi),
_cs(cs) {
// Setup the spi for 10 bit data, low steady state clock,
// rising edge capture, with a 500KHz or 1MHz clock rate
_spi->format(10,0);
_spi->frequency(1000000);
// The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
if (bl != NC) {
_bl = new DigitalOut(bl); //Construct new pin
_bl->write(0); //Deactivate
}
else {
// No Hardware Backlight pin
_bl = NULL; //Construct dummy pin
}
//Sanity check
if (_ctrl & LCD_C_SPI3_10) {
_init();
}
else {
error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r");
}
}
TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() {
if (_bl != NULL) {delete _bl;} // BL pin
}
// Not used in this mode
void TextLCD_SPI_N_3_10::_setEnable(bool value) {
}
// Set RS pin
// Used for mbed pins, I2C bus expander or SPI shiftregister
void TextLCD_SPI_N_3_10::_setRS(bool value) {
// The controlbits define the meaning of the next byte. This next byte can either be data or command.
// b9 b8 b7...........b0
// RS RW command or data
//
// RS=1 means that next byte is data, RS=0 means that next byte is command
// RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
//
if (value) {
_controlbyte = 0x02; // Next byte is data
}
else {
_controlbyte = 0x00; // Next byte is command
}
}
// Set BL pin
void TextLCD_SPI_N_3_10::_setBL(bool value) {
if (_bl) {
_bl->write(value);
}
}
// Not used in this mode
void TextLCD_SPI_N_3_10::_setData(int value) {
}
// Write a byte using SPI3 10 bits mode
void TextLCD_SPI_N_3_10::_writeByte(int value) {
_cs = 0;
wait_us(1);
_spi->write( (_controlbyte << 8) | (value & 0xFF));
wait_us(1);
_cs = 1;
}
//------- End TextLCD_SPI_N_3_10 ----------
#endif