Library for using multiple SI1142 sensor
Fork of SI1141 by
SI1143.cpp
- Committer:
- dmcohen24
- Date:
- 2014-06-04
- Revision:
- 10:a89555c4f62a
- Parent:
- 9:31d4e955ee92
File content as of revision 10:a89555c4f62a:
/** * @author Guillermo A Torijano * * @section LICENSE * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * Parallax SI1143 Gesture Sensor. * * Datasheet: * * http://www.silabs.com/Support%20Documents/TechnicalDocs/Si114x.pdf */ #include "SI1143.h" SI1143::SI1143(I2C* comm, PinName vcc, PinName enable, char offset) { wait_ms(30); on = new DigitalOut(vcc); en = new DigitalOut(enable); on->write(0); en->write(0); wait_ms(30); adrs = IR_ADDRESS; i2c_ = comm; restart(offset); } void SI1143::restart(char offset) { DigitalOut l3(LED3); l3 = 0; wait_ms(30); on->write(1); wait_ms(30); en->write(1); wait_ms(30); //printf("%d\r\n",adrs); command(RESET); l3 = 1; wait_ms(30); //Do this because you have to write_reg(HW_KEY,HW_KEY_VAL0); //Give new address write_reg(PARAM_WR, adrs + offset); //write_reg(PARAM_WR, ALS_IR_TASK + ALS_VIS_TASK + PS1_TASK + PS2_TASK + PS3_TASK); command(PARAM_SET + (I2C_ADDR & 0x1F)); //set new address command(BUSADDR); adrs = adrs + offset; // Setting up LED Power to FULL JUICE write_reg(PS_LED21,0xCC); // Was 0x0A write_reg(PS_LED3,0x00); //Activate ALS_IR, ALS_VIS, and PS1 write_reg(PARAM_WR, ALS_IR_TASK + ALS_VIS_TASK + PS1_TASK + PS2_TASK); //write_reg(PARAM_WR, ALS_IR_TASK + ALS_VIS_TASK + PS1_TASK + PS2_TASK + PS3_TASK); command(PARAM_SET + (CHLIST & 0x1F)); /* // Set PS_RANGE to high signal range write_reg(PARAM_WR, 0x04); // 0x24 for high signal, 0x04 for normal command(PARAM_SET + (PS_ADC_MISC & 0x1F)); */ //Set PS_ADC_COUNTER to lower time between ADC samples write_reg(PARAM_WR, 0x07); command(PARAM_SET + (PS_ADC_COUNTER & 0x1F)); //Turn up the juice on PS ACD GAIN! write_reg(PARAM_WR, 0x00); command(PARAM_SET + (PS_ADC_GAIN & 0x1F)); write_reg(INT_CFG,0x01); // Configure Interrupts write_reg(IRQ_ENABLE,0x04); // Enable PS1 (0x04) Enable PS1 & PS2 (0x0C) write_reg(IRQ_MODE1,0); write_reg(IRQ_MODE2,0); //write_reg(MEAS_RATE,0x94); //0x84 - wakes up every 10 ms //write_reg(PS_RATE,0x08); //0x8 - wakes up every time measurement clock wakes up //write_reg(PS_ADC_MISC,0x24); //write_reg(PS1_ADCMUX,0x03); } void SI1143::command(char cmd) { int val; DigitalOut l2(LED2); val = read_reg(RESPONSE,1); while(val!=0) { write_reg(COMMAND,NOP); val = read_reg(RESPONSE,1); l2 = 1; } l2 = 0; do{ write_reg(COMMAND,cmd); if(cmd==RESET) break; val = read_reg(RESPONSE,1); }while(val==0); } char SI1143::read_reg(/*unsigned*/ char address, int num_data) // Read a register { char tx[1]; char rx[1]; //i2c_->start(); tx[0] = address; i2c_->write((adrs << 1) & 0xFE, tx, num_data); wait_ms(1); //i2c_->stop(); //i2c_->start(); i2c_->read((adrs << 1) | 0x01, rx, num_data); wait_ms(1); //i2c_->stop(); return rx[0]; } void SI1143::write_reg(char address, char num_data) // Write a resigter { char tx[2]; //i2c_->start(); tx[0] = address; tx[1] = num_data; i2c_->write((adrs << 1) & 0xFE, tx, 2); wait_ms(1); //i2c_->stop(); } void SI1143::bias(int ready, int repeat) { wait(ready); //bias1 = get_ps1(repeat); bias1 = 0; bias2 = 0; bias3 = get_ps3(repeat); } int SI1143::get_ps1(int repeat) // Read the data for the first LED (Used in forced mode) { int stack = 0; command(PSALS_FORCE); for(int r=repeat; r>0; r=r-1) { LowB = read_reg(PS1_DATA0,1); HighB = read_reg(PS1_DATA1,1); stack = stack + (HighB * 256) + LowB; } PS1 = stack / repeat; if(PS1 > bias1) PS1 = PS1 - bias1; else PS1 = 0; return PS1; } void SI1143::start_ps_auto() { command(PS_AUTO); } int SI1143::read_ps1() // Read the data for the first LED (Used in autonomous mode) { LowB = read_reg(PS1_DATA0,1); HighB = read_reg(PS1_DATA1,1); PS1 = (HighB * 256) + LowB; if(PS1 > bias1) PS1 = PS1 - bias1; else PS1 = 0; return PS1; } int SI1143::get_ps2(int repeat) // Read the data for the second LED { int stack = 0; command(PSALS_FORCE); for(int r=repeat; r>0; r=r-1) { LowB = read_reg(PS2_DATA0,1); HighB = read_reg(PS2_DATA1,1); stack = stack + (HighB * 256) + LowB; } PS2 = stack / repeat; if(PS2 > bias2) PS2 = PS2 - bias2; else PS2 = 0; return PS2; } int SI1143::read_ps2() // Read the data for the first LED (Used in autonomous mode) { LowB = read_reg(PS2_DATA0,1); HighB = read_reg(PS2_DATA1,1); PS2 = (HighB * 256) + LowB; if(PS2 > bias2) PS2 = PS2 - bias2; else PS2 = 0; return PS2; } int SI1143::get_ps3(int repeat) // Read the data for the third LED { int stack = 0; command(PSALS_FORCE); for(int r=repeat; r>0; r=r-1) { LowB = read_reg(PS3_DATA0,1); HighB = read_reg(PS3_DATA1,1); stack = stack + (HighB * 256) + LowB; } PS3 = stack / repeat; if(PS3 > bias3) PS3 = PS3 - bias3; else PS3 = 0; return PS3; } int SI1143::get_vis(int repeat) // Read the data for ambient light { int stack = 0; command(PSALS_FORCE); for(int r=repeat; r>0; r=r-1) { LowB = read_reg(ALS_VIS_DATA0,1); HighB = read_reg(ALS_VIS_DATA1,1); VIS = stack + (HighB * 256) + LowB; } VIS = stack / repeat; return VIS; } int SI1143::get_ir(int repeat) // Read the data for infrared light { int stack = 0; command(PSALS_FORCE); for(int r=repeat; r>0; r=r-1) { LowB = read_reg(ALS_IR_DATA0,1); HighB = read_reg(ALS_IR_DATA1,1); IR = stack + (HighB * 256) + LowB; } IR = stack / repeat; return IR; } void SI1143::clear_int() // Clear Interrupt register when an interrupt occurs. { write_reg(IRQ_STATUS, 0x3F); // Writes one to every interrupt status, thereby clearing them } char SI1143::read_PSint() // Clear Interrupt register when an interrupt occurs. { char tmp; char res; DigitalOut led3a(LED3); DigitalOut led4a(LED4); tmp = read_reg(IRQ_STATUS, 1); // Reads iterrupt register if( (tmp & 0x0C) == 0x0C ){ res = INT_PS12; } else if( (tmp & 0x0C) == 0x04 ){ res = INT_PS1; } else if( (tmp & 0x0C) == 0x08 ){ res = INT_PS2; } else { res = 0; } return res; }