Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: main.cpp
- Revision:
- 0:6bee2baac968
- Child:
- 1:fdfd9a35acc4
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Mon Nov 15 08:25:54 2021 +0000
@@ -0,0 +1,687 @@
+//20211018 version
+#include "MTi2.h"
+#include <stdio.h>
+#include "mbed.h"
+#include <math.h>
+#include <stdlib.h>
+#include "PMW3901.h"
+
+#define GRAVITYACCELERATION 9.81f
+#define pi 3.14159265358979323846f
+//motor
+#define maximum_volt 12.0f
+#define minimum_volt 0.45f // Need to test for different loads.
+
+#define INPUT_VOLTAGE 12.5f
+#define PWM_FREQUENCY 10.0f // the default value we set is 20.0 (unit : kHz)
+#define PWM_STOP 0.5f //the pwm dutycycle value is from 0~1 and 0.5 can let motor stop
+
+#define FRICTION_VOLTAGE 0.45f
+#define HALL_RESOLUTION 64.0f
+#define GEAR_RATIO 56.0f
+#define VOLT_CMD 8.0f // unit(voltage)
+
+//Common
+Serial pc(USBTX,USBRX);
+InterruptIn mybutton(USER_BUTTON);
+Ticker main_function; //interrupt
+DigitalOut led1(LED1);
+DigitalOut led2(A4);
+DigitalOut led3(A5);
+
+//IMU
+SPI spi_MTI(PB_15, PB_14, PB_13);//MOSI MISO SCLK
+DigitalOut cs_MTI(PC_4);
+
+//GSS
+SPI spi(PC_12,PC_11,PC_10);
+DigitalOut cs(PA_4);
+
+//motor
+PwmOut pwm1A(D7);
+PwmOut pwm1B(D8);
+PwmOut pwm2A(D11);
+PwmOut pwm2B(A3);
+
+//Common
+bool button_state = false;
+float dt = 0.01; // sec
+//IMU
+typedef union{
+ uint32_t data1;
+ float data2;
+}imu_data;
+
+imu_data eul[3];//euler angle
+imu_data acc[3];
+imu_data gry[3];
+//GSS
+int GSS_X = 0;
+int GSS_Y = 0;
+
+//motor
+int readcount = 0;
+int RX_flag2 = 0;
+char getData[6] = {0,0,0,0,0,0};
+short data_received[2] = {0,0};
+
+float command = 0;
+float velocityA = 0; //rpm
+float velocityB = 0;
+float positionA = 0;
+float positionB = 0;
+short EncoderPositionA;
+short EncoderPositionB;
+float last_voltA = 0;
+float last_voltB = 0;
+float errorA = 0;
+float error_drA = 0;
+float errorB = 0;
+float error_drB = 0;
+float dutycycle = PWM_STOP;
+float VELOCITY_SPEED_A = 0.0;
+float VELOCITY_SPEED_B = 0.0;
+int pub_count = 0;
+
+//Common
+void step_command();
+
+//IMU
+void Start_read();
+
+//GSS
+void grabData(void);
+//void printData(void);
+void initializeSensor(void);
+void writeRegister(uint8_t addr, uint8_t data);
+uint8_t readRegister(uint8_t addr);
+void delayus(uint32_t us);
+
+//motor
+float PD(float e, float last_e, float last_u, float P, float D);
+float PDF(float e, float last_e, float last_u, float P, float D, float F);
+void ReadVelocity();
+void ReadPosition(float *positionA, float *positionB);
+void motor_drive(float voltA, float voltB);
+void InitMotor(float pwm_frequency);
+void InitEncoder(void);
+void control_speed();
+
+void RX_ITR();
+void init_UART();
+
+int main(void)
+{
+ pc.baud(230400);
+ led2 = 1;
+ led3 = 1;
+ //IMU
+ spi_MTI.format(8, 3);
+ MTi2_Init();
+ //GSS
+ spi.format(8, 3);
+ initializeSensor();
+ //motor
+ init_UART();
+ InitEncoder();
+ InitMotor(PWM_FREQUENCY);
+
+ mybutton.fall(&step_command);
+ main_function.attach_us(&Start_read,dt*1000000);
+ while (1) {
+ }
+
+}
+
+void Start_read() //interrupt function by TT
+{
+ //IMU
+ ReadData();
+ //GSS
+ cs = 0;
+ grabData();
+ cs = 1;
+ if(button_state == true){
+ pub_count++;
+// VELOCITY_SPEED_A = -10.0f;
+// VELOCITY_SPEED_B = -10.0f;
+ ReadVelocity();
+ control_speed();
+ if (pub_count >= 10){
+ //printf("%.3f,%.3f\r\n",velocityA, velocityB); // velocityA or velocityB
+ //printf("CMD %.3f,%.3f\r\n",VELOCITY_SPEED_A, VELOCITY_SPEED_B);
+ pub_count = 0;
+ }
+ }else{
+ uint16_t dutycycleA = PWM_STOP *uint16_t(TIM1->ARR);
+ uint16_t dutycycleB = PWM_STOP *uint16_t(TIM1->ARR);
+ TIM1->CCR1 = dutycycleA;
+ TIM1->CCR2 = dutycycleB;
+ command = 0;
+ }
+ if (button_state == true)
+ {
+
+// printf("%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\r\n",euler[0],euler[1],euler[2],accel_[0],accel_[1],accel_[2],omega[0],omega[1],omega[2]);
+// printf("%d,%d\n\r", GSS_X, GSS_Y);
+// printf("%.3f,%.3f\r\n",velocityA, velocityB); // velocityA or velocityB
+
+ printf("%.3f,%.3f,%d,%d,%.4f,%.4f,%.4f\r\n",velocityA, velocityB, GSS_X, GSS_Y, accel_[0],accel_[1], omega[2]);
+// printf("%.2f,%.2f\r\n",VELOCITY_SPEED_A, VELOCITY_SPEED_B);
+ }
+}
+
+
+void step_command(){
+ led1 = !led1;
+ led2 = !led2;
+ led3 = !led3;
+ button_state = !button_state;
+}
+//IMU
+void SendOpcode(uint8_t Opcode)
+{
+// printf("SendOpcode \r\n");
+ FW[0] = spi_MTI.write(Opcode);
+
+ for(uint8_t i = 0;i<3;i++){// 3 fillword ?
+ FW[i+1] = spi_MTI.write(i);
+ }
+}
+
+//uint8_t ReadProtInfo(){
+// len = 2;
+// cs_MTI = 0;
+// SendOpcode(ProtInfo);//send opcode
+// for(int i = 0;i<len;i++){//read data
+// buffer[i] = spi_MTI.write(0x00);
+// }
+// cs_MTI = 1;
+// if(FW[0]!=0xFA||FW[1]!=0xFF||FW[2]!=0xFF||FW[3]!=0xFF){
+// printf("Error!!\n");
+// }
+// return buffer[1];
+//}
+
+void ConfigureProt(_Bool M,_Bool N,_Bool O,_Bool P)
+{
+// printf("ConfigureProt \r\n");
+ uint8_t config = (M<<3) | (N<<2) | (O<<1) | (P<<0);
+ cs_MTI = 0;
+ SendOpcode(ConfigProt);
+ spi_MTI.write(config);
+ cs_MTI = 1;
+}
+
+void PipeStatus(){
+// printf("PipeStatus \r\n");
+ len = 4;
+ cs_MTI = 0;
+ SendOpcode(PipeStat);//send opcode
+ for(int i = 0;i<len;i++){//read data
+ buffer[i] = spi_MTI.write(0x00);
+ }
+ cs_MTI = 1;
+ notificationSize = buffer[0] | (buffer[1]<<8);
+ measurementSize = buffer[2] | (buffer[3]<<8);
+ //printf("nSize:%d\r\n",notificationSize);
+ //printf("mSize:%d\r\n",measurementSize);
+}
+
+//void NotificationPipe(){
+// cs_MTI = 0;
+// SendOpcode(NotiPipe);//send opcode
+// for(int i = 0;i<notificationSize;i++){//read data
+// buffer[i] = spi_MTI.write(0x00);
+// }
+// cs_MTI = 1;
+//}
+
+void MeasurementPipe(){
+// printf("MeasurementPipe \r\n");
+ cs_MTI = 0;
+ SendOpcode(MeasPipe);//send opcode
+ for(int i = 0;i<measurementSize;i++){//read data
+ buffer[i] = spi_MTI.write(0x00);
+ }
+ cs_MTI = 1;
+}
+
+void ControlPipe(){
+ cs_MTI = 0;
+ SendOpcode(Control);//send opcode
+ for(int i = 0;i<ctrl_len;i++){//read data
+ buffer[i] = spi_MTI.write(ctrlBuf[i]);
+ }
+ cs_MTI = 1;
+}
+
+void ReadData(){
+// printf("ReadData \r\n");
+ PipeStatus();
+ wait_us(100);
+ MeasurementPipe();
+ int len1,len2,len3,data_bytes;
+// printf("Measurement FINISH \r\n");
+// printf("buffer[0] == %d \r\n",buffer[0]);
+ if(buffer[0] == 0x36){
+// printf("buffer \r\n");
+ if(buffer[2]== 0x20&&buffer[3]== 0x30){//Read Euler Angle
+ len1 = buffer[4];
+ data_bytes = len1/3;
+ for(int j=0;j<3;j++){
+ uint32_t temp = (buffer[5+j*data_bytes]<<24) | (buffer[6+j*data_bytes]<<16) | (buffer[7+j*data_bytes]<<8) | (buffer[8+j*data_bytes]);
+ eul[j].data1 = temp;
+ euler[j] = lpf(eul[j].data2, euler[j], 13.0f);
+ }
+ }
+ if(buffer[4+len1+1]== 0x40&&buffer[4+len1+2]== 0x20){
+ len2 = buffer[4+len1+3];
+ data_bytes = len2/3;
+ for(int j=0;j<3;j++){
+ uint32_t temp = (buffer[8+len1+j*data_bytes]<<24) | (buffer[9+len1+j*data_bytes]<<16) | (buffer[10+len1+j*data_bytes]<<8) | (buffer[11+len1+j*data_bytes]);
+ acc[j].data1 = temp;
+ accel[j] = lpf(acc[j].data2, accel[j], 13.0f);
+ }
+ }
+ if(buffer[7+len1+len2+1]== 0x80&&buffer[7+len1+len2+2]==0x20){
+ len3 = buffer[7+len1+len2+3];
+ data_bytes = len3/3;
+ for(int j=0;j<3;j++){
+ uint32_t temp = (buffer[11+len1+len2+j*data_bytes]<<24) | (buffer[12+len1+len2+j*data_bytes]<<16) | (buffer[13+len1+len2+j*data_bytes]<<8) | (buffer[14+len1+len2+j*data_bytes]);
+ gry[j].data1 = temp;
+ omega[j] = lpf(gry[j].data2, omega[j], 13.0f);
+ }
+ }
+
+ }
+ accel_[0] = (accel[0] + sin(euler[1]/180.0f*pi) * GRAVITYACCELERATION) / cos(euler[1]/180.0f*pi) * (-1.0f);//deal with gravity * tilt angle ; *-1 because IMU on robot is 180 degree reverse
+ accel_[1] = (accel[1] - sin(euler[0]/180.0f*pi) * GRAVITYACCELERATION) / cos(euler[0]/180.0f*pi) * (-1.0f);
+ accel_[2] = accel[2];
+}
+
+void MTi2_Init(){
+// printf("Init \r\n");
+ cs_MTI = 1;///???
+ ConfigureProt(1,0,0,0);//Configure DRDY
+}
+
+float lpf(float input, float output_old, float frequency)
+{
+ float output = 0;
+ output = (output_old + frequency * dt * input) / (1 + frequency * dt);
+ return output;
+}
+
+//GSS
+
+uint8_t readRegister(uint8_t addr) {
+ wait_us(10); //tswr
+
+ cs = 0;
+ addr = addr & 0x7F; //Set MSB to 0 to indicate read operation
+
+ spi.write(addr);
+
+ wait_us(35);
+
+ uint8_t data_read = spi.write(0U);
+
+ wait_us(1); //tsclk-ncs
+ cs = 1;
+ wait_us(20); //tsclk-ncs
+ return data_read; //Returns 8-bit data from register
+}
+
+//=========================================================================
+void writeRegister(uint8_t addr, uint8_t data) {
+ cs = 0;
+ addr = addr | 0x80; //Set MSB to 1 to indicate write operation
+
+ spi.write(addr);
+
+ spi.write(data);
+
+ wait_us(25); //tsclk-ncs
+ cs = 1;
+ wait_us(1); //tsclk-ncs
+}
+
+//=========================================================================
+void initializeSensor(void) {
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x55, 0x01);
+ writeRegister(0x50, 0x07);
+ writeRegister(0x7F, 0x0E);
+ writeRegister(0x43, 0x10);
+
+ if (readRegister(0x67) & 0x40)
+ writeRegister(0x48, 0x04);
+ else
+ writeRegister(0x48, 0x02);
+
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x51, 0x7B);
+ writeRegister(0x50, 0x00);
+ writeRegister(0x55, 0x00);
+ writeRegister(0x7F, 0x0E);
+
+ if (readRegister(0x73) == 0x00) {
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x61, 0xAD);
+ writeRegister(0x51, 0x70);
+ writeRegister(0x7F, 0x0E);
+
+ if (readRegister(0x70) <= 28)
+ writeRegister(0x70, readRegister(0x70) + 14);
+ else
+ writeRegister(0x70, readRegister(0x70) + 11);
+
+ writeRegister(0x71, readRegister(0x71) * 45 / 100);
+ }
+
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x61, 0xAD);
+ writeRegister(0x7F, 0x03);
+ writeRegister(0x40, 0x00);
+ writeRegister(0x7F, 0x05);
+ writeRegister(0x41, 0xB3);
+ writeRegister(0x43, 0xF1);
+ writeRegister(0x45, 0x14);
+ writeRegister(0x5B, 0x32);
+ writeRegister(0x5F, 0x34);
+ writeRegister(0x7B, 0x08);
+ writeRegister(0x7F, 0x06);
+ writeRegister(0x44, 0x1B);
+ writeRegister(0x40, 0xBF);
+ writeRegister(0x4E, 0x3F);
+ writeRegister(0x7F, 0x06);
+ writeRegister(0x44, 0x1B);
+ writeRegister(0x40, 0xBF);
+ writeRegister(0x4E, 0x3F);
+ writeRegister(0x7F, 0x08);
+ writeRegister(0x65, 0x20);
+ writeRegister(0x6A, 0x18);
+ writeRegister(0x7F, 0x09);
+ writeRegister(0x4F, 0xAF);
+ writeRegister(0x5F, 0x40);
+ writeRegister(0x48, 0x80);
+ writeRegister(0x49, 0x80);
+ writeRegister(0x57, 0x77);
+ writeRegister(0x60, 0x78);
+ writeRegister(0x61, 0x78);
+ writeRegister(0x62, 0x08);
+ writeRegister(0x63, 0x50);
+ writeRegister(0x7F, 0x0A);
+ writeRegister(0x45, 0x60);
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x4D, 0x11);
+ writeRegister(0x55, 0x80);
+ writeRegister(0x74, 0x21);
+ writeRegister(0x75, 0x1F);
+ writeRegister(0x4A, 0x78);
+ writeRegister(0x4B, 0x78);
+ writeRegister(0x44, 0x08);
+ writeRegister(0x45, 0x50);
+ writeRegister(0x64, 0xFF);
+ writeRegister(0x65, 0x1F);
+ writeRegister(0x7F, 0x14);
+ writeRegister(0x65, 0x67);
+ writeRegister(0x66, 0x08);
+ writeRegister(0x63, 0x70);
+ writeRegister(0x7F, 0x15);
+ writeRegister(0x48, 0x48);
+ writeRegister(0x7F, 0x07);
+ writeRegister(0x41, 0x0D);
+ writeRegister(0x43, 0x14);
+ writeRegister(0x4B, 0x0E);
+ writeRegister(0x45, 0x0F);
+ writeRegister(0x44, 0x42);
+ writeRegister(0x4C, 0x80);
+ writeRegister(0x7F, 0x10);
+ writeRegister(0x5B, 0x02);
+ writeRegister(0x7F, 0x07);
+ writeRegister(0x40, 0x41);
+ writeRegister(0x70, 0x00);
+
+ wait_ms(10);
+
+ writeRegister(0x32, 0x44);
+ writeRegister(0x7F, 0x07);
+ writeRegister(0x40, 0x40);
+ writeRegister(0x7F, 0x06);
+ writeRegister(0x62, 0xF0);
+ writeRegister(0x63, 0x00);
+ writeRegister(0x7F, 0x0D);
+ writeRegister(0x48, 0xC0);
+ writeRegister(0x6F, 0xD5);
+ writeRegister(0x7F, 0x00);
+ writeRegister(0x5B, 0xA0);
+ writeRegister(0x4E, 0xA8);
+ writeRegister(0x5A, 0x50);
+ writeRegister(0x40, 0x80);
+
+ wait_ms(250);
+
+ writeRegister(0x7F, 0x14);
+ writeRegister(0x6F, 0x1C);
+ writeRegister(0x7F, 0x00);
+
+}
+void grabData(void) {
+ static int totalX = 0;
+ static int totalY = 0;
+ uint8_t check = 0;
+ if(button_state == true){
+ check = readRegister(0x02) & 0x80;
+ if (check) {
+ deltaX_low = readRegister(0x03); //Grabs data from the proper registers.
+ deltaX_high = (readRegister(0x04) << 8) & 0xFF00; //Grabs data and shifts it to make space to be combined with lower bits.
+ deltaY_low = readRegister(0x05);
+ deltaY_high = (readRegister(0x06) << 8) & 0xFF00;
+
+ deltaY = deltaX_high | deltaX_low; //Combines the low and high bits.
+ deltaX = deltaY_high | deltaY_low;
+ totalX += deltaX;
+ totalY += deltaY;
+
+ }
+ GSS_X = totalX;
+ GSS_Y = totalY;
+ }
+}
+
+//motor
+void ReadVelocity(){
+ /*
+ The velocity is calculated by follow :
+ velocity = EncoderPosition /Encoder CPR (Counts per round) /gear ratio *2pi /dt
+ unit : rad/sec
+ */
+
+ EncoderPositionA = TIM2->CNT ;
+ EncoderPositionB = TIM3->CNT ;
+ TIM2->CNT = 0;
+ TIM3->CNT = 0;
+ // rad/s
+ velocityA = EncoderPositionA /HALL_RESOLUTION /GEAR_RATIO /dt *60;
+ velocityB = EncoderPositionB /HALL_RESOLUTION /GEAR_RATIO /dt *60;
+ // RPM
+// *velocityA = EncoderPositionA /64.0 /56.0 /dt *60.0;
+// *velocityB = EncoderPositionB /64.0 /56.0 /dt *60.0;
+}
+
+
+void motor_drive(float voltA, float voltB){
+ // Input voltage is in range -12.5V ~ 12.5V
+ if(abs(voltA) <= minimum_volt){
+ if(voltA > 0){ voltA = minimum_volt; }
+ else{ voltA = -minimum_volt; }
+ }
+ if(abs(voltB) <= minimum_volt){
+ if(voltB > 0){ voltB = minimum_volt; }
+ else{ voltB = -minimum_volt; }
+ }
+
+ // Convet volt to pwm
+ uint16_t dutycycleA = (0.5f - 0.5f *voltA /INPUT_VOLTAGE) *uint16_t(TIM1->ARR);
+ uint16_t dutycycleB = (0.5f - 0.5f *voltB /INPUT_VOLTAGE) *uint16_t(TIM1->ARR);
+ TIM1->CCR1 = dutycycleA;
+ TIM1->CCR2 = dutycycleB;
+}
+
+
+void control_speed(){
+ float voltA;
+ float voltB;
+ // if receive 0 command than reset every thing
+ if(VELOCITY_SPEED_A == 0 && VELOCITY_SPEED_B == 0)
+ {
+ velocityA = 0;
+ velocityB = 0;
+ last_voltA = 0;
+ last_voltB = 0;
+ errorA = 0;
+ error_drA = 0;
+ errorB = 0;
+ error_drB = 0;
+ }
+ errorA = (VELOCITY_SPEED_A - velocityA);//(command from TX2 - read from odometry)
+ voltA = last_voltA + 0.4f*errorA - 0.35f*error_drA;
+ error_drA = errorA;
+ last_voltA = voltA;
+ if(abs(voltA) > INPUT_VOLTAGE){
+ if(voltA > 0){voltA = INPUT_VOLTAGE;}
+ else{voltA = -INPUT_VOLTAGE;}
+ }
+
+ errorB = (VELOCITY_SPEED_B - velocityB);
+ voltB = last_voltB + 0.4f*errorB - 0.35f*error_drB;
+ error_drB = errorB;
+ last_voltB = voltB;
+ if(abs(voltB) > INPUT_VOLTAGE){
+ if(voltB > 0){voltB = INPUT_VOLTAGE;}
+ else{voltB = -INPUT_VOLTAGE;}
+ }
+
+ motor_drive(voltA, voltB);
+
+ //printf("%.3f, %.3f, %.3f\r\n",error1, last_error, voltA);
+}
+
+
+void InitEncoder(void) {
+ // Hardware Quadrature Encoder AB for Nucleo F446RE
+ // Output on debug port to host PC @ 9600 baud
+
+ /* Connections
+ PA_0 = Encoder1 A
+ PA_1 = Encoder1 B
+ PB_5 = Encoder2 A
+ PB_4 = Encoder2 B
+ */
+
+ // configure GPIO PA0, PA1, PB5 & PB4 as inputs for Encoder
+ RCC->AHB1ENR |= 0x00000003; // Enable clock for GPIOA & GPIOB
+
+ GPIOA->MODER |= GPIO_MODER_MODER0_1 | GPIO_MODER_MODER1_1 ; // PA0 & PA1 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */
+ GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_0 | GPIO_PUPDR_PUPDR1_0 ; // Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
+ GPIOA->AFR[0] |= 0x00000011 ; // AF1 for PA0 & PA1 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
+ GPIOA->AFR[1] |= 0x00000000 ; // /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
+
+
+ GPIOB->MODER |= GPIO_MODER_MODER4_1 | GPIO_MODER_MODER5_1 ; // PB5 & PB4 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */
+ GPIOB->PUPDR |= GPIO_PUPDR_PUPDR4_0 | GPIO_PUPDR_PUPDR5_0 ; // Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
+ GPIOB->AFR[0] |= 0x00220000 ; // AF2 for PB5 & PB4 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
+ GPIOB->AFR[1] |= 0x00000000 ; // /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
+
+ // configure TIM2 & TIM3 as Encoder input
+ RCC->APB1ENR |= 0x00000003; // Enable clock for TIM2 & TIM3
+
+ TIM2->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1
+ TIM2->SMCR = 0x0003; // SMS='011' (Encoder mode 3) < TIM slave mode control register
+ TIM2->CCMR1 = 0xF1F1; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1
+ TIM2->CCMR2 = 0x0000; // < TIM capture/compare mode register 2
+ TIM2->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register
+ TIM2->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler
+ TIM2->ARR = 0xffffffff; // reload at 0xfffffff < TIM auto-reload register
+
+ TIM2->CNT = 0x0000; //reset the counter before we use it
+
+ TIM3->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1
+ TIM3->SMCR = 0x0003; // SMS='011' (Encoder mode 3) < TIM slave mode control register
+ TIM3->CCMR1 = 0xF1F1; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1
+ TIM3->CCMR2 = 0x0000; // < TIM capture/compare mode register 2
+ TIM3->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register
+ TIM3->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler
+ TIM3->ARR = 0xffffffff; // reload at 0xfffffff < TIM auto-reload register
+
+ TIM3->CNT = 0x0000; //reset the counter before we use it
+}
+
+
+void InitMotor(float pwm_frequency){
+ uint16_t reload = 90000000 /int(pwm_frequency * 1000) - 1;
+ uint16_t stop = 90000000 /int(pwm_frequency * 1000) /2 - 1;
+
+ TIM1->CR1 &= (~0x0001); // Set counter disable in Control Register 1 at initial
+ TIM1->PSC = 1U; // Prescaler system clock (1 + PSC) for Timer 1
+ TIM1->ARR = reload; // Set auto-reload, the pwm freq is (system clk /(1+PSC) /ARR)
+ TIM1->CCMR1 |= 0x0808; // Not necessary
+ TIM1->CCER |= 0x0055; // Enable complementary mode for channel 1, channel 2
+ TIM1->BDTR |= 0x0C00; // Set off-state selection
+ TIM1->EGR = 0x0001; // Update generation
+ TIM1->CR1 |= 0x0001; // Counter enable
+/*
+ pc.printf("CR1 : %d\r",uint16_t(TIM1->CR1));
+ pc.printf("PSC : %d\r",uint16_t(TIM1->PSC));
+ pc.printf("ARR : %d\r",uint16_t(TIM1->ARR));
+ pc.printf("CCMR1 : %x\r",TIM1->CCMR1);
+ pc.printf("CCER : %x\r",TIM1->CCER);
+ pc.printf("BDTR : %x\r",TIM1->BDTR);
+ pc.printf("EGR : %x\r",TIM1->EGR);
+ pc.printf("stop : %d\r",stop);
+*/
+ TIM1->CCR1 = stop;
+ TIM1->CCR2 = stop;
+
+// bool cc1ne_bit = (TIM1->CCER >> 2) & 0x0001;
+// pc.printf("CC1NE bit : %d\r",cc1ne_bit);
+}
+
+
+void init_UART()
+{
+ pc.baud(230400); // baud rate設為9600
+ pc.attach(&RX_ITR, Serial::RxIrq); // Attach a function(RX_ITR) to call whenever a serial interrupt is generated.
+}
+
+
+void RX_ITR()
+{
+ while(pc.readable()) {
+ char uart_read;
+ uart_read = pc.getc();
+ if(uart_read == 115) {
+ RX_flag2 = 1;
+ readcount = 0;
+ getData[5] = 0;
+ }
+ if(RX_flag2 == 1) {
+ getData[readcount] = uart_read;
+ readcount++;
+ if(readcount >= 6 & getData[5] == 101) {
+ readcount = 0;
+ RX_flag2 = 0;
+ ///code for decoding///
+ data_received[0] = (getData[2] << 8) | getData[1];
+ data_received[1] = (getData[4] << 8) | getData[3];
+// VELOCITY_SPEED_A = data_received[0]/100;
+// VELOCITY_SPEED_B = data_received[1]/100;
+ VELOCITY_SPEED_A = (float)data_received[0]/100.0f;
+ VELOCITY_SPEED_B = (float)data_received[1]/100.0f;
+ ///////////////////////
+ }
+ }
+ }
+}
\ No newline at end of file