Host driver/HAL to build a LoRa Picocell Gateway which communicates through USB with a concentrator board based on Semtech SX1308 multi-channel modem and SX1257/SX1255 RF transceivers.
libloragw/src/loragw_hal.c
- Committer:
- dgabino
- Date:
- 2018-04-11
- Revision:
- 0:102b50f941d0
File content as of revision 0:102b50f941d0:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2017 Semtech-Cycleo Description: LoRa concentrator Hardware Abstraction Layer License: Revised BSD License, see LICENSE.TXT file include in the project */ /* -------------------------------------------------------------------------- */ /* --- DEPENDANCIES --------------------------------------------------------- */ #include <stdint.h> /* C99 types */ #include <stdbool.h> /* bool type */ #include <stdio.h> /* printf fprintf */ #include <string.h> /* memcpy */ #include <math.h> /* pow, cell */ #include <inttypes.h> /* format macro constants... */ #include "loragw_reg.h" #include "loragw_mcu.h" #include "loragw_hal.h" #include "loragw_aux.h" #include "loragw_radio.h" /* -------------------------------------------------------------------------- */ /* --- PRIVATE MACROS ------------------------------------------------------- */ #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #if DEBUG_HAL == 1 #define DEBUG_MSG(str) fprintf(stderr, str) #define DEBUG_PRINTF(fmt, args...) fprintf(stderr,"%s:%d: "fmt, __FUNCTION__, __LINE__, args) #define DEBUG_ARRAY(a,b,c) for(a=0;a<b;++a) fprintf(stderr,"%x.",c[a]);fprintf(stderr,"end\n") #define CHECK_NULL(a) if(a==NULL){fprintf(stderr,"%s:%d: ERROR: NULL POINTER AS ARGUMENT\n", __FUNCTION__, __LINE__);return LGW_HAL_ERROR;} #else #define DEBUG_MSG(str) #define DEBUG_PRINTF(fmt, args...) #define DEBUG_ARRAY(a,b,c) for(a=0;a!=0;){} #define CHECK_NULL(a) if(a==NULL){return LGW_HAL_ERROR;} #endif #define IF_HZ_TO_REG(f) (f << 5)/15625 #define SET_PPM_ON(bw,dr) (((bw == BW_125KHZ) && ((dr == DR_LORA_SF11) || (dr == DR_LORA_SF12))) || ((bw == BW_250KHZ) && (dr == DR_LORA_SF12))) #define TRACE() fprintf(stderr, "@ %s %d\n", __FUNCTION__, __LINE__); /* -------------------------------------------------------------------------- */ /* --- PRIVATE CONSTANTS & TYPES -------------------------------------------- */ #define MCU_ARB 0 #define MCU_AGC 1 #define MCU_ARB_FW_BYTE 8192 /* size of the firmware IN BYTES (= twice the number of 14b words) */ #define MCU_AGC_FW_BYTE 8192 /* size of the firmware IN BYTES (= twice the number of 14b words) */ #define FW_VERSION_ADDR 0x20 /* Address of firmware version in data memory */ #define FW_VERSION_CAL 2 /* Expected version of calibration firmware */ #define FW_VERSION_AGC 4 /* Expected version of AGC firmware */ #define FW_VERSION_ARB 1 /* Expected version of arbiter firmware */ #define TX_METADATA_NB 16 #define RX_METADATA_NB 16 #define AGC_CMD_WAIT 16 #define AGC_CMD_ABORT 17 #define MIN_LORA_PREAMBLE 4 #define STD_LORA_PREAMBLE 6 #define MIN_FSK_PREAMBLE 3 #define STD_FSK_PREAMBLE 5 #define TX_START_DELAY 1500 #define RSSI_MULTI_BIAS -35 /* difference between "multi" modem RSSI offset and "stand-alone" modem RSSI offset */ #define RSSI_FSK_POLY_0 60 /* polynomiam coefficients to linearize FSK RSSI */ #define RSSI_FSK_POLY_1 1.5351 #define RSSI_FSK_POLY_2 0.003 #define LGW_RF_RX_BANDWIDTH_125KHZ 925000 /* for 125KHz channels */ #define LGW_RF_RX_BANDWIDTH_250KHZ 1000000 /* for 250KHz channels */ #define LGW_RF_RX_BANDWIDTH_500KHZ 1100000 /* for 500KHz channels */ /* constant arrays defining hardware capability */ const uint8_t ifmod_config[LGW_IF_CHAIN_NB] = LGW_IFMODEM_CONFIG; /* Version string, used to identify the library version/options once compiled */ const char lgw_version_string[] = "Version: " LIBLORAGW_VERSION ";"; /* -------------------------------------------------------------------------- */ /* --- PRIVATE VARIABLES ---------------------------------------------------- */ #include "arb_fw.var" /* external definition of the variable */ #include "agc_fw.var" /* external definition of the variable */ #include "cal_fw.var" /* external definition of the variable */ #include "cal_fw5-12.var" /* external definition of the variable */ /* The following static variables are the configuration set that the user can modify using rxrf_setconf, rxif_setconf and txgain_setconf functions. The functions _start and _send then use that set to configure the hardware. Parameters validity and coherency is verified by the _setconf functions and the _start and _send functions assume they are valid. */ static bool lgw_is_started = false; static bool rf_enable[LGW_RF_CHAIN_NB]; static uint32_t rf_rx_freq[LGW_RF_CHAIN_NB]; /* absolute, in Hz */ static float rf_rssi_offset[LGW_RF_CHAIN_NB]; static bool rf_tx_enable[LGW_RF_CHAIN_NB]; static enum lgw_radio_type_e rf_radio_type[LGW_RF_CHAIN_NB]; static bool if_enable[LGW_IF_CHAIN_NB]; static bool if_rf_chain[LGW_IF_CHAIN_NB]; /* for each IF, 0 -> radio A, 1 -> radio B */ static int32_t if_freq[LGW_IF_CHAIN_NB]; /* relative to radio frequency, +/- in Hz */ static uint8_t lora_multi_sfmask[LGW_MULTI_NB]; /* enables SF for LoRa 'multi' modems */ static uint8_t lora_rx_bw; /* bandwidth setting for LoRa standalone modem */ static uint8_t lora_rx_sf; /* spreading factor setting for LoRa standalone modem */ static bool lora_rx_ppm_offset; static uint8_t fsk_rx_bw; /* bandwidth setting of FSK modem */ static uint32_t fsk_rx_dr; /* FSK modem datarate in bauds */ static uint8_t fsk_sync_word_size = 3; /* default number of bytes for FSK sync word */ static uint64_t fsk_sync_word = 0xC194C1; /* default FSK sync word (ALIGNED RIGHT, MSbit first) */ static bool lorawan_public = false; static uint8_t rf_clkout = 0; static struct lgw_tx_gain_lut_s txgain_lut = { .size = 2, .lut[0] = { .dig_gain = 0, .pa_gain = 2, .dac_gain = 3, .mix_gain = 10, .rf_power = 14 }, .lut[1] = { .dig_gain = 0, .pa_gain = 3, .dac_gain = 3, .mix_gain = 14, .rf_power = 27 } }; /* TX I/Q imbalance coefficients for mixer gain = 8 to 15 */ static int8_t cal_offset_a_i[8]; /* TX I offset for radio A */ static int8_t cal_offset_a_q[8]; /* TX Q offset for radio A */ static int8_t cal_offset_b_i[8]; /* TX I offset for radio B */ static int8_t cal_offset_b_q[8]; /* TX Q offset for radio B */ /* -------------------------------------------------------------------------- */ /* --- PRIVATE FUNCTIONS DECLARATION ---------------------------------------- */ int load_firmware(uint8_t target, uint8_t *firmware, uint16_t size); void lgw_constant_adjust(void); int32_t lgw_sf_getval(int x); int32_t lgw_bw_getval(int x); int lgw_calibrate_sx125x(uint8_t *cal_fw, uint8_t idx_start, uint8_t idx_nb); /* -------------------------------------------------------------------------- */ /* --- PRIVATE FUNCTIONS DEFINITION ----------------------------------------- */ /* size is the firmware size in bytes (not 14b words) */ int load_firmware(uint8_t target, uint8_t *firmware, uint16_t size) { int reg_rst; int reg_sel; uint8_t fw_check[8192]; int32_t dummy; /* check parameters */ CHECK_NULL(firmware); if (target == MCU_ARB) { if (size != MCU_ARB_FW_BYTE) { DEBUG_MSG("ERROR: NOT A VALID SIZE FOR MCU ARG FIRMWARE\n"); return -1; } reg_rst = LGW_MCU_RST_0; reg_sel = LGW_MCU_SELECT_MUX_0; } else if (target == MCU_AGC) { if (size != MCU_AGC_FW_BYTE) { DEBUG_MSG("ERROR: NOT A VALID SIZE FOR MCU AGC FIRMWARE\n"); return -1; } reg_rst = LGW_MCU_RST_1; reg_sel = LGW_MCU_SELECT_MUX_1; } else { DEBUG_MSG("ERROR: NOT A VALID TARGET FOR LOADING FIRMWARE\n"); return -1; } /* reset the targeted MCU */ lgw_reg_w(reg_rst, 1); /* set mux to access MCU program RAM and set address to 0 */ lgw_reg_w(reg_sel, 0); lgw_reg_w(LGW_MCU_PROM_ADDR, 0); /* write the program in one burst */ lgw_reg_wb(LGW_MCU_PROM_DATA, firmware, size); /* Read back firmware code for check */ lgw_reg_r( LGW_MCU_PROM_DATA, &dummy ); /* bug workaround */ lgw_reg_rb( LGW_MCU_PROM_DATA, fw_check, size ); if (memcmp(firmware, fw_check, size) != 0) { return -1; } /* give back control of the MCU program ram to the MCU */ lgw_reg_w(reg_sel, 1); return 0; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ void lgw_constant_adjust(void) { /* I/Q path setup */ // lgw_reg_w(LGW_RX_INVERT_IQ,0); /* default 0 */ // lgw_reg_w(LGW_MODEM_INVERT_IQ,1); /* default 1 */ // lgw_reg_w(LGW_CHIRP_INVERT_RX,1); /* default 1 */ // lgw_reg_w(LGW_RX_EDGE_SELECT,0); /* default 0 */ // lgw_reg_w(LGW_MBWSSF_MODEM_INVERT_IQ,0); /* default 0 */ // lgw_reg_w(LGW_DC_NOTCH_EN,1); /* default 1 */ lgw_reg_w(LGW_RSSI_BB_FILTER_ALPHA, 6); /* default 7 */ lgw_reg_w(LGW_RSSI_DEC_FILTER_ALPHA, 7); /* default 5 */ lgw_reg_w(LGW_RSSI_CHANN_FILTER_ALPHA, 7); /* default 8 */ lgw_reg_w(LGW_RSSI_BB_DEFAULT_VALUE, 23); /* default 32 */ lgw_reg_w(LGW_RSSI_CHANN_DEFAULT_VALUE, 85); /* default 100 */ lgw_reg_w(LGW_RSSI_DEC_DEFAULT_VALUE, 66); /* default 100 */ lgw_reg_w(LGW_DEC_GAIN_OFFSET, 7); /* default 8 */ lgw_reg_w(LGW_CHAN_GAIN_OFFSET, 6); /* default 7 */ /* Correlator setup */ // lgw_reg_w(LGW_CORR_DETECT_EN,126); /* default 126 */ // lgw_reg_w(LGW_CORR_NUM_SAME_PEAK,4); /* default 4 */ // lgw_reg_w(LGW_CORR_MAC_GAIN,5); /* default 5 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF6,0); /* default 0 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF7,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF8,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF9,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF10,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF11,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF12,1); /* default 1 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF6,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF7,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF8,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF9,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF10,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF11,4); /* default 4 */ // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF12,4); /* default 4 */ /* LoRa 'multi' demodulators setup */ // lgw_reg_w(LGW_PREAMBLE_SYMB1_NB,10); /* default 10 */ // lgw_reg_w(LGW_FREQ_TO_TIME_INVERT,29); /* default 29 */ // lgw_reg_w(LGW_FRAME_SYNCH_GAIN,1); /* default 1 */ // lgw_reg_w(LGW_SYNCH_DETECT_TH,1); /* default 1 */ // lgw_reg_w(LGW_ZERO_PAD,0); /* default 0 */ lgw_reg_w(LGW_SNR_AVG_CST, 3); /* default 2 */ if (lorawan_public) { /* LoRa network */ lgw_reg_w(LGW_FRAME_SYNCH_PEAK1_POS, 3); /* default 1 */ lgw_reg_w(LGW_FRAME_SYNCH_PEAK2_POS, 4); /* default 2 */ } else { /* private network */ lgw_reg_w(LGW_FRAME_SYNCH_PEAK1_POS, 1); /* default 1 */ lgw_reg_w(LGW_FRAME_SYNCH_PEAK2_POS, 2); /* default 2 */ } // lgw_reg_w(LGW_PREAMBLE_FINE_TIMING_GAIN,1); /* default 1 */ // lgw_reg_w(LGW_ONLY_CRC_EN,1); /* default 1 */ // lgw_reg_w(LGW_PAYLOAD_FINE_TIMING_GAIN,2); /* default 2 */ // lgw_reg_w(LGW_TRACKING_INTEGRAL,0); /* default 0 */ // lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_RDX8,0); /* default 0 */ // lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_SF12_RDX4,4092); /* default 4092 */ // lgw_reg_w(LGW_MAX_PAYLOAD_LEN,255); /* default 255 */ /* LoRa standalone 'MBWSSF' demodulator setup */ // lgw_reg_w(LGW_MBWSSF_PREAMBLE_SYMB1_NB,10); /* default 10 */ // lgw_reg_w(LGW_MBWSSF_FREQ_TO_TIME_INVERT,29); /* default 29 */ // lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_GAIN,1); /* default 1 */ // lgw_reg_w(LGW_MBWSSF_SYNCH_DETECT_TH,1); /* default 1 */ // lgw_reg_w(LGW_MBWSSF_ZERO_PAD,0); /* default 0 */ if (lorawan_public) { /* LoRa network */ lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK1_POS, 3); /* default 1 */ lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK2_POS, 4); /* default 2 */ } else { lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK1_POS, 1); /* default 1 */ lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK2_POS, 2); /* default 2 */ } // lgw_reg_w(LGW_MBWSSF_ONLY_CRC_EN,1); /* default 1 */ // lgw_reg_w(LGW_MBWSSF_PAYLOAD_FINE_TIMING_GAIN,2); /* default 2 */ // lgw_reg_w(LGW_MBWSSF_PREAMBLE_FINE_TIMING_GAIN,1); /* default 1 */ // lgw_reg_w(LGW_MBWSSF_TRACKING_INTEGRAL,0); /* default 0 */ // lgw_reg_w(LGW_MBWSSF_AGC_FREEZE_ON_DETECT,1); /* default 1 */ /* Improvement of reference clock frequency error tolerance */ lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_RDX4, 1); /* default 0 */ lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_SF12_RDX4, 4094); /* default 4092 */ lgw_reg_w(LGW_CORR_MAC_GAIN, 7); /* default 5 */ /* FSK datapath setup */ lgw_reg_w(LGW_FSK_RX_INVERT, 1); /* default 0 */ lgw_reg_w(LGW_FSK_MODEM_INVERT_IQ, 1); /* default 0 */ /* FSK demodulator setup */ lgw_reg_w(LGW_FSK_RSSI_LENGTH, 4); /* default 0 */ lgw_reg_w(LGW_FSK_PKT_MODE, 1); /* variable length, default 0 */ lgw_reg_w(LGW_FSK_CRC_EN, 1); /* default 0 */ lgw_reg_w(LGW_FSK_DCFREE_ENC, 2); /* default 0 */ // lgw_reg_w(LGW_FSK_CRC_IBM,0); /* default 0 */ lgw_reg_w(LGW_FSK_ERROR_OSR_TOL, 10); /* default 0 */ lgw_reg_w(LGW_FSK_PKT_LENGTH, 255); /* max packet length in variable length mode */ // lgw_reg_w(LGW_FSK_NODE_ADRS,0); /* default 0 */ // lgw_reg_w(LGW_FSK_BROADCAST,0); /* default 0 */ // lgw_reg_w(LGW_FSK_AUTO_AFC_ON,0); /* default 0 */ lgw_reg_w(LGW_FSK_PATTERN_TIMEOUT_CFG, 128); /* sync timeout (allow 8 bytes preamble + 8 bytes sync word, default 0 */ /* TX general parameters */ lgw_reg_w(LGW_TX_START_DELAY, TX_START_DELAY); /* default 0 */ /* TX LoRa */ // lgw_reg_w(LGW_TX_MODE,0); /* default 0 */ lgw_reg_w(LGW_TX_SWAP_IQ, 1); /* "normal" polarity; default 0 */ if (lorawan_public) { /* LoRa network */ lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK1_POS, 3); /* default 1 */ lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK2_POS, 4); /* default 2 */ } else { /* Private network */ lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK1_POS, 1); /* default 1 */ lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK2_POS, 2); /* default 2 */ } /* TX FSK */ // lgw_reg_w(LGW_FSK_TX_GAUSSIAN_EN,1); /* default 1 */ lgw_reg_w(LGW_FSK_TX_GAUSSIAN_SELECT_BT, 2); /* Gaussian filter always on TX, default 0 */ // lgw_reg_w(LGW_FSK_TX_PATTERN_EN,1); /* default 1 */ // lgw_reg_w(LGW_FSK_TX_PREAMBLE_SEQ,0); /* default 0 */ return; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int32_t lgw_bw_getval(int x) { switch (x) { case BW_500KHZ: return 500000; case BW_250KHZ: return 250000; case BW_125KHZ: return 125000; case BW_62K5HZ: return 62500; case BW_31K2HZ: return 31200; case BW_15K6HZ: return 15600; case BW_7K8HZ : return 7800; default: return -1; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int32_t lgw_sf_getval(int x) { switch (x) { case DR_LORA_SF7: return 7; case DR_LORA_SF8: return 8; case DR_LORA_SF9: return 9; case DR_LORA_SF10: return 10; case DR_LORA_SF11: return 11; case DR_LORA_SF12: return 12; default: return -1; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_calibrate_sx125x(uint8_t *cal_fw, uint8_t idx_start, uint8_t idx_nb) { int i, err; int32_t read_val; uint8_t fw_version; uint8_t cal_cmd; uint16_t cal_time; uint8_t cal_status; /* check parameters */ if (cal_fw == NULL) { DEBUG_MSG("ERROR: invalid parameter, null pointer\n"); return LGW_HAL_ERROR; } if ((idx_start < 5) || (idx_start > 15)) { DEBUG_MSG("ERROR: invalid parameter, calibration offset index start must be [5-15]\n"); return LGW_HAL_ERROR; } if (idx_nb > 8) { DEBUG_MSG("ERROR: invalid parameter, calibration offset index number must be <= 8\n"); return LGW_HAL_ERROR; } /* reset the registers (also shuts the radios down) */ lgw_soft_reset(); /* gate clocks */ lgw_reg_w(LGW_GLOBAL_EN, 0); lgw_reg_w(LGW_CLK32M_EN, 0); #if 0 /* switch on and reset the radios (also starts the 32 MHz XTAL) */ lgw_reg_w(LGW_RADIO_A_EN, 1); lgw_reg_w(LGW_RADIO_B_EN, 1); wait_ms(500); /* TODO: optimize */ #endif lgw_reg_w(LGW_RADIO_RST, 1); wait_ms(5); lgw_reg_w(LGW_RADIO_RST, 0); /* setup the radios */ err = lgw_setup_sx125x(0, rf_clkout, rf_enable[0], rf_radio_type[0], rf_rx_freq[0]); if (err != 0) { DEBUG_MSG("ERROR: Failed to setup sx125x radio for RF chain 0\n"); return LGW_HAL_ERROR; } err = lgw_setup_sx125x(1, rf_clkout, rf_enable[1], rf_radio_type[1], rf_rx_freq[1]); if (err != 0) { DEBUG_MSG("ERROR: Failed to setup sx125x radio for RF chain 0\n"); return LGW_HAL_ERROR; } /* Enable clocks */ lgw_reg_w(LGW_GLOBAL_EN, 1); lgw_reg_w(LGW_CLK32M_EN, 1); /* GPIOs table : DGPIO0 -> N/A DGPIO1 -> N/A DGPIO2 -> N/A DGPIO3 -> TX digital filter ON DGPIO4 -> TX ON */ /* select calibration command */ cal_cmd = 0; cal_cmd |= rf_enable[0] ? 0x01 : 0x00; /* Bit 0: Calibrate Rx IQ mismatch compensation on radio A */ cal_cmd |= rf_enable[1] ? 0x02 : 0x00; /* Bit 1: Calibrate Rx IQ mismatch compensation on radio B */ cal_cmd |= (rf_enable[0] && rf_tx_enable[0]) ? 0x04 : 0x00; /* Bit 2: Calibrate Tx DC offset on radio A */ cal_cmd |= (rf_enable[1] && rf_tx_enable[1]) ? 0x08 : 0x00; /* Bit 3: Calibrate Tx DC offset on radio B */ cal_cmd |= 0x10; /* Bit 4: 0: calibrate with DAC gain=2, 1: with DAC gain=3 (use 3) */ switch (rf_radio_type[0]) { /* we assume that there is only one radio type on the board */ case LGW_RADIO_TYPE_SX1255: cal_cmd |= 0x20; /* Bit 5: 0: SX1257, 1: SX1255 */ break; case LGW_RADIO_TYPE_SX1257: cal_cmd |= 0x00; /* Bit 5: 0: SX1257, 1: SX1255 */ break; default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d FOR RADIO TYPE\n", rf_radio_type[0]); break; } cal_cmd |= 0x00; /* Bit 6-7: Board type 0: ref, 1: FPGA, 3: board X */ cal_time = 2300; /* measured between 2.1 and 2.2 sec, because 1 TX only */ /* Load the calibration firmware */ load_firmware(MCU_AGC, cal_fw, MCU_AGC_FW_BYTE); lgw_reg_w(LGW_FORCE_HOST_RADIO_CTRL, 0); /* gives to AGC MCU the control of the radios */ lgw_reg_w(LGW_RADIO_SELECT, cal_cmd); /* send calibration configuration word */ lgw_reg_w(LGW_MCU_RST_1, 0); /* Check firmware version */ lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, FW_VERSION_ADDR); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); fw_version = (uint8_t)read_val; if (fw_version != FW_VERSION_CAL) { return LGW_HAL_ERROR; } lgw_reg_w(LGW_PAGE_REG, 3); /* Calibration will start on this condition as soon as MCU can talk to concentrator registers */ lgw_reg_w(LGW_EMERGENCY_FORCE_HOST_CTRL, 0); /* Give control of concentrator registers to MCU */ /* Wait for calibration to end */ DEBUG_PRINTF("Note: calibration started (time: %u ms)\n", cal_time); wait_ms(cal_time); /* Wait for end of calibration */ lgw_reg_w(LGW_EMERGENCY_FORCE_HOST_CTRL, 1); /* Take back control */ /* Get calibration status */ lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); cal_status = (uint8_t)read_val; /* bit 7: calibration finished bit 0: could access SX1301 registers bit 1: could access radio A registers bit 2: could access radio B registers bit 3: radio A RX image rejection successful bit 4: radio B RX image rejection successful bit 5: radio A TX DC Offset correction successful bit 6: radio B TX DC Offset correction successful */ if ((cal_status & 0x81) != 0x81) { DEBUG_PRINTF("ERROR: CALIBRATION FAILURE (STATUS = 0x%X)\n", cal_status); return LGW_HAL_ERROR; } else { DEBUG_PRINTF("Note: calibration finished (status = 0x%X)\n", cal_status); } if (rf_enable[0] && ((cal_status & 0x02) == 0)) { DEBUG_MSG("ERROR: calibration could not access radio A\n"); return LGW_HAL_ERROR; } if (rf_enable[1] && ((cal_status & 0x04) == 0)) { DEBUG_MSG("ERROR: calibration could not access radio B\n"); return LGW_HAL_ERROR; } if (rf_enable[0] && ((cal_status & 0x08) == 0)) { DEBUG_MSG("WARNING: problem in calibration of radio A for image rejection\n"); } if (rf_enable[1] && ((cal_status & 0x10) == 0)) { DEBUG_MSG("WARNING: problem in calibration of radio B for image rejection\n"); } if (rf_enable[0] && rf_tx_enable[0] && ((cal_status & 0x20) == 0)) { DEBUG_MSG("WARNING: problem in calibration of radio A for TX DC offset\n"); } if (rf_enable[1] && rf_tx_enable[1] && ((cal_status & 0x40) == 0)) { DEBUG_MSG("WARNING: problem in calibration of radio B for TX DC offset\n"); } /* Get TX DC offset values */ for(i = 0; i < (int)idx_nb; ++i) { lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xA0 + i); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); cal_offset_a_i[i] = (int8_t)read_val; lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xA8 + i); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); cal_offset_a_q[i] = (int8_t)read_val; lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xB0 + i); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); cal_offset_b_i[i] = (int8_t)read_val; lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xB8 + i); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); cal_offset_b_q[i] = (int8_t)read_val; DEBUG_PRINTF("calibration a_i = %d\n", cal_offset_a_i[i]); } /* Require MCU to capture calibration values */ lgw_mcu_commit_radio_calibration(idx_start, idx_nb); return LGW_HAL_SUCCESS; } /* -------------------------------------------------------------------------- */ /* --- PUBLIC FUNCTIONS DEFINITION ------------------------------------------ */ int lgw_board_setconf(struct lgw_conf_board_s conf) { /* check if the concentrator is running */ if (lgw_is_started == true) { DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n"); return LGW_HAL_ERROR; } /* set internal config according to parameters */ lorawan_public = conf.lorawan_public; rf_clkout = conf.clksrc; DEBUG_PRINTF("Note: board configuration; lorawan_public:%d, clksrc:%d\n", lorawan_public, rf_clkout); /* send configuration to concentrator MCU */ return lgw_mcu_board_setconf(conf); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_rxrf_setconf(uint8_t rf_chain, struct lgw_conf_rxrf_s conf) { /* check if the concentrator is running */ if (lgw_is_started == true) { DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n"); return LGW_HAL_ERROR; } /* check input range (segfault prevention) */ if (rf_chain >= LGW_RF_CHAIN_NB) { DEBUG_MSG("ERROR: NOT A VALID RF_CHAIN NUMBER\n"); return LGW_HAL_ERROR; } /* check if radio type is supported */ if ((conf.type != LGW_RADIO_TYPE_SX1255) && (conf.type != LGW_RADIO_TYPE_SX1257)) { DEBUG_MSG("ERROR: NOT A VALID RADIO TYPE\n"); return LGW_HAL_ERROR; } /* set internal config according to parameters */ rf_enable[rf_chain] = conf.enable; rf_rx_freq[rf_chain] = conf.freq_hz; rf_rssi_offset[rf_chain] = conf.rssi_offset; rf_radio_type[rf_chain] = conf.type; rf_tx_enable[rf_chain] = conf.tx_enable; DEBUG_PRINTF("Note: rf_chain %d configuration; en:%d freq:%d rssi_offset:%f radio_type:%d tx_enable:%d\n", rf_chain, rf_enable [rf_chain], rf_rx_freq[rf_chain], rf_rssi_offset[rf_chain], rf_radio_type[rf_chain], rf_tx_enable[rf_chain]); /* send configuration to concentrator MCU */ return lgw_mcu_rxrf_setconf(rf_chain, conf); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_rxif_setconf(uint8_t if_chain, struct lgw_conf_rxif_s conf) { int32_t bw_hz; uint32_t rf_rx_bandwidth; /* check if the concentrator is running */ if (lgw_is_started == true) { DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n"); return LGW_HAL_ERROR; } /* check input range (segfault prevention) */ if (if_chain >= LGW_IF_CHAIN_NB) { DEBUG_PRINTF("ERROR: %d NOT A VALID IF_CHAIN NUMBER\n", if_chain); return LGW_HAL_ERROR; } /* if chain is disabled, don't care about most parameters */ if (conf.enable == false) { if_enable[if_chain] = false; if_freq[if_chain] = 0; DEBUG_PRINTF("Note: if_chain %d disabled\n", if_chain); return LGW_HAL_SUCCESS; } /* check 'general' parameters */ if (ifmod_config[if_chain] == IF_UNDEFINED) { DEBUG_PRINTF("ERROR: IF CHAIN %d NOT CONFIGURABLE\n", if_chain); } if (conf.rf_chain >= LGW_RF_CHAIN_NB) { DEBUG_MSG("ERROR: INVALID RF_CHAIN TO ASSOCIATE WITH A LORA_STD IF CHAIN\n"); return LGW_HAL_ERROR; } switch (conf.bandwidth) { case BW_250KHZ: rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_250KHZ; break; case BW_500KHZ: rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_500KHZ; break; default: rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_125KHZ; break; } bw_hz = lgw_bw_getval(conf.bandwidth); if ((conf.freq_hz + ((bw_hz == -1) ? LGW_REF_BW : bw_hz) / 2) > ((int32_t)rf_rx_bandwidth / 2)) { DEBUG_PRINTF("ERROR: IF FREQUENCY %d TOO HIGH\n", conf.freq_hz); return LGW_HAL_ERROR; } else if ((conf.freq_hz - ((bw_hz == -1) ? LGW_REF_BW : bw_hz) / 2) < -((int32_t)rf_rx_bandwidth / 2)) { DEBUG_PRINTF("ERROR: IF FREQUENCY %d TOO LOW\n", conf.freq_hz); return LGW_HAL_ERROR; } /* check parameters according to the type of IF chain + modem, fill default if necessary, and commit configuration if everything is OK */ switch (ifmod_config[if_chain]) { case IF_LORA_STD: /* fill default parameters if needed */ if (conf.bandwidth == BW_UNDEFINED) { conf.bandwidth = BW_250KHZ; } if (conf.datarate == DR_UNDEFINED) { conf.datarate = DR_LORA_SF9; } /* check BW & DR */ if (!IS_LORA_BW(conf.bandwidth)) { DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA_STD IF CHAIN\n"); return LGW_HAL_ERROR; } if (!IS_LORA_STD_DR(conf.datarate)) { DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY LORA_STD IF CHAIN\n"); return LGW_HAL_ERROR; } /* set internal configuration */ if_enable[if_chain] = conf.enable; if_rf_chain[if_chain] = conf.rf_chain; if_freq[if_chain] = conf.freq_hz; lora_rx_bw = conf.bandwidth; lora_rx_sf = (uint8_t)(DR_LORA_MULTI & conf.datarate); /* filter SF out of the 7-12 range */ if (SET_PPM_ON(conf.bandwidth, conf.datarate)) { lora_rx_ppm_offset = true; } else { lora_rx_ppm_offset = false; } DEBUG_PRINTF("Note: LoRa 'std' if_chain %d configuration; en:%d freq:%d bw:%d dr:%d\n", if_chain, if_enable[if_chain], if_freq[if_chain], lora_rx_bw, lora_rx_sf); break; case IF_LORA_MULTI: /* fill default parameters if needed */ if (conf.bandwidth == BW_UNDEFINED) { conf.bandwidth = BW_125KHZ; } if (conf.datarate == DR_UNDEFINED) { conf.datarate = DR_LORA_MULTI; } /* check BW & DR */ if (conf.bandwidth != BW_125KHZ) { DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA_MULTI IF CHAIN\n"); return LGW_HAL_ERROR; } if (!IS_LORA_MULTI_DR(conf.datarate)) { DEBUG_MSG("ERROR: DATARATE(S) NOT SUPPORTED BY LORA_MULTI IF CHAIN\n"); return LGW_HAL_ERROR; } /* set internal configuration */ if_enable[if_chain] = conf.enable; if_rf_chain[if_chain] = conf.rf_chain; if_freq[if_chain] = conf.freq_hz; lora_multi_sfmask[if_chain] = (uint8_t)(DR_LORA_MULTI & conf.datarate); /* filter SF out of the 7-12 range */ DEBUG_PRINTF("Note: LoRa 'multi' if_chain %d configuration; en:%d freq:%d SF_mask:0x%02x\n", if_chain, if_enable[if_chain], if_freq[if_chain], lora_multi_sfmask[if_chain]); break; case IF_FSK_STD: /* fill default parameters if needed */ if (conf.bandwidth == BW_UNDEFINED) { conf.bandwidth = BW_250KHZ; } if (conf.datarate == DR_UNDEFINED) { conf.datarate = 64000; /* default datarate */ } /* check BW & DR */ if(!IS_FSK_BW(conf.bandwidth)) { DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY FSK IF CHAIN\n"); return LGW_HAL_ERROR; } if(!IS_FSK_DR(conf.datarate)) { DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY FSK IF CHAIN\n"); return LGW_HAL_ERROR; } /* set internal configuration */ if_enable[if_chain] = conf.enable; if_rf_chain[if_chain] = conf.rf_chain; if_freq[if_chain] = conf.freq_hz; fsk_rx_bw = conf.bandwidth; fsk_rx_dr = conf.datarate; if (conf.sync_word > 0) { fsk_sync_word_size = conf.sync_word_size; fsk_sync_word = conf.sync_word; } DEBUG_PRINTF("Note: FSK if_chain %d configuration; en:%d freq:%d bw:%u dr:%u (%u real dr) sync:0x%0*" PRIx64 "\n", if_chain, if_enable[if_chain], if_freq[if_chain], fsk_rx_bw, fsk_rx_dr, LGW_XTAL_FREQU / (LGW_XTAL_FREQU / fsk_rx_dr), 2 * fsk_sync_word_size, fsk_sync_word); break; default: DEBUG_PRINTF("ERROR: IF CHAIN %d TYPE NOT SUPPORTED\n", if_chain); return LGW_HAL_ERROR; } /* send configuration to concentrator MCU */ return lgw_mcu_rxif_setconf(if_chain, conf); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_txgain_setconf(struct lgw_tx_gain_lut_s *conf) { int i; /* Check LUT size */ if ((conf->size < 1) || (conf->size > TX_GAIN_LUT_SIZE_MAX)) { DEBUG_PRINTF("ERROR: TX gain LUT must have at least one entry and maximum %d entries\n", TX_GAIN_LUT_SIZE_MAX); return LGW_HAL_ERROR; } txgain_lut.size = conf->size; for (i = 0; i < txgain_lut.size; i++) { /* Check gain range */ if (conf->lut[i].dig_gain > 3) { DEBUG_MSG("ERROR: TX gain LUT: SX1301 digital gain must be between 0 and 3\n"); return LGW_HAL_ERROR; } if (conf->lut[i].dac_gain != 3) { DEBUG_MSG("ERROR: TX gain LUT: SX1257 DAC gains != 3 are not supported\n"); return LGW_HAL_ERROR; } if (conf->lut[i].mix_gain > 15) { DEBUG_MSG("ERROR: TX gain LUT: SX1257 mixer gain must not exceed 15\n"); return LGW_HAL_ERROR; } if (conf->lut[i].pa_gain > 3) { DEBUG_MSG("ERROR: TX gain LUT: External PA gain must not exceed 3\n"); return LGW_HAL_ERROR; } /* Set internal LUT */ txgain_lut.lut[i].dig_gain = conf->lut[i].dig_gain; txgain_lut.lut[i].dac_gain = conf->lut[i].dac_gain; txgain_lut.lut[i].mix_gain = conf->lut[i].mix_gain; txgain_lut.lut[i].pa_gain = conf->lut[i].pa_gain; txgain_lut.lut[i].rf_power = conf->lut[i].rf_power; } /* send configuration to concentrator MCU */ return lgw_mcu_txgain_setconf(conf); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_start(void) { int i, err; unsigned x; uint8_t radio_select; int32_t read_val; uint8_t load_val; uint8_t fw_version; uint64_t fsk_sync_word_reg; if (lgw_is_started == true) { DEBUG_MSG("Note: LoRa concentrator already started, restarting it now\n"); } /* Calibrate radios */ err = lgw_calibrate_sx125x(callow_firmware, 5, 8); if (err != LGW_HAL_SUCCESS) { DEBUG_MSG("ERROR: Failed to calibrate sx125x radios (5-12)\n"); return LGW_HAL_ERROR; } wait_ms(5); err = lgw_calibrate_sx125x(cal_firmware, 8, 8); if (err != LGW_HAL_SUCCESS) { DEBUG_MSG("ERROR: Failed to calibrate sx125x radios (8-15)\n"); return LGW_HAL_ERROR; } /* RX and TX packets signalling through GPIOs */ lgw_reg_w(LGW_GPIO_MODE, 31); /* Set all GPIOs as output */ lgw_reg_w(LGW_GPIO_SELECT_OUTPUT, 0); /* load adjusted parameters */ lgw_constant_adjust(); /* Sanity check for RX frequency */ if (rf_rx_freq[0] == 0) { DEBUG_MSG("ERROR: wrong configuration, rf_rx_freq[0] is not set\n"); return LGW_HAL_ERROR; } /* Freq-to-time-drift calculation */ x = 4096000000 / (rf_rx_freq[0] >> 1); /* dividend: (4*2048*1000000) >> 1, rescaled to avoid 32b overflow */ x = ( x > 63 ) ? 63 : x; /* saturation */ lgw_reg_w(LGW_FREQ_TO_TIME_DRIFT, x); /* default 9 */ x = 4096000000 / (rf_rx_freq[0] >> 3); /* dividend: (16*2048*1000000) >> 3, rescaled to avoid 32b overflow */ x = ( x > 63 ) ? 63 : x; /* saturation */ lgw_reg_w(LGW_MBWSSF_FREQ_TO_TIME_DRIFT, x); /* default 36 */ /* configure LoRa 'multi' demodulators aka. LoRa 'sensor' channels (IF0-3) */ radio_select = 0; /* IF mapping to radio A/B (per bit, 0=A, 1=B) */ for(i = 0; i < LGW_MULTI_NB; ++i) { radio_select += (if_rf_chain[i] == 1 ? 1 << i : 0); /* transform bool array into binary word */ } /* lgw_reg_w(LGW_RADIO_SELECT, radio_select); LGW_RADIO_SELECT is used for communication with the firmware, "radio_select" will be loaded in LGW_RADIO_SELECT at the end of start procedure. */ lgw_reg_w(LGW_IF_FREQ_0, IF_HZ_TO_REG(if_freq[0])); /* default -384 */ lgw_reg_w(LGW_IF_FREQ_1, IF_HZ_TO_REG(if_freq[1])); /* default -128 */ lgw_reg_w(LGW_IF_FREQ_2, IF_HZ_TO_REG(if_freq[2])); /* default 128 */ lgw_reg_w(LGW_IF_FREQ_3, IF_HZ_TO_REG(if_freq[3])); /* default 384 */ lgw_reg_w(LGW_IF_FREQ_4, IF_HZ_TO_REG(if_freq[4])); /* default -384 */ lgw_reg_w(LGW_IF_FREQ_5, IF_HZ_TO_REG(if_freq[5])); /* default -128 */ lgw_reg_w(LGW_IF_FREQ_6, IF_HZ_TO_REG(if_freq[6])); /* default 128 */ lgw_reg_w(LGW_IF_FREQ_7, IF_HZ_TO_REG(if_freq[7])); /* default 384 */ lgw_reg_w(LGW_CORR0_DETECT_EN, (if_enable[0] == true) ? lora_multi_sfmask[0] : 0); /* default 0 */ lgw_reg_w(LGW_CORR1_DETECT_EN, (if_enable[1] == true) ? lora_multi_sfmask[1] : 0); /* default 0 */ lgw_reg_w(LGW_CORR2_DETECT_EN, (if_enable[2] == true) ? lora_multi_sfmask[2] : 0); /* default 0 */ lgw_reg_w(LGW_CORR3_DETECT_EN, (if_enable[3] == true) ? lora_multi_sfmask[3] : 0); /* default 0 */ lgw_reg_w(LGW_CORR4_DETECT_EN, (if_enable[4] == true) ? lora_multi_sfmask[4] : 0); /* default 0 */ lgw_reg_w(LGW_CORR5_DETECT_EN, (if_enable[5] == true) ? lora_multi_sfmask[5] : 0); /* default 0 */ lgw_reg_w(LGW_CORR6_DETECT_EN, (if_enable[6] == true) ? lora_multi_sfmask[6] : 0); /* default 0 */ lgw_reg_w(LGW_CORR7_DETECT_EN, (if_enable[7] == true) ? lora_multi_sfmask[7] : 0); /* default 0 */ lgw_reg_w(LGW_PPM_OFFSET, 0x60); /* as the threshold is 16ms, use 0x60 to enable ppm_offset for SF12 and SF11 @125kHz*/ lgw_reg_w(LGW_CONCENTRATOR_MODEM_ENABLE, 1); /* default 0 */ /* configure LoRa 'stand-alone' modem (IF8) */ lgw_reg_w(LGW_IF_FREQ_8, IF_HZ_TO_REG(if_freq[8])); /* MBWSSF modem (default 0) */ if (if_enable[8] == true) { lgw_reg_w(LGW_MBWSSF_RADIO_SELECT, if_rf_chain[8]); switch(lora_rx_bw) { case BW_125KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 0); break; case BW_250KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 1); break; case BW_500KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 2); break; default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", lora_rx_bw); return LGW_HAL_ERROR; } switch(lora_rx_sf) { case DR_LORA_SF7: lgw_reg_w(LGW_MBWSSF_RATE_SF, 7); break; case DR_LORA_SF8: lgw_reg_w(LGW_MBWSSF_RATE_SF, 8); break; case DR_LORA_SF9: lgw_reg_w(LGW_MBWSSF_RATE_SF, 9); break; case DR_LORA_SF10: lgw_reg_w(LGW_MBWSSF_RATE_SF, 10); break; case DR_LORA_SF11: lgw_reg_w(LGW_MBWSSF_RATE_SF, 11); break; case DR_LORA_SF12: lgw_reg_w(LGW_MBWSSF_RATE_SF, 12); break; default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", lora_rx_sf); return LGW_HAL_ERROR; } lgw_reg_w(LGW_MBWSSF_PPM_OFFSET, lora_rx_ppm_offset); /* default 0 */ lgw_reg_w(LGW_MBWSSF_MODEM_ENABLE, 1); /* default 0 */ } else { lgw_reg_w(LGW_MBWSSF_MODEM_ENABLE, 0); } /* configure FSK modem (IF9) */ lgw_reg_w(LGW_IF_FREQ_9, IF_HZ_TO_REG(if_freq[9])); /* FSK modem, default 0 */ lgw_reg_w(LGW_FSK_PSIZE, fsk_sync_word_size - 1); lgw_reg_w(LGW_FSK_TX_PSIZE, fsk_sync_word_size - 1); fsk_sync_word_reg = fsk_sync_word << (8 * (8 - fsk_sync_word_size)); lgw_reg_w(LGW_FSK_REF_PATTERN_LSB, (uint32_t)(0xFFFFFFFF & fsk_sync_word_reg)); lgw_reg_w(LGW_FSK_REF_PATTERN_MSB, (uint32_t)(0xFFFFFFFF & (fsk_sync_word_reg >> 32))); if (if_enable[9] == true) { lgw_reg_w(LGW_FSK_RADIO_SELECT, if_rf_chain[9]); lgw_reg_w(LGW_FSK_BR_RATIO, LGW_XTAL_FREQU / fsk_rx_dr); /* setting the dividing ratio for datarate */ lgw_reg_w(LGW_FSK_CH_BW_EXPO, fsk_rx_bw); lgw_reg_w(LGW_FSK_MODEM_ENABLE, 1); /* default 0 */ } else { lgw_reg_w(LGW_FSK_MODEM_ENABLE, 0); } /* Load firmware */ load_firmware(MCU_ARB, arb_firmware, MCU_ARB_FW_BYTE); load_firmware(MCU_AGC, agc_firmware, MCU_AGC_FW_BYTE); /* gives the AGC MCU control over radio, RF front-end and filter gain */ lgw_reg_w(LGW_FORCE_HOST_RADIO_CTRL, 0); lgw_reg_w(LGW_FORCE_HOST_FE_CTRL, 0); lgw_reg_w(LGW_FORCE_DEC_FILTER_GAIN, 0); /* Get MCUs out of reset */ lgw_reg_w(LGW_RADIO_SELECT, 0); /* MUST not be = to 1 or 2 at firmware init */ lgw_reg_w(LGW_MCU_RST_0, 0); lgw_reg_w(LGW_MCU_RST_1, 0); /* Check firmware version */ lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, FW_VERSION_ADDR); lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val); fw_version = (uint8_t)read_val; if (fw_version != FW_VERSION_AGC) { DEBUG_PRINTF("ERROR: Version of AGC firmware not expected, actual:%d expected:%d\n", fw_version, FW_VERSION_AGC); return LGW_HAL_ERROR; } lgw_reg_w(LGW_DBG_ARB_MCU_RAM_ADDR, FW_VERSION_ADDR); lgw_reg_r(LGW_DBG_ARB_MCU_RAM_DATA, &read_val); fw_version = (uint8_t)read_val; if (fw_version != FW_VERSION_ARB) { DEBUG_PRINTF("ERROR: Version of arbiter firmware not expected, actual:%d expected:%d\n", fw_version, FW_VERSION_ARB); return LGW_HAL_ERROR; } DEBUG_MSG("Info: Initialising AGC firmware...\n"); wait_ms(10); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != 0x10) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } /* Update Tx gain LUT and start AGC */ for (i = 0; i < txgain_lut.size; ++i) { lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); /* start a transaction */ wait_ms(1); load_val = txgain_lut.lut[i].mix_gain + (16 * txgain_lut.lut[i].dac_gain) + (64 * txgain_lut.lut[i].pa_gain); lgw_reg_w(LGW_RADIO_SELECT, load_val); wait_ms(1); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != (0x30 + i)) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } } /* As the AGC fw is waiting for 16 entries, we need to abort the transaction if we get less entries */ if (txgain_lut.size < TX_GAIN_LUT_SIZE_MAX) { lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); wait_ms(10); load_val = AGC_CMD_ABORT; lgw_reg_w(LGW_RADIO_SELECT, load_val); wait_ms(10); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != 0x30) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } } /* Load Tx freq MSBs (always 3 if f > 768 for SX1257 or f > 384 for SX1255 */ lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); wait_ms(10); lgw_reg_w(LGW_RADIO_SELECT, 3); wait_ms(10); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != 0x33) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } /* Load chan_select firmware option */ lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); wait_ms(10); lgw_reg_w(LGW_RADIO_SELECT, 0); wait_ms(10); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != 0x30) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } /* End AGC firmware init and check status */ lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); wait_ms(10); lgw_reg_w(LGW_RADIO_SELECT, radio_select); /* Load intended value of RADIO_SELECT */ wait_ms(10); DEBUG_MSG("Info: putting back original RADIO_SELECT value\n"); lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val); if (read_val != 0x40) { DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val); return LGW_HAL_ERROR; } /* enable GPS event capture */ lgw_reg_w(LGW_GPS_EN, 0); lgw_is_started = true; return LGW_HAL_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_stop(void) { lgw_soft_reset(); lgw_disconnect(); lgw_is_started = false; return LGW_HAL_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_receive(uint8_t max_pkt, struct lgw_pkt_rx_s *pkt_data) { /* check input variables */ if ((max_pkt == 0) || (max_pkt > LGW_PKT_FIFO_SIZE)) { DEBUG_PRINTF("ERROR: %d = INVALID MAX NUMBER OF PACKETS TO FETCH\n", max_pkt); return LGW_HAL_ERROR; } /* send packet data to concentrator MCU */ return lgw_mcu_receive( max_pkt, pkt_data); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_send(struct lgw_pkt_tx_s pkt_data) { /* check input range (segfault prevention) */ if (pkt_data.rf_chain >= LGW_RF_CHAIN_NB) { DEBUG_MSG("ERROR: INVALID RF_CHAIN TO SEND PACKETS\n"); return LGW_HAL_ERROR; } /* check input variables */ if (rf_tx_enable[pkt_data.rf_chain] == false) { DEBUG_MSG("ERROR: SELECTED RF_CHAIN IS DISABLED FOR TX ON SELECTED BOARD\n"); return LGW_HAL_ERROR; } if (rf_enable[pkt_data.rf_chain] == false) { DEBUG_MSG("ERROR: SELECTED RF_CHAIN IS DISABLED\n"); return LGW_HAL_ERROR; } if (!IS_TX_MODE(pkt_data.tx_mode)) { DEBUG_MSG("ERROR: TX_MODE NOT SUPPORTED\n"); return LGW_HAL_ERROR; } if (pkt_data.modulation == MOD_LORA) { if (!IS_LORA_BW(pkt_data.bandwidth)) { DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA TX\n"); return LGW_HAL_ERROR; } if (!IS_LORA_STD_DR(pkt_data.datarate)) { DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY LORA TX\n"); return LGW_HAL_ERROR; } if (!IS_LORA_CR(pkt_data.coderate)) { DEBUG_MSG("ERROR: CODERATE NOT SUPPORTED BY LORA TX\n"); return LGW_HAL_ERROR; } if (pkt_data.size > 255) { DEBUG_MSG("ERROR: PAYLOAD LENGTH TOO BIG FOR LORA TX\n"); return LGW_HAL_ERROR; } } else if (pkt_data.modulation == MOD_FSK) { if ((pkt_data.f_dev < 1) || (pkt_data.f_dev > 200)) { DEBUG_MSG("ERROR: TX FREQUENCY DEVIATION OUT OF ACCEPTABLE RANGE\n"); return LGW_HAL_ERROR; } if (!IS_FSK_DR(pkt_data.datarate)) { DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY FSK IF CHAIN\n"); return LGW_HAL_ERROR; } if (pkt_data.size > 255) { DEBUG_MSG("ERROR: PAYLOAD LENGTH TOO BIG FOR FSK TX\n"); return LGW_HAL_ERROR; } } else { DEBUG_MSG("ERROR: INVALID TX MODULATION\n"); return LGW_HAL_ERROR; } /* send packet data to concentrator MCU */ return lgw_mcu_send(pkt_data); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_status(uint8_t select, uint8_t *code) { int32_t read_value; /* check input variables */ CHECK_NULL(code); if (select == TX_STATUS) { lgw_reg_r(LGW_TX_STATUS, &read_value); if (lgw_is_started == false) { *code = TX_OFF; } else if ((read_value & 0x10) == 0) { /* bit 4 @1: TX programmed */ *code = TX_FREE; } else if ((read_value & 0x60) != 0) { /* bit 5 or 6 @1: TX sequence */ *code = TX_EMITTING; } else { *code = TX_SCHEDULED; } return LGW_HAL_SUCCESS; } else if (select == RX_STATUS) { *code = RX_STATUS_UNKNOWN; /* todo */ return LGW_HAL_SUCCESS; } else { DEBUG_MSG("ERROR: SELECTION INVALID, NO STATUS TO RETURN\n"); return LGW_HAL_ERROR; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_abort_tx(void) { return lgw_reg_w(LGW_TX_TRIG_ALL, 0); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_get_trigcnt(uint32_t* trig_cnt_us) { return lgw_mcu_get_trigcnt(trig_cnt_us); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ const char* lgw_version_info() { return lgw_version_string; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_mcu_version_info() { return (int)(STM32FWVERSION); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ uint32_t lgw_time_on_air(struct lgw_pkt_tx_s *packet) { int32_t val; uint8_t SF, H, DE; uint16_t BW; uint32_t payloadSymbNb, Tpacket; double Tsym, Tpreamble, Tpayload, Tfsk; if (packet == NULL) { DEBUG_MSG("ERROR: Failed to compute time on air, wrong parameter\n"); return 0; } if (packet->modulation == MOD_LORA) { /* Get bandwidth */ val = lgw_bw_getval(packet->bandwidth); if (val != -1) { BW = (uint16_t)(val / 1E3); } else { DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported bandwidth (0x%02X)\n", packet->bandwidth); return 0; } /* Get datarate */ val = lgw_sf_getval(packet->datarate); if (val != -1) { SF = (uint8_t)val; } else { DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported datarate (0x%02X)\n", packet->datarate); return 0; } /* Duration of 1 symbol */ Tsym = pow(2, SF) / BW; /* Duration of preamble */ Tpreamble = (8 + 4.25) * Tsym; /* 8 programmed symbols in preamble */ /* Duration of payload */ H = (packet->no_header == false) ? 0 : 1; /* header is always enabled, except for beacons */ DE = (SF >= 11) ? 1 : 0; /* Low datarate optimization enabled for SF11 and SF12 */ payloadSymbNb = 8 + (ceil((double)(8 * packet->size - 4 * SF + 28 + 16 - 20 * H) / (double)(4 * (SF - 2 * DE))) * (packet->coderate + 4)); /* Explicitely cast to double to keep precision of the division */ Tpayload = payloadSymbNb * Tsym; /* Duration of packet */ Tpacket = Tpreamble + Tpayload; } else if (packet->modulation == MOD_FSK) { /* PREAMBLE + SYNC_WORD + PKT_LEN + PKT_PAYLOAD + CRC PREAMBLE: default 5 bytes SYNC_WORD: default 3 bytes PKT_LEN: 1 byte (variable length mode) PKT_PAYLOAD: x bytes CRC: 0 or 2 bytes */ Tfsk = (8 * (double)(packet->preamble + fsk_sync_word_size + 1 + packet->size + ((packet->no_crc == true) ? 0 : 2)) / (double)packet->datarate) * 1E3; /* Duration of packet */ Tpacket = (uint32_t)Tfsk + 1; /* add margin for rounding */ } else { Tpacket = 0; DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported modulation (0x%02X)\n", packet->modulation); } return Tpacket; } /* --- EOF ------------------------------------------------------------------ */