Update revision to use TI's mqtt and Freertos.

Dependencies:   mbed client server

Fork of cc3100_Test_mqtt_CM3 by David Fletcher

Revision:
3:a8c249046181
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FreeRTOS_V8_2_1/source/include/semphr.h	Thu Sep 03 14:02:37 2015 +0000
@@ -0,0 +1,845 @@
+/*
+    FreeRTOS V8.2.1 - Copyright (C) 2015 Real Time Engineers Ltd.
+    All rights reserved
+
+    VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
+
+    This file is part of the FreeRTOS distribution.
+
+    FreeRTOS is free software; you can redistribute it and/or modify it under
+    the terms of the GNU General Public License (version 2) as published by the
+    Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
+
+    ***************************************************************************
+    >>!   NOTE: The modification to the GPL is included to allow you to     !<<
+    >>!   distribute a combined work that includes FreeRTOS without being   !<<
+    >>!   obliged to provide the source code for proprietary components     !<<
+    >>!   outside of the FreeRTOS kernel.                                   !<<
+    ***************************************************************************
+
+    FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
+    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+    FOR A PARTICULAR PURPOSE.  Full license text is available on the following
+    link: http://www.freertos.org/a00114.html
+
+    ***************************************************************************
+     *                                                                       *
+     *    FreeRTOS provides completely free yet professionally developed,    *
+     *    robust, strictly quality controlled, supported, and cross          *
+     *    platform software that is more than just the market leader, it     *
+     *    is the industry's de facto standard.                               *
+     *                                                                       *
+     *    Help yourself get started quickly while simultaneously helping     *
+     *    to support the FreeRTOS project by purchasing a FreeRTOS           *
+     *    tutorial book, reference manual, or both:                          *
+     *    http://www.FreeRTOS.org/Documentation                              *
+     *                                                                       *
+    ***************************************************************************
+
+    http://www.FreeRTOS.org/FAQHelp.html - Having a problem?  Start by reading
+    the FAQ page "My application does not run, what could be wrong?".  Have you
+    defined configASSERT()?
+
+    http://www.FreeRTOS.org/support - In return for receiving this top quality
+    embedded software for free we request you assist our global community by
+    participating in the support forum.
+
+    http://www.FreeRTOS.org/training - Investing in training allows your team to
+    be as productive as possible as early as possible.  Now you can receive
+    FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
+    Ltd, and the world's leading authority on the world's leading RTOS.
+
+    http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
+    including FreeRTOS+Trace - an indispensable productivity tool, a DOS
+    compatible FAT file system, and our tiny thread aware UDP/IP stack.
+
+    http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
+    Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
+
+    http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
+    Integrity Systems ltd. to sell under the OpenRTOS brand.  Low cost OpenRTOS
+    licenses offer ticketed support, indemnification and commercial middleware.
+
+    http://www.SafeRTOS.com - High Integrity Systems also provide a safety
+    engineered and independently SIL3 certified version for use in safety and
+    mission critical applications that require provable dependability.
+
+    1 tab == 4 spaces!
+*/
+
+#ifndef SEMAPHORE_H
+#define SEMAPHORE_H
+
+#ifndef INC_FREERTOS_H
+	#error "include FreeRTOS.h" must appear in source files before "include semphr.h"
+#endif
+
+#include "queue.h"
+
+typedef QueueHandle_t SemaphoreHandle_t;
+
+#define semBINARY_SEMAPHORE_QUEUE_LENGTH	( ( uint8_t ) 1U )
+#define semSEMAPHORE_QUEUE_ITEM_LENGTH		( ( uint8_t ) 0U )
+#define semGIVE_BLOCK_TIME					( ( TickType_t ) 0U )
+
+
+/**
+ * semphr. h
+ * <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
+ *
+ * This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
+ * xSemaphoreCreateBinary() function.  Note that binary semaphores created using
+ * the vSemaphoreCreateBinary() macro are created in a state such that the
+ * first call to 'take' the semaphore would pass, whereas binary semaphores
+ * created using xSemaphoreCreateBinary() are created in a state such that the
+ * the semaphore must first be 'given' before it can be 'taken'.
+ *
+ * <i>Macro</i> that implements a semaphore by using the existing queue mechanism.
+ * The queue length is 1 as this is a binary semaphore.  The data size is 0
+ * as we don't want to actually store any data - we just want to know if the
+ * queue is empty or full.
+ *
+ * This type of semaphore can be used for pure synchronisation between tasks or
+ * between an interrupt and a task.  The semaphore need not be given back once
+ * obtained, so one task/interrupt can continuously 'give' the semaphore while
+ * another continuously 'takes' the semaphore.  For this reason this type of
+ * semaphore does not use a priority inheritance mechanism.  For an alternative
+ * that does use priority inheritance see xSemaphoreCreateMutex().
+ *
+ * @param xSemaphore Handle to the created semaphore.  Should be of type SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+    // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
+    // This is a macro so pass the variable in directly.
+    vSemaphoreCreateBinary( xSemaphore );
+
+    if( xSemaphore != NULL )
+    {
+        // The semaphore was created successfully.
+        // The semaphore can now be used.
+    }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
+ * \ingroup Semaphores
+ */
+#define vSemaphoreCreateBinary( xSemaphore )																							\
+	{																																	\
+		( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE );	\
+		if( ( xSemaphore ) != NULL )																									\
+		{																																\
+			( void ) xSemaphoreGive( ( xSemaphore ) );																					\
+		}																																\
+	}
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
+ *
+ * The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
+ * xSemaphoreCreateBinary() function.  Note that binary semaphores created using
+ * the vSemaphoreCreateBinary() macro are created in a state such that the
+ * first call to 'take' the semaphore would pass, whereas binary semaphores
+ * created using xSemaphoreCreateBinary() are created in a state such that the
+ * the semaphore must first be 'given' before it can be 'taken'.
+ *
+ * Function that creates a semaphore by using the existing queue mechanism.
+ * The queue length is 1 as this is a binary semaphore.  The data size is 0
+ * as nothing is actually stored - all that is important is whether the queue is
+ * empty or full (the binary semaphore is available or not).
+ *
+ * This type of semaphore can be used for pure synchronisation between tasks or
+ * between an interrupt and a task.  The semaphore need not be given back once
+ * obtained, so one task/interrupt can continuously 'give' the semaphore while
+ * another continuously 'takes' the semaphore.  For this reason this type of
+ * semaphore does not use a priority inheritance mechanism.  For an alternative
+ * that does use priority inheritance see xSemaphoreCreateMutex().
+ *
+ * @return Handle to the created semaphore.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+    // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
+    // This is a macro so pass the variable in directly.
+    xSemaphore = xSemaphoreCreateBinary();
+
+    if( xSemaphore != NULL )
+    {
+        // The semaphore was created successfully.
+        // The semaphore can now be used.
+    }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreTake(
+ *                   SemaphoreHandle_t xSemaphore,
+ *                   TickType_t xBlockTime
+ *               )</pre>
+ *
+ * <i>Macro</i> to obtain a semaphore.  The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * xSemaphoreCreateCounting().
+ *
+ * @param xSemaphore A handle to the semaphore being taken - obtained when
+ * the semaphore was created.
+ *
+ * @param xBlockTime The time in ticks to wait for the semaphore to become
+ * available.  The macro portTICK_PERIOD_MS can be used to convert this to a
+ * real time.  A block time of zero can be used to poll the semaphore.  A block
+ * time of portMAX_DELAY can be used to block indefinitely (provided
+ * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
+ *
+ * @return pdTRUE if the semaphore was obtained.  pdFALSE
+ * if xBlockTime expired without the semaphore becoming available.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // A task that creates a semaphore.
+ void vATask( void * pvParameters )
+ {
+    // Create the semaphore to guard a shared resource.
+    vSemaphoreCreateBinary( xSemaphore );
+ }
+
+ // A task that uses the semaphore.
+ void vAnotherTask( void * pvParameters )
+ {
+    // ... Do other things.
+
+    if( xSemaphore != NULL )
+    {
+        // See if we can obtain the semaphore.  If the semaphore is not available
+        // wait 10 ticks to see if it becomes free.
+        if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
+        {
+            // We were able to obtain the semaphore and can now access the
+            // shared resource.
+
+            // ...
+
+            // We have finished accessing the shared resource.  Release the
+            // semaphore.
+            xSemaphoreGive( xSemaphore );
+        }
+        else
+        {
+            // We could not obtain the semaphore and can therefore not access
+            // the shared resource safely.
+        }
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreTake xSemaphoreTake
+ * \ingroup Semaphores
+ */
+#define xSemaphoreTake( xSemaphore, xBlockTime )		xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+
+/**
+ * semphr. h
+ * xSemaphoreTakeRecursive(
+ *                          SemaphoreHandle_t xMutex,
+ *                          TickType_t xBlockTime
+ *                        )
+ *
+ * <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore.
+ * The mutex must have previously been created using a call to
+ * xSemaphoreCreateRecursiveMutex();
+ *
+ * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
+ * macro to be available.
+ *
+ * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request.  For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also  'given' the mutex back
+ * exactly five times.
+ *
+ * @param xMutex A handle to the mutex being obtained.  This is the
+ * handle returned by xSemaphoreCreateRecursiveMutex();
+ *
+ * @param xBlockTime The time in ticks to wait for the semaphore to become
+ * available.  The macro portTICK_PERIOD_MS can be used to convert this to a
+ * real time.  A block time of zero can be used to poll the semaphore.  If
+ * the task already owns the semaphore then xSemaphoreTakeRecursive() will
+ * return immediately no matter what the value of xBlockTime.
+ *
+ * @return pdTRUE if the semaphore was obtained.  pdFALSE if xBlockTime
+ * expired without the semaphore becoming available.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xMutex = NULL;
+
+ // A task that creates a mutex.
+ void vATask( void * pvParameters )
+ {
+    // Create the mutex to guard a shared resource.
+    xMutex = xSemaphoreCreateRecursiveMutex();
+ }
+
+ // A task that uses the mutex.
+ void vAnotherTask( void * pvParameters )
+ {
+    // ... Do other things.
+
+    if( xMutex != NULL )
+    {
+        // See if we can obtain the mutex.  If the mutex is not available
+        // wait 10 ticks to see if it becomes free.
+        if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
+        {
+            // We were able to obtain the mutex and can now access the
+            // shared resource.
+
+            // ...
+            // For some reason due to the nature of the code further calls to
+			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
+			// code these would not be just sequential calls as this would make
+			// no sense.  Instead the calls are likely to be buried inside
+			// a more complex call structure.
+            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+
+            // The mutex has now been 'taken' three times, so will not be
+			// available to another task until it has also been given back
+			// three times.  Again it is unlikely that real code would have
+			// these calls sequentially, but instead buried in a more complex
+			// call structure.  This is just for illustrative purposes.
+            xSemaphoreGiveRecursive( xMutex );
+			xSemaphoreGiveRecursive( xMutex );
+			xSemaphoreGiveRecursive( xMutex );
+
+			// Now the mutex can be taken by other tasks.
+        }
+        else
+        {
+            // We could not obtain the mutex and can therefore not access
+            // the shared resource safely.
+        }
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreTakeRecursive( xMutex, xBlockTime )	xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
+
+
+/*
+ * xSemaphoreAltTake() is an alternative version of xSemaphoreTake().
+ *
+ * The source code that implements the alternative (Alt) API is much
+ * simpler	because it executes everything from within a critical section.
+ * This is	the approach taken by many other RTOSes, but FreeRTOS.org has the
+ * preferred fully featured API too.  The fully featured API has more
+ * complex	code that takes longer to execute, but makes much less use of
+ * critical sections.  Therefore the alternative API sacrifices interrupt
+ * responsiveness to gain execution speed, whereas the fully featured API
+ * sacrifices execution speed to ensure better interrupt responsiveness.
+ */
+#define xSemaphoreAltTake( xSemaphore, xBlockTime )		xQueueAltGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
+ *
+ * <i>Macro</i> to release a semaphore.  The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
+ *
+ * This macro must not be used from an ISR.  See xSemaphoreGiveFromISR () for
+ * an alternative which can be used from an ISR.
+ *
+ * This macro must also not be used on semaphores created using
+ * xSemaphoreCreateRecursiveMutex().
+ *
+ * @param xSemaphore A handle to the semaphore being released.  This is the
+ * handle returned when the semaphore was created.
+ *
+ * @return pdTRUE if the semaphore was released.  pdFALSE if an error occurred.
+ * Semaphores are implemented using queues.  An error can occur if there is
+ * no space on the queue to post a message - indicating that the
+ * semaphore was not first obtained correctly.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ void vATask( void * pvParameters )
+ {
+    // Create the semaphore to guard a shared resource.
+    vSemaphoreCreateBinary( xSemaphore );
+
+    if( xSemaphore != NULL )
+    {
+        if( xSemaphoreGive( xSemaphore ) != pdTRUE )
+        {
+            // We would expect this call to fail because we cannot give
+            // a semaphore without first "taking" it!
+        }
+
+        // Obtain the semaphore - don't block if the semaphore is not
+        // immediately available.
+        if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
+        {
+            // We now have the semaphore and can access the shared resource.
+
+            // ...
+
+            // We have finished accessing the shared resource so can free the
+            // semaphore.
+            if( xSemaphoreGive( xSemaphore ) != pdTRUE )
+            {
+                // We would not expect this call to fail because we must have
+                // obtained the semaphore to get here.
+            }
+        }
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreGive xSemaphoreGive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGive( xSemaphore )		xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
+
+/**
+ * semphr. h
+ * <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre>
+ *
+ * <i>Macro</i> to recursively release, or 'give', a mutex type semaphore.
+ * The mutex must have previously been created using a call to
+ * xSemaphoreCreateRecursiveMutex();
+ *
+ * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
+ * macro to be available.
+ *
+ * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request.  For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also  'given' the mutex back
+ * exactly five times.
+ *
+ * @param xMutex A handle to the mutex being released, or 'given'.  This is the
+ * handle returned by xSemaphoreCreateMutex();
+ *
+ * @return pdTRUE if the semaphore was given.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xMutex = NULL;
+
+ // A task that creates a mutex.
+ void vATask( void * pvParameters )
+ {
+    // Create the mutex to guard a shared resource.
+    xMutex = xSemaphoreCreateRecursiveMutex();
+ }
+
+ // A task that uses the mutex.
+ void vAnotherTask( void * pvParameters )
+ {
+    // ... Do other things.
+
+    if( xMutex != NULL )
+    {
+        // See if we can obtain the mutex.  If the mutex is not available
+        // wait 10 ticks to see if it becomes free.
+        if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
+        {
+            // We were able to obtain the mutex and can now access the
+            // shared resource.
+
+            // ...
+            // For some reason due to the nature of the code further calls to
+			// xSemaphoreTakeRecursive() are made on the same mutex.  In real
+			// code these would not be just sequential calls as this would make
+			// no sense.  Instead the calls are likely to be buried inside
+			// a more complex call structure.
+            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+            xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
+
+            // The mutex has now been 'taken' three times, so will not be
+			// available to another task until it has also been given back
+			// three times.  Again it is unlikely that real code would have
+			// these calls sequentially, it would be more likely that the calls
+			// to xSemaphoreGiveRecursive() would be called as a call stack
+			// unwound.  This is just for demonstrative purposes.
+            xSemaphoreGiveRecursive( xMutex );
+			xSemaphoreGiveRecursive( xMutex );
+			xSemaphoreGiveRecursive( xMutex );
+
+			// Now the mutex can be taken by other tasks.
+        }
+        else
+        {
+            // We could not obtain the mutex and can therefore not access
+            // the shared resource safely.
+        }
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGiveRecursive( xMutex )	xQueueGiveMutexRecursive( ( xMutex ) )
+
+/*
+ * xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
+ *
+ * The source code that implements the alternative (Alt) API is much
+ * simpler	because it executes everything from within a critical section.
+ * This is	the approach taken by many other RTOSes, but FreeRTOS.org has the
+ * preferred fully featured API too.  The fully featured API has more
+ * complex	code that takes longer to execute, but makes much less use of
+ * critical sections.  Therefore the alternative API sacrifices interrupt
+ * responsiveness to gain execution speed, whereas the fully featured API
+ * sacrifices execution speed to ensure better interrupt responsiveness.
+ */
+#define xSemaphoreAltGive( xSemaphore )		xQueueAltGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
+
+/**
+ * semphr. h
+ * <pre>
+ xSemaphoreGiveFromISR(
+                          SemaphoreHandle_t xSemaphore,
+                          BaseType_t *pxHigherPriorityTaskWoken
+                      )</pre>
+ *
+ * <i>Macro</i> to  release a semaphore.  The semaphore must have previously been
+ * created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting().
+ *
+ * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
+ * must not be used with this macro.
+ *
+ * This macro can be used from an ISR.
+ *
+ * @param xSemaphore A handle to the semaphore being released.  This is the
+ * handle returned when the semaphore was created.
+ *
+ * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task.  If xSemaphoreGiveFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.
+ *
+ * Example usage:
+ <pre>
+ \#define LONG_TIME 0xffff
+ \#define TICKS_TO_WAIT	10
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // Repetitive task.
+ void vATask( void * pvParameters )
+ {
+    for( ;; )
+    {
+        // We want this task to run every 10 ticks of a timer.  The semaphore
+        // was created before this task was started.
+
+        // Block waiting for the semaphore to become available.
+        if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
+        {
+            // It is time to execute.
+
+            // ...
+
+            // We have finished our task.  Return to the top of the loop where
+            // we will block on the semaphore until it is time to execute
+            // again.  Note when using the semaphore for synchronisation with an
+			// ISR in this manner there is no need to 'give' the semaphore back.
+        }
+    }
+ }
+
+ // Timer ISR
+ void vTimerISR( void * pvParameters )
+ {
+ static uint8_t ucLocalTickCount = 0;
+ static BaseType_t xHigherPriorityTaskWoken;
+
+    // A timer tick has occurred.
+
+    // ... Do other time functions.
+
+    // Is it time for vATask () to run?
+	xHigherPriorityTaskWoken = pdFALSE;
+    ucLocalTickCount++;
+    if( ucLocalTickCount >= TICKS_TO_WAIT )
+    {
+        // Unblock the task by releasing the semaphore.
+        xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
+
+        // Reset the count so we release the semaphore again in 10 ticks time.
+        ucLocalTickCount = 0;
+    }
+
+    if( xHigherPriorityTaskWoken != pdFALSE )
+    {
+        // We can force a context switch here.  Context switching from an
+        // ISR uses port specific syntax.  Check the demo task for your port
+        // to find the syntax required.
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
+ * \ingroup Semaphores
+ */
+#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken )	xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) )
+
+/**
+ * semphr. h
+ * <pre>
+ xSemaphoreTakeFromISR(
+                          SemaphoreHandle_t xSemaphore,
+                          BaseType_t *pxHigherPriorityTaskWoken
+                      )</pre>
+ *
+ * <i>Macro</i> to  take a semaphore from an ISR.  The semaphore must have
+ * previously been created with a call to vSemaphoreCreateBinary() or
+ * xSemaphoreCreateCounting().
+ *
+ * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
+ * must not be used with this macro.
+ *
+ * This macro can be used from an ISR, however taking a semaphore from an ISR
+ * is not a common operation.  It is likely to only be useful when taking a
+ * counting semaphore when an interrupt is obtaining an object from a resource
+ * pool (when the semaphore count indicates the number of resources available).
+ *
+ * @param xSemaphore A handle to the semaphore being taken.  This is the
+ * handle returned when the semaphore was created.
+ *
+ * @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set
+ * *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task
+ * to unblock, and the unblocked task has a priority higher than the currently
+ * running task.  If xSemaphoreTakeFromISR() sets this value to pdTRUE then
+ * a context switch should be requested before the interrupt is exited.
+ *
+ * @return pdTRUE if the semaphore was successfully taken, otherwise
+ * pdFALSE
+ */
+#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken )	xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) )
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
+ *
+ * <i>Macro</i> that implements a mutex semaphore by using the existing queue
+ * mechanism.
+ *
+ * Mutexes created using this macro can be accessed using the xSemaphoreTake()
+ * and xSemaphoreGive() macros.  The xSemaphoreTakeRecursive() and
+ * xSemaphoreGiveRecursive() macros should not be used.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @return xSemaphore Handle to the created mutex semaphore.  Should be of type
+ *		SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
+    // This is a macro so pass the variable in directly.
+    xSemaphore = xSemaphoreCreateMutex();
+
+    if( xSemaphore != NULL )
+    {
+        // The semaphore was created successfully.
+        // The semaphore can now be used.
+    }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
+
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
+ *
+ * <i>Macro</i> that implements a recursive mutex by using the existing queue
+ * mechanism.
+ *
+ * Mutexes created using this macro can be accessed using the
+ * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros.  The
+ * xSemaphoreTake() and xSemaphoreGive() macros should not be used.
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request.  For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also  'given' the mutex back
+ * exactly five times.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @return xSemaphore Handle to the created mutex semaphore.  Should be of type
+ *		SemaphoreHandle_t.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+    // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
+    // This is a macro so pass the variable in directly.
+    xSemaphore = xSemaphoreCreateRecursiveMutex();
+
+    if( xSemaphore != NULL )
+    {
+        // The semaphore was created successfully.
+        // The semaphore can now be used.
+    }
+ }
+ </pre>
+ * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
+ *
+ * <i>Macro</i> that creates a counting semaphore by using the existing
+ * queue mechanism.
+ *
+ * Counting semaphores are typically used for two things:
+ *
+ * 1) Counting events.
+ *
+ *    In this usage scenario an event handler will 'give' a semaphore each time
+ *    an event occurs (incrementing the semaphore count value), and a handler
+ *    task will 'take' a semaphore each time it processes an event
+ *    (decrementing the semaphore count value).  The count value is therefore
+ *    the difference between the number of events that have occurred and the
+ *    number that have been processed.  In this case it is desirable for the
+ *    initial count value to be zero.
+ *
+ * 2) Resource management.
+ *
+ *    In this usage scenario the count value indicates the number of resources
+ *    available.  To obtain control of a resource a task must first obtain a
+ *    semaphore - decrementing the semaphore count value.  When the count value
+ *    reaches zero there are no free resources.  When a task finishes with the
+ *    resource it 'gives' the semaphore back - incrementing the semaphore count
+ *    value.  In this case it is desirable for the initial count value to be
+ *    equal to the maximum count value, indicating that all resources are free.
+ *
+ * @param uxMaxCount The maximum count value that can be reached.  When the
+ *        semaphore reaches this value it can no longer be 'given'.
+ *
+ * @param uxInitialCount The count value assigned to the semaphore when it is
+ *        created.
+ *
+ * @return Handle to the created semaphore.  Null if the semaphore could not be
+ *         created.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+
+ void vATask( void * pvParameters )
+ {
+ SemaphoreHandle_t xSemaphore = NULL;
+
+    // Semaphore cannot be used before a call to xSemaphoreCreateCounting().
+    // The max value to which the semaphore can count should be 10, and the
+    // initial value assigned to the count should be 0.
+    xSemaphore = xSemaphoreCreateCounting( 10, 0 );
+
+    if( xSemaphore != NULL )
+    {
+        // The semaphore was created successfully.
+        // The semaphore can now be used.
+    }
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
+ * \ingroup Semaphores
+ */
+#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
+
+/**
+ * semphr. h
+ * <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre>
+ *
+ * Delete a semaphore.  This function must be used with care.  For example,
+ * do not delete a mutex type semaphore if the mutex is held by a task.
+ *
+ * @param xSemaphore A handle to the semaphore to be deleted.
+ *
+ * \defgroup vSemaphoreDelete vSemaphoreDelete
+ * \ingroup Semaphores
+ */
+#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) )
+
+/**
+ * semphr.h
+ * <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre>
+ *
+ * If xMutex is indeed a mutex type semaphore, return the current mutex holder.
+ * If xMutex is not a mutex type semaphore, or the mutex is available (not held
+ * by a task), return NULL.
+ *
+ * Note: This is a good way of determining if the calling task is the mutex
+ * holder, but not a good way of determining the identity of the mutex holder as
+ * the holder may change between the function exiting and the returned value
+ * being tested.
+ */
+#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
+
+#endif /* SEMAPHORE_H */
+
+
+