This program is guided to help establish a connection between two RFM95 900MHz LoRa radio modules using Maxim Integrated's Feather MCUs (MAX32630FTHR Mbed and the MAX32620FTHR Mbed). Once the radios are configured after powering on and if the radios are wired correctly, the two radios will self identify as either a master or a slave, and will then proceed to PING and PONG back and forth. Information about what is happening between the radios can be seen if the two boards are hooked up to a USB COM port through the included DAPLINK modules.

Dependencies:   BufferedSerial SX1276GenericLib USBDeviceHT max32630fthr

Fork of MAX326xxFTHR_LoRa_PingPong by Central Applications - Mbed Code repo

utils.cpp

Committer:
dev_alexander
Date:
2018-06-04
Revision:
20:c57404b94a1d
Parent:
19:9f035b9e65ec

File content as of revision 20:c57404b94a1d:

/*
 * Copyright (c) 2018 Helmut Tschemernjak
 * 30826 Garbsen (Hannover) Germany
 */
 #include "main.h"
 
#define BAUD_RATE 115200

 
time_t cvt_date(char const *date, char const *time);


BufferedSerial *ser;
#ifdef FEATURE_USBSERIAL
USBSerialBuffered *usb;
#endif
bool _useDprintf;

void InitSerial(int timeout, DigitalOut *led)
{
    _useDprintf = true;
    bool uartActive;
    {
        {
            // need to turn rx low to avoid floating signal
            DigitalOut rx(USBRX);
            rx = 0;
        }
        DigitalIn uartRX(USBRX);
        uartActive = uartRX.read();
    }
#ifdef FEATURE_USBSERIAL
    if (!uartActive) {
        usb = new USBSerialBuffered();
        Timer t;
        t.start();
        while(!usb->connected()) {
            if (led)
                *led = !*led;
            wait_ms(100);
            if (timeout) {
                if (t.read_ms() >= timeout)
                    return;
            }
        }
        return;
    } else {
#else
    {
#endif
        ser = new BufferedSerial(USBTX, USBRX);
        ser->baud(BAUD_RATE);
        ser->format(8);
    }
    time_t t = cvt_date(__DATE__, __TIME__);
    if (t > time(NULL)) {
        set_time(t);
    }

}

void printTimeStamp()
{
    static LowPowerTimer *timer;
    if (!timer) {
        timer = new LowPowerTimer();
        timer->start();
    }
    time_t seconds = time(NULL);
    struct tm *tm = localtime(&seconds);
    int usecs = timer->read_us();
    if (usecs < 0) {
        usecs = 0;
        timer->stop();
        timer->reset();
        timer->start();
    }
    int msecs = usecs % 1000000;
    
    rprintf("%02d:%02d:%02d.%06d ", tm->tm_hour, tm->tm_min, tm->tm_sec, msecs);
}

void dprintf(const char *format, ...)
{
    std::va_list arg;

    va_start(arg, format);
    VAprintf(true, true, _useDprintf, format, arg);
    va_end(arg);
}

void rprintf(const char *format, ...)
{
    std::va_list arg;

    va_start(arg, format);
    VAprintf(false, false, _useDprintf, format, arg);
    va_end(arg);   
}

void VAprintf(bool timstamp, bool newline, bool printEnabled, const char *format, va_list arg)
{
     if (!printEnabled)
        return;

    if (timstamp)
        printTimeStamp();
#ifdef FEATURE_USBSERIAL
    if (usb) {
        usb->vprintf_irqsafe(format, arg);
        if (newline)
            usb->printf_irqsafe("\r\n");
#else
    if (0) {
#endif
    } else if (ser) {
        // serial jas 
        int r = 0;
        r = vsnprintf(NULL, 0, format, arg);
        if (r < 82) {
            char buffer[82+1];

            vsnprintf(buffer, sizeof(buffer), format, arg);
            r = ser->write(buffer, r);
        } else {
            char *buffer = new char[r+1];
            if (buffer) {
                vsnprintf(buffer, r+1, format, arg);
                r = ser->write(buffer, r);
                delete[] buffer;
            } else {
                error("%s %d cannot alloc memory (%d bytes)!\r\n", __FILE__, __LINE__, r+1);
                r = 0;
            }
        }
        if (newline)
            ser->write("\r\n", 2);
    }
}


void dump(const char *title, const void *data, int len, bool dwords)
{
    dprintf("dump(\"%s\", 0x%x, %d bytes)", title, data, len);

    int i, j, cnt;
    unsigned char *u;
    const int width = 16;
    const int seppos = 7;

    cnt = 0;
    u = (unsigned char *)data;
    while (len > 0) {
        rprintf("%08x: ", (unsigned int)data + cnt);
        if (dwords) {
            unsigned int *ip = ( unsigned int *)u;
            rprintf(" 0x%08x\r\n", *ip);
            u+= 4;
            len -= 4;
            cnt += 4;
            continue;
        }
        cnt += width;
        j = len < width ? len : width;
        for (i = 0; i < j; i++) {
            rprintf("%2.2x ", *(u + i));
            if (i == seppos)
                rprintf(" ");
        }
        rprintf(" ");
        if (j < width) {
            i = width - j;
            if (i > seppos + 1)
                rprintf(" ");
            while (i--) {
                rprintf("%s", "   ");
            }
        }
        for (i = 0; i < j; i++) {
            int c = *(u + i);
            if (c >= ' ' && c <= '~')
                rprintf("%c", c);
            else
                rprintf(".");
            if (i == seppos)
                rprintf(" ");
        }
        len -= width;
        u += width;
        rprintf("\r\n");
    }
    rprintf("--\r\n");
}

/*
 * Convert compile time to system time
 */
time_t
cvt_date(char const *date, char const *time)
{
    char s_month[5];
    int year;
    struct tm t;
    static const char month_names[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
    sscanf(date, "%s %d %d", s_month, &t.tm_mday, &year);
    sscanf(time, "%2d %*c %2d %*c %2d", &t.tm_hour, &t.tm_min, &t.tm_sec);
    // Find where is s_month in month_names. Deduce month value.
    t.tm_mon = (strstr(month_names, s_month) - month_names) / 3;
    t.tm_year = year - 1900;
    return (int)mktime(&t);
}