Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
vendor/Freescale/KL25Z/hal/serial_api.c
- Committer:
- emilmont
- Date:
- 2013-06-14
- Revision:
- 10:3bc89ef62ce7
File content as of revision 10:3bc89ef62ce7:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "serial_api.h"
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <string.h>
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
static const PinMap PinMap_UART_TX[] = {
{PTC4, UART_1, 3},
{PTA2, UART_0, 2},
{PTD5, UART_2, 3},
{PTD3, UART_2, 3},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RX[] = {
{PTC3, UART_1, 3},
{PTA1, UART_0, 2},
{PTD4, UART_2, 3},
{PTD2, UART_2, 3},
{NC , NC , 0}
};
#define UART_NUM 3
static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
void serial_init(serial_t *obj, PinName tx, PinName rx) {
// determine the UART to use
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
if ((int)uart == NC) {
error("Serial pinout mapping failed");
}
obj->uart = (UARTLP_Type *)uart;
// enable clk
switch (uart) {
case UART_0: SIM->SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK | (1<<SIM_SOPT2_UART0SRC_SHIFT);
SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; SIM->SCGC4 |= SIM_SCGC4_UART0_MASK; break;
case UART_1: SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK; SIM->SCGC4 |= SIM_SCGC4_UART1_MASK; break;
case UART_2: SIM->SCGC5 |= SIM_SCGC5_PORTD_MASK; SIM->SCGC4 |= SIM_SCGC4_UART2_MASK; break;
}
// Disable UART before changing registers
obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK);
switch (uart) {
case UART_0: obj->index = 0; break;
case UART_1: obj->index = 1; break;
case UART_2: obj->index = 2; break;
}
// set default baud rate and format
serial_baud (obj, 9600);
serial_format(obj, 8, ParityNone, 1);
// pinout the chosen uart
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// set rx/tx pins in PullUp mode
pin_mode(tx, PullUp);
pin_mode(rx, PullUp);
obj->uart->C2 |= (UART_C2_RE_MASK | UART_C2_TE_MASK);
if (uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
serial_irq_ids[obj->index] = 0;
}
// serial_baud
//
// set the baud rate, taking in to account the current SystemFrequency
//
// The LPC2300 and LPC1700 have a divider and a fractional divider to control the
// baud rate. The formula is:
//
// Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal)
// where:
// 1 < MulVal <= 15
// 0 <= DivAddVal < 14
// DivAddVal < MulVal
//
void serial_baud(serial_t *obj, int baudrate) {
// save C2 state
uint8_t c2_state = (obj->uart->C2 & (UART_C2_RE_MASK | UART_C2_TE_MASK));
// Disable UART before changing registers
obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK);
// [TODO] not hardcode this value
uint32_t PCLK = (obj->uart == UART0) ? 48000000u : 24000000u;
// First we check to see if the basic divide with no DivAddVal/MulVal
// ratio gives us an integer result. If it does, we set DivAddVal = 0,
// MulVal = 1. Otherwise, we search the valid ratio value range to find
// the closest match. This could be more elegant, using search methods
// and/or lookup tables, but the brute force method is not that much
// slower, and is more maintainable.
uint16_t DL = PCLK / (16 * baudrate);
// set BDH and BDL
obj->uart->BDH = (obj->uart->BDH & ~(0x1f)) | ((DL >> 8) & 0x1f);
obj->uart->BDL = (obj->uart->BDL & ~(0xff)) | ((DL >> 0) & 0xff);
// restore C2 state
obj->uart->C2 |= c2_state;
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
uint8_t m10 = 0;
// save C2 state
uint8_t c2_state = (obj->uart->C2 & (UART_C2_RE_MASK | UART_C2_TE_MASK));
// Disable UART before changing registers
obj->uart->C2 &= ~(UART_C2_RE_MASK | UART_C2_TE_MASK);
// 8 data bits = 0 ... 9 data bits = 1
if ((data_bits < 8) || (data_bits > 9)) {
error("Invalid number of bits (%d) in serial format, should be 8..9\r\n", data_bits);
}
data_bits -= 8;
uint8_t parity_enable, parity_select;
switch (parity) {
case ParityNone: parity_enable = 0; parity_select = 0; break;
case ParityOdd : parity_enable = 1; parity_select = 1; data_bits++; break;
case ParityEven: parity_enable = 1; parity_select = 0; data_bits++; break;
default:
error("Invalid serial parity setting\r\n");
return;
}
// 1 stop bits = 0, 2 stop bits = 1
if ((stop_bits != 1) && (stop_bits != 2)) {
error("Invalid stop bits specified\r\n");
}
stop_bits -= 1;
// 9 data bits + parity
if (data_bits == 2) {
// only uart0 supports 10 bit communication
if (obj->index != 0) {
error("Invalid number of bits (9) to be used with parity\r\n");
}
data_bits = 0;
m10 = 1;
}
// data bits, parity and parity mode
obj->uart->C1 = ((data_bits << 4)
| (parity_enable << 1)
| (parity_select << 0));
// enable 10bit mode if needed
if (obj->index == 0) {
obj->uart->C4 &= ~UARTLP_C4_M10_MASK;
obj->uart->C4 |= (m10 << UARTLP_C4_M10_SHIFT);
}
// stop bits
obj->uart->BDH &= ~UART_BDH_SBNS_MASK;
obj->uart->BDH |= (stop_bits << UART_BDH_SBNS_SHIFT);
// restore C2 state
obj->uart->C2 |= c2_state;
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint8_t status, uint32_t index) {
if (serial_irq_ids[index] != 0) {
if (status & UART_S1_TDRE_MASK)
irq_handler(serial_irq_ids[index], TxIrq);
if (status & UART_S1_RDRF_MASK)
irq_handler(serial_irq_ids[index], RxIrq);
}
}
void uart0_irq() {
uart_irq(UART0->S1, 0);
if (UART0->S1 & UART_S1_OR_MASK)
UART0->S1 |= UART_S1_OR_MASK;
}
void uart1_irq() {uart_irq(UART1->S1, 1);}
void uart2_irq() {uart_irq(UART2->S1, 2);}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch ((int)obj->uart) {
case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break;
case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break;
}
if (enable) {
switch (irq) {
case RxIrq: obj->uart->C2 |= (UART_C2_RIE_MASK); break;
case TxIrq: obj->uart->C2 |= (UART_C2_TIE_MASK); break;
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
switch (irq) {
case RxIrq: obj->uart->C2 &= ~(UART_C2_RIE_MASK); break;
case TxIrq: obj->uart->C2 &= ~(UART_C2_TIE_MASK); break;
}
switch (other_irq) {
case RxIrq: all_disabled = (obj->uart->C2 & (UART_C2_RIE_MASK)) == 0; break;
case TxIrq: all_disabled = (obj->uart->C2 & (UART_C2_TIE_MASK)) == 0; break;
}
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
return obj->uart->D;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
obj->uart->D = c;
}
int serial_readable(serial_t *obj) {
// check overrun
if (obj->uart->S1 & UART_S1_OR_MASK) {
obj->uart->S1 |= UART_S1_OR_MASK;
}
return (obj->uart->S1 & UART_S1_RDRF_MASK);
}
int serial_writable(serial_t *obj) {
// check overrun
if (obj->uart->S1 & UART_S1_OR_MASK) {
obj->uart->S1 |= UART_S1_OR_MASK;
}
return (obj->uart->S1 & UART_S1_TDRE_MASK);
}
void serial_clear(serial_t *obj) {
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
