publish

Dependencies:   mbed

Dependents:   RoboCup_2015

Fork of LSM9DS0 by Taylor Andrews

LSM9DS0.cpp

Committer:
randrews33
Date:
2014-10-21
Revision:
0:1b975a6ae539
Child:
5:bf8f4e7c9905

File content as of revision 0:1b975a6ae539:

#include "LSM9DS0.h"

LSM9DS0::LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr)
{
    
    // xmAddress and gAddress will store the 7-bit I2C address, if using I2C.
    // If we're using SPI, these variables store the chip-select pins.
    xmAddress = xmAddr;
    gAddress = gAddr;
    
    i2c_ = new I2Cdev(sda, scl);
    //100KHz, as specified by the datasheet.
    //i2c_->frequency(100000);
}

uint16_t LSM9DS0::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, 
                        gyro_odr gODR, accel_odr aODR, mag_odr mODR)
{
    // Store the given scales in class variables. These scale variables
    // are used throughout to calculate the actual g's, DPS,and Gs's.
    gScale = gScl;
    aScale = aScl;
    mScale = mScl;
    
    // Once we have the scale values, we can calculate the resolution
    // of each sensor. That's what these functions are for. One for each sensor
    calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
    calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
    calcaRes(); // Calculate g / ADC tick, stored in aRes variable
    
    
    // To verify communication, we can read from the WHO_AM_I register of
    // each device. Store those in a variable so we can return them.
    uint8_t gTest = gReadByte(WHO_AM_I_G);      // Read the gyro WHO_AM_I
    uint8_t xmTest = xmReadByte(WHO_AM_I_XM);   // Read the accel/mag WHO_AM_I
    
    // Gyro initialization stuff:
    initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
    setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
    setGyroScale(gScale); // Set the gyro range
    
    // Accelerometer initialization stuff:
    initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
   // setAccelODR(aODR); // Set the accel data rate.
    //setAccelScale(aScale); // Set the accel range.
    
    // Magnetometer initialization stuff:
    initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
    setMagODR(mODR); // Set the magnetometer output data rate.
    setMagScale(mScale); // Set the magnetometer's range.
    
    // Once everything is initialized, return the WHO_AM_I registers we read:
    return (xmTest << 8) | gTest;
}

void LSM9DS0::initGyro()
{
    /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables
    Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen
    DR[1:0] - Output data rate selection
        00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz
    BW[1:0] - Bandwidth selection (sets cutoff frequency)
         Value depends on ODR. See datasheet table 21.
    PD - Power down enable (0=power down mode, 1=normal or sleep mode)
    Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */
    gWriteByte(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes
    
    /* CTRL_REG2_G sets up the HPF
    Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0
    HPM[1:0] - High pass filter mode selection
        00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering,
        10=normal, 11=autoreset on interrupt
    HPCF[3:0] - High pass filter cutoff frequency
        Value depends on data rate. See datasheet table 26.
    */
    gWriteByte(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency
    
    /* CTRL_REG3_G sets up interrupt and DRDY_G pins
    Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY
    I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable)
    I1_BOOT - Boot status available on INT_G (0=disable, 1=enable)
    H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low)
    PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain)
    I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable)
    I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable)
    I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable)
    I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */
    // Int1 enabled (pp, active low), data read on DRDY_G:
    //gWriteByte(CTRL_REG3_G, 0x88); 
    
    /* CTRL_REG4_G sets the scale, update mode
    Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM
    BDU - Block data update (0=continuous, 1=output not updated until read
    BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add)
    FS[1:0] - Full-scale selection
        00=245dps, 01=500dps, 10=2000dps, 11=2000dps
    ST[1:0] - Self-test enable
        00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+)
    SIM - SPI serial interface mode select
        0=4 wire, 1=3 wire */
    gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps
    
    /* CTRL_REG5_G sets up the FIFO, HPF, and INT1
    Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
    BOOT - Reboot memory content (0=normal, 1=reboot)
    FIFO_EN - FIFO enable (0=disable, 1=enable)
    HPen - HPF enable (0=disable, 1=enable)
    INT1_Sel[1:0] - Int 1 selection configuration
    Out_Sel[1:0] - Out selection configuration */
    gWriteByte(CTRL_REG5_G, 0x00);
    
    // Temporary !!! For testing !!! Remove !!! Or make useful !!!
    //configGyroInt(0x2A, 0, 0, 0, 0); // Trigger interrupt when above 0 DPS...
}

void LSM9DS0::initAccel()
{
    /* CTRL_REG0_XM (0x1F) (Default value: 0x00)
    Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2
    BOOT - Reboot memory content (0: normal, 1: reboot)
    FIFO_EN - Fifo enable (0: disable, 1: enable)
    WTM_EN - FIFO watermark enable (0: disable, 1: enable)
    HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled)
    HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled)
    HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled)   */
    xmWriteByte(CTRL_REG0_XM, 0x00);
    
    /* CTRL_REG1_XM (0x20) (Default value: 0x07)
    Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN
    AODR[3:0] - select the acceleration data rate:
        0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz, 
        0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz,
        1001=800Hz, 1010=1600Hz, (remaining combinations undefined).
    BDU - block data update for accel AND mag
        0: Continuous update
        1: Output registers aren't updated until MSB and LSB have been read.
    AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled.
        0: Axis disabled, 1: Axis enabled                                    */ 
    xmWriteByte(CTRL_REG1_XM, 0x57); // 50Hz data rate, x/y/z all enabled
    
    //Serial.println(xmReadByte(CTRL_REG1_XM));
    /* CTRL_REG2_XM (0x21) (Default value: 0x00)
    Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM
    ABW[1:0] - Accelerometer anti-alias filter bandwidth
        00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz
    AFS[2:0] - Accel full-scale selection
        000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g
    AST[1:0] - Accel self-test enable
        00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed
    SIM - SPI mode selection
        0=4-wire, 1=3-wire                                                   */
    xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g
    
    /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM
    Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY
    */
    // Accelerometer data ready on INT1_XM (0x04)
   // xmWriteByte(CTRL_REG3_XM, 0x04); 
}

void LSM9DS0::initMag()
{   
    /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate
    Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1
    TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled)
    M_RES[1:0] - Magnetometer resolution select (0=low, 3=high)
    M_ODR[2:0] - Magnetometer data rate select
        000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz
    LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC)
        0=interrupt request not latched, 1=interrupt request latched
    LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC)
        0=irq not latched, 1=irq latched                                     */
    xmWriteByte(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz
    
    /* CTRL_REG6_XM sets the magnetometer full-scale
    Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0
    MFS[1:0] - Magnetic full-scale selection
    00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs                           */
    xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS
    
    /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters
    AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0
    AHPM[1:0] - HPF mode selection
        00=normal (resets reference registers), 01=reference signal for filtering, 
        10=normal, 11=autoreset on interrupt event
    AFDS - Filtered acceleration data selection
        0=internal filter bypassed, 1=data from internal filter sent to FIFO
    MLP - Magnetic data low-power mode
        0=data rate is set by M_ODR bits in CTRL_REG5
        1=data rate is set to 3.125Hz
    MD[1:0] - Magnetic sensor mode selection (default 10)
        00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */
    xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode
    
    /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM
    Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM
    */
    xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08)
    
    /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high
    Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN
    XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data
    PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od)
    IEA - Interrupt polarity for accel and magneto
        0=active-low, 1=active-high
    IEL - Latch interrupt request for accel and magneto
        0=irq not latched, 1=irq latched
    4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set
    MIEN - Enable interrupt generation for magnetic data
        0=disable, 1=enable) */
    xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull
}

void LSM9DS0::readAccel()
{
    /*uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp   
    //xmReadByte(OUT_X_L_A, temp, 6); // Read 6 bytes, beginning at OUT_X_L_A
    ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
    ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
    az = (temp[5] << 8) | temp[4]; // Store z-axis values into az*/
    
  uint16_t Temp = 0;
  uint8_t  INTStatus = 0;
  
  while(INTStatus == 0)
  {
      INTStatus = xmReadByte(STATUS_REG_A) & 0x08;
  }

  //Get x
  Temp = xmReadByte(OUT_X_H_A);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_X_L_A);
  ax = Temp;
  
  
  //Get y
  Temp=0;
  Temp = xmReadByte(OUT_Y_H_A);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Y_L_A);
  ay = Temp;
  
  //Get z
  Temp=0;
  Temp = xmReadByte(OUT_Z_H_A);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Z_L_A);
  az = Temp;
  
}

void LSM9DS0::readMag()
{
    /*uint8_t temp[6]; // We'll read six bytes from the mag into temp 
    xmReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
    mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
    my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
    mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz*/
    
 uint16_t Temp = 0;
  uint8_t  INTStatus = 0;
  
  while(INTStatus == 0)
  {
      INTStatus = xmReadByte(STATUS_REG_M) & 0x08;
  }

  //Get x
  Temp = xmReadByte(OUT_X_H_M);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_X_L_M);
  mx = Temp;
  
  
  //Get y
  Temp=0;
  Temp = xmReadByte(OUT_Y_H_M);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Y_L_M);
  my = Temp;
  
  //Get z
  Temp=0;
  Temp = xmReadByte(OUT_Z_H_M);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Z_L_M);
  mz = Temp;
}

void LSM9DS0::readGyro()
{
    /*uint8_t temp[6]; // We'll read six bytes from the gyro into temp
    gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
    gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
    gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
    gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz*/
    
  uint16_t Temp = 0;
  uint8_t  INTStatus = 0;
  
  while(INTStatus == 0)
  {
      INTStatus = (xmReadByte(STATUS_REG_G)&0x08);
  }

  //Get x
  Temp = xmReadByte(OUT_X_H_G);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_X_L_G);
  gx = Temp;
  
  
  //Get y
  Temp=0;
  Temp = xmReadByte(OUT_Y_H_G);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Y_L_G);
  gy = Temp;
  
  //Get z
  Temp=0;
  Temp = xmReadByte(OUT_Z_H_G);
  Temp = Temp<<8;
  Temp |= xmReadByte(OUT_Z_L_G);
  gz = Temp;
}

float LSM9DS0::calcGyro(int16_t gyro)
{
    // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
    return gRes * gyro; 
}

float LSM9DS0::calcAccel(int16_t accel)
{
    // Return the accel raw reading times our pre-calculated g's / (ADC tick):
    return aRes * accel;
    //return accel * (2/32768) - 2;
}

float LSM9DS0::calcMag(int16_t mag)
{
    // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
    return mRes * mag;
}

void LSM9DS0::setGyroScale(gyro_scale gScl)
{
    // We need to preserve the other bytes in CTRL_REG4_G. So, first read it:
    uint8_t temp = gReadByte(CTRL_REG4_G);
    // Then mask out the gyro scale bits:
    temp &= 0xFF^(0x3 << 4);
    // Then shift in our new scale bits:
    temp |= gScl << 4;
    // And write the new register value back into CTRL_REG4_G:
    gWriteByte(CTRL_REG4_G, temp);
    
    // We've updated the sensor, but we also need to update our class variables
    // First update gScale:
    gScale = gScl;
    // Then calculate a new gRes, which relies on gScale being set correctly:
    calcgRes();
}

void LSM9DS0::setAccelScale(accel_scale aScl)
{
    // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it:
    uint8_t temp = xmReadByte(CTRL_REG2_XM);
    // Then mask out the accel scale bits:
    temp &= 0xFF^(0x3 << 3);
    // Then shift in our new scale bits:
    temp |= aScl << 3;
    // And write the new register value back into CTRL_REG2_XM:
    xmWriteByte(CTRL_REG2_XM, temp);
    
    // We've updated the sensor, but we also need to update our class variables
    // First update aScale:
    aScale = aScl;
    // Then calculate a new aRes, which relies on aScale being set correctly:
    calcaRes();
}

void LSM9DS0::setMagScale(mag_scale mScl)
{
    // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
    uint8_t temp = xmReadByte(CTRL_REG6_XM);
    // Then mask out the mag scale bits:
    temp &= 0xFF^(0x3 << 5);
    // Then shift in our new scale bits:
    temp |= mScl << 5;
    // And write the new register value back into CTRL_REG6_XM:
    xmWriteByte(CTRL_REG6_XM, temp);
    
    // We've updated the sensor, but we also need to update our class variables
    // First update mScale:
    mScale = mScl;
    // Then calculate a new mRes, which relies on mScale being set correctly:
    calcmRes();
}

void LSM9DS0::setGyroODR(gyro_odr gRate)
{
    // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
    uint8_t temp = gReadByte(CTRL_REG1_G);
    // Then mask out the gyro ODR bits:
    temp &= 0xFF^(0xF << 4);
    // Then shift in our new ODR bits:
    temp |= (gRate << 4);
    // And write the new register value back into CTRL_REG1_G:
    gWriteByte(CTRL_REG1_G, temp);
}
void LSM9DS0::setAccelODR(accel_odr aRate)
{
    // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
    uint8_t temp = xmReadByte(CTRL_REG1_XM);
    // Then mask out the accel ODR bits:
    temp &= 0xFF^(0xF << 4);
    // Then shift in our new ODR bits:
    temp |= (aRate << 4);
    // And write the new register value back into CTRL_REG1_XM:
    xmWriteByte(CTRL_REG1_XM, temp);
}
void LSM9DS0::setMagODR(mag_odr mRate)
{
    // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
    uint8_t temp = xmReadByte(CTRL_REG5_XM);
    // Then mask out the mag ODR bits:
    temp &= 0xFF^(0x7 << 2);
    // Then shift in our new ODR bits:
    temp |= (mRate << 2);
    // And write the new register value back into CTRL_REG5_XM:
    xmWriteByte(CTRL_REG5_XM, temp);
}

void LSM9DS0::configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX, uint16_t int1ThsY, uint16_t int1ThsZ, uint8_t duration)
{
    gWriteByte(INT1_CFG_G, int1Cfg);
    gWriteByte(INT1_THS_XH_G, (int1ThsX & 0xFF00) >> 8);
    gWriteByte(INT1_THS_XL_G, (int1ThsX & 0xFF));
    gWriteByte(INT1_THS_YH_G, (int1ThsY & 0xFF00) >> 8);
    gWriteByte(INT1_THS_YL_G, (int1ThsY & 0xFF));
    gWriteByte(INT1_THS_ZH_G, (int1ThsZ & 0xFF00) >> 8);
    gWriteByte(INT1_THS_ZL_G, (int1ThsZ & 0xFF));
    if (duration)
        gWriteByte(INT1_DURATION_G, 0x80 | duration);
    else
        gWriteByte(INT1_DURATION_G, 0x00);
}

void LSM9DS0::calcgRes()
{
    // Possible gyro scales (and their register bit settings) are:
    // 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm
    // to calculate DPS/(ADC tick) based on that 2-bit value:
    switch (gScale)
    {
    case G_SCALE_245DPS:
        gRes = 245.0 / 32768.0;
        break;
    case G_SCALE_500DPS:
        gRes = 500.0 / 32768.0;
        break;
    case G_SCALE_2000DPS:
        gRes = 2000.0 / 32768.0;
        break;
    }
}

void LSM9DS0::calcaRes()
{
    // Possible accelerometer scales (and their register bit settings) are:
    // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an 
    // algorithm to calculate g/(ADC tick) based on that 3-bit value:
    aRes = aScale == A_SCALE_16G ? 16.0 / 32768.0 : 
           (((float) aScale + 1.0) * 2.0) / 32768.0;
}

void LSM9DS0::calcmRes()
{
    // Possible magnetometer scales (and their register bit settings) are:
    // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm
    // to calculate Gs/(ADC tick) based on that 2-bit value:
    mRes = mScale == M_SCALE_2GS ? 2.0 / 32768.0 : 
           (float) (mScale << 2) / 32768.0;
}
    
void LSM9DS0::gWriteByte(uint8_t subAddress, uint8_t data)
{
    // Whether we're using I2C or SPI, write a byte using the
    // gyro-specific I2C address or SPI CS pin.
    I2CwriteByte(gAddress, subAddress, data);
}

void LSM9DS0::xmWriteByte(uint8_t subAddress, uint8_t data)
{
    // Whether we're using I2C or SPI, write a byte using the
    // accelerometer-specific I2C address or SPI CS pin.
        return I2CwriteByte(xmAddress, subAddress, data);
}

uint8_t LSM9DS0::gReadByte(uint8_t subAddress)
{
        return I2CreadByte(gAddress, subAddress);
}

void LSM9DS0::gReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
{
    // Whether we're using I2C or SPI, read multiple bytes using the
    // gyro-specific I2C address or SPI CS pin.
        I2CreadBytes(gAddress, subAddress, dest, count);
}

uint8_t LSM9DS0::xmReadByte(uint8_t subAddress)
{
    // Whether we're using I2C or SPI, read a byte using the
    // accelerometer-specific I2C address or SPI CS pin.
        return I2CreadByte(xmAddress, subAddress);
}

void LSM9DS0::xmReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
{
    // Whether we're using I2C or SPI, read multiple bytes using the
    // accelerometer-specific I2C address or SPI CS pin.
        I2CreadBytes(xmAddress, subAddress, dest, count);
}


void LSM9DS0::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
   /* i2c_->start();
     wait_ms(1);
    i2c_->write(address);
    wait_ms(1);
    i2c_->write(subAddress);
    wait_ms(1);
    
    i2c_->write(data);
    wait_ms(1);
    i2c_->stop();*/
    
    i2c_->writeByte(address,subAddress,data);
}

uint8_t LSM9DS0::I2CreadByte(uint8_t address, uint8_t subAddress)
{
    char data[1]; // `data` will store the register data
    
   /* data[0] = subAddress;
    
    i2c_->write(address, data, 1, true);
    i2c_->read(address, data, 1, true);

        i2c_->stop();
    return (uint8_t)data[0]; // Return data from register*/
    
    I2CreadBytes(address, subAddress,(uint8_t*)data, 1);
    return (uint8_t)data[0];

}

void LSM9DS0::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest,
                            uint8_t count)
{
    /*char data[1]; // `data` will store the register data
    data[0] = subAddress;
    
    
    i2c_->write(address, data, 1, true);
    i2c_->read(address, data, 1, true);
    
    dest[0] = data[0];
    for (int i=1; i<count ;i++)
    {
        if(i == (count -1))
        dest[i] = i2c_->read(0);
        else
        dest[i] = i2c_->read(1);
    }
    // End I2C Transmission
    i2c_->stop();*/
    /*char command[1];
    command[0] = subAddress;
    char *redData = (char*)malloc(count);
    i2c_->write(address, command, 1, true);
    
    i2c_->read(address, redData, count);
    for(int i =0; i < count; i++) {
        dest[i] = redData[i];
    }
    
    free(redData);*/
    
    i2c_->readBytes(address, subAddress, count, dest);
}