A cut-down version of https://os.mbed.com/users/Sissors/code/DS1820/ tweaked for use with the STM32F103. It is all generic Mbed operations though, so should be usable anywhere. Non-essential functions have been removed, as this is intended for use within a tutorial.
Dependents: STM32F103C8T6_DS18B20 stm32f103c8t6-ds18b20
Fork of DS1820 by
DS1820.cpp
- Committer:
- deece
- Date:
- 2018-01-25
- Revision:
- 19:b9d69bad8185
- Parent:
- 17:045f96704cc6
File content as of revision 19:b9d69bad8185:
#include "DS1820.h" static inline void onewire_input(DigitalInOut &pin) { pin.input(); } static inline void onewire_output(DigitalInOut &pin) { pin.output(); pin.write(0); } LinkedList<node> DS1820::probes; DS1820::DS1820 (PinName data_pin) : _datapin(data_pin) { int byte_counter; for(byte_counter=0;byte_counter<9;byte_counter++) RAM[byte_counter] = 0x00; onewire_input(_datapin); if (!unassignedProbe(_ROM)) error("No unassigned DS1820 found!\r\n"); else { onewire_input(_datapin); probes.append(this); } } DS1820::~DS1820 (void) { node *tmp; for(int i=1; i<=probes.length(); i++) { tmp = probes.pop(i); if (tmp->data == this) probes.remove(i); } } bool DS1820::onewire_reset() { // This will return false if no devices are present on the data bus bool presence=false; onewire_output(_datapin); // bring low for 500 us wait_us(500); onewire_input(_datapin); // let the data line float high wait_us(90); // wait 90us if (_datapin.read()==0) // see if any devices are pulling the data line low presence=true; wait_us(410); return presence; } void DS1820::onewire_bit_out (bool bit_data) { onewire_output(_datapin); wait_us(1); // DXP modified from 5 if (!bit_data) { wait_us(57); // keep data line low } onewire_input(_datapin); wait_us(60); } void DS1820::onewire_byte_out(char data) { // output data character (least sig bit first). for (int n=0; n<8; n++) { onewire_bit_out(data & 0x01); data = data >> 1; // now the next bit is in the least sig bit position. } wait_us(100); } bool DS1820::onewire_bit_in() { bool answer; onewire_output(_datapin); wait_us(1); // DXP modified from 5 onewire_input(_datapin); wait_us(10); // DXP modified from 5 answer = _datapin.read(); wait_us(49); // DXP modified from 50 return answer; } char DS1820::onewire_byte_in() { // read byte, least sig byte first char answer = 0x00; int i; for (i=0; i<8; i++) { answer = answer >> 1; // shift over to make room for the next bit if (onewire_bit_in()) answer = answer | 0x80; // if the data port is high, make this bit a 1 } return answer; } bool DS1820::unassignedProbe(char *ROM_address) { return search_ROM_routine(0xF0, ROM_address); } bool DS1820::search_ROM_routine(char command, char *ROM_address) { bool DS1820_done_flag = false; int DS1820_last_descrepancy = 0; char DS1820_search_ROM[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int descrepancy_marker, ROM_bit_index; bool return_value, Bit_A, Bit_B; char byte_counter, bit_mask; return_value=false; while (!DS1820_done_flag) { if (!onewire_reset()) { return false; } else { ROM_bit_index=1; descrepancy_marker=0; char command_shift = command; for (int n=0; n<8; n++) { // Search ROM command or Search Alarm command onewire_bit_out(command_shift & 0x01); command_shift = command_shift >> 1; // now the next bit is in the least sig bit position. } wait_us(100); byte_counter = 0; bit_mask = 0x01; while (ROM_bit_index<=64) { Bit_A = onewire_bit_in(); Bit_B = onewire_bit_in(); if (Bit_A & Bit_B) { descrepancy_marker = 0; // data read error, this should never happen ROM_bit_index = 0xFF; } else { if (Bit_A | Bit_B) { // Set ROM bit to Bit_A if (Bit_A) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one } else { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero } } else { // both bits A and B are low, so there are two or more devices present if ( ROM_bit_index == DS1820_last_descrepancy ) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one } else { if ( ROM_bit_index > DS1820_last_descrepancy ) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero descrepancy_marker = ROM_bit_index; } else { if (( DS1820_search_ROM[byte_counter] & bit_mask) == 0x00 ) descrepancy_marker = ROM_bit_index; } } } onewire_bit_out (DS1820_search_ROM[byte_counter] & bit_mask); ROM_bit_index++; if (bit_mask & 0x80) { byte_counter++; bit_mask = 0x01; } else { bit_mask = bit_mask << 1; } } wait_us(100); } DS1820_last_descrepancy = descrepancy_marker; if (ROM_bit_index != 0xFF) { int i = 1; node *list_container; while(1) { list_container = probes.pop(i); if (list_container == NULL) { //End of list, or empty list if (ROM_checksum_error(DS1820_search_ROM)) { // Check the CRC return false; } for(byte_counter=0;byte_counter<8;byte_counter++) ROM_address[byte_counter] = DS1820_search_ROM[byte_counter]; printf("Found DS18B20: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\r\n", ROM_address[0], ROM_address[1], ROM_address[2], ROM_address[3], ROM_address[4], ROM_address[5], ROM_address[6], ROM_address[7]); return true; } else { //Otherwise, check if ROM is already known bool equal = true; DS1820 *pointer = (DS1820*) list_container->data; char *ROM_compare = pointer->_ROM; for(byte_counter=0;byte_counter<8;byte_counter++) { if ( ROM_compare[byte_counter] != DS1820_search_ROM[byte_counter]) equal = false; } if (equal) break; else i++; } } } } if (DS1820_last_descrepancy == 0) DS1820_done_flag = true; } return return_value; } void DS1820::match_ROM() { // Used to select a specific device int i; onewire_reset(); onewire_byte_out(0x55); //Match ROM command for (i=0;i<8;i++) { onewire_byte_out(_ROM[i]); } } void DS1820::skip_ROM() { onewire_reset(); onewire_byte_out(0xCC); // Skip ROM command } bool DS1820::ROM_checksum_error(char *_ROM_address) { char _CRC=0x00; int i; for(i=0;i<7;i++) // Only going to shift the lower 7 bytes _CRC = CRC_byte(_CRC, _ROM_address[i]); // After 7 bytes CRC should equal the 8th byte (ROM CRC) return (_CRC!=_ROM_address[7]); // will return true if there is a CRC checksum mis-match } bool DS1820::RAM_checksum_error() { char _CRC=0x00; int i; for(i=0;i<8;i++) // Only going to shift the lower 8 bytes _CRC = CRC_byte(_CRC, RAM[i]); // After 8 bytes CRC should equal the 9th byte (RAM CRC) return (_CRC!=RAM[8]); // will return true if there is a CRC checksum mis-match } char DS1820::CRC_byte (char _CRC, char byte ) { int j; for(j=0;j<8;j++) { if ((byte & 0x01 ) ^ (_CRC & 0x01)) { // DATA ^ LSB CRC = 1 _CRC = _CRC>>1; // Set the MSB to 1 _CRC = _CRC | 0x80; // Check bit 3 if (_CRC & 0x04) { _CRC = _CRC & 0xFB; // Bit 3 is set, so clear it } else { _CRC = _CRC | 0x04; // Bit 3 is clear, so set it } // Check bit 4 if (_CRC & 0x08) { _CRC = _CRC & 0xF7; // Bit 4 is set, so clear it } else { _CRC = _CRC | 0x08; // Bit 4 is clear, so set it } } else { // DATA ^ LSB CRC = 0 _CRC = _CRC>>1; // clear MSB _CRC = _CRC & 0x7F; // No need to check bits, with DATA ^ LSB CRC = 0, they will remain unchanged } byte = byte>>1; } return _CRC; } int DS1820::convertTemperature(bool wait, devices device) { // Convert temperature into scratchpad RAM for all devices at once int delay_time = 850; // Default delay time if (device==all_devices) skip_ROM(); // Skip ROM command, will convert for ALL devices else { match_ROM(); } onewire_byte_out(0x44); // perform temperature conversion if (wait) { wait_ms(delay_time); } return delay_time; } void DS1820::read_RAM() { // This will copy the DS1820's 9 bytes of RAM data // into the objects RAM array. Functions that use // RAM values will automaticly call this procedure. int i; match_ROM(); // Select this device onewire_byte_out( 0xBE); //Read Scratchpad command for(i=0;i<9;i++) { RAM[i] = onewire_byte_in(); } printf("Scratchpad=%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\r\n", RAM[8], RAM[7], RAM[6], RAM[5], RAM[4], RAM[3], RAM[2], RAM[1], RAM[0]); printf("Checksum is %s\r\n", RAM_checksum_error() ? "bad" : "good"); } bool DS1820::setResolution(unsigned int resolution) { bool answer = false; resolution = resolution - 9; if (resolution < 4) { resolution = resolution<<5; // align the bits RAM[4] = (RAM[4] & 0x60) | resolution; // mask out old data, insert new write_scratchpad ((RAM[2]<<8) + RAM[3]); // store_scratchpad (DS1820::this_device); // Need to test if this is required answer = true; } return answer; } void DS1820::write_scratchpad(int data) { RAM[3] = data; RAM[2] = data>>8; match_ROM(); onewire_byte_out(0x4E); // Copy scratchpad into DS1820 ram memory onewire_byte_out(RAM[2]); // T(H) onewire_byte_out(RAM[3]); // T(L) if ((FAMILY_CODE == FAMILY_CODE_DS18B20 ) || (FAMILY_CODE == FAMILY_CODE_DS1822 )) { onewire_byte_out(RAM[4]); // Configuration register } } float DS1820::temperature(char scale) { // The data specs state that count_per_degree should be 0x10 (16), I found my devices // to have a count_per_degree of 0x4B (75). With the standard resolution of 1/2 deg C // this allowed an expanded resolution of 1/150th of a deg C. I wouldn't rely on this // being super acurate, but it does allow for a smooth display in the 1/10ths of a // deg C or F scales. float answer, remaining_count, count_per_degree; int reading; read_RAM(); if (RAM_checksum_error()) // Indicate we got a CRC error answer = invalid_conversion; else { reading = (RAM[1] << 8) + RAM[0]; if (reading & 0x8000) { // negative degrees C reading = 0-((reading ^ 0xffff) + 1); // 2's comp then convert to signed int } answer = reading +0.0; // convert to floating point if ((FAMILY_CODE == FAMILY_CODE_DS18B20 ) || (FAMILY_CODE == FAMILY_CODE_DS1822 )) { answer = answer / 16.0f; } else { remaining_count = RAM[6]; count_per_degree = RAM[7]; answer = floor(answer/2.0f) - 0.25f + (count_per_degree - remaining_count) / count_per_degree; } if (scale=='F' or scale=='f') // Convert to deg F answer = answer * 9.0f / 5.0f + 32.0f; } return answer; }