David Salmon / Mbed OS ES_CW2_Starter_MDMA

Dependencies:   PID

Fork of ES_CW2_Starter by Edward Stott

Committer:
david_s95
Date:
Thu Mar 09 12:17:32 2017 +0000
Revision:
11:1f596bf4182b
Parent:
10:0309d6c49f26
Child:
12:8ea29b18d289
Removed some unused old functions.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
estott 0:de4320f74764 1 #include "mbed.h"
estott 0:de4320f74764 2 #include "rtos.h"
david_s95 5:e5313b695302 3 #include <string>
david_s95 10:0309d6c49f26 4 #include "PID.h"
david_s95 10:0309d6c49f26 5
david_s95 10:0309d6c49f26 6 //PID controller configuration
david_s95 10:0309d6c49f26 7 float PIDrate = 0.2;
david_s95 10:0309d6c49f26 8 float Kc = 1.0;
david_s95 10:0309d6c49f26 9 float Ti = 0.0;
david_s95 10:0309d6c49f26 10 float Td = 0.0;
david_s95 10:0309d6c49f26 11 float speedControl = 0;
david_s95 10:0309d6c49f26 12 PID controller(Kc, Ti, Td, PIDrate);
david_s95 10:0309d6c49f26 13 Thread VPIDthread;
estott 0:de4320f74764 14
estott 0:de4320f74764 15 //Photointerrupter input pins
estott 0:de4320f74764 16 #define I1pin D2
estott 2:4e88faab6988 17 #define I2pin D11
estott 2:4e88faab6988 18 #define I3pin D12
estott 2:4e88faab6988 19
estott 2:4e88faab6988 20 //Incremental encoder input pins
estott 2:4e88faab6988 21 #define CHA D7
david_s95 5:e5313b695302 22 #define CHB D8
estott 0:de4320f74764 23
estott 0:de4320f74764 24 //Motor Drive output pins //Mask in output byte
estott 2:4e88faab6988 25 #define L1Lpin D4 //0x01
estott 2:4e88faab6988 26 #define L1Hpin D5 //0x02
estott 2:4e88faab6988 27 #define L2Lpin D3 //0x04
estott 2:4e88faab6988 28 #define L2Hpin D6 //0x08
estott 2:4e88faab6988 29 #define L3Lpin D9 //0x10
estott 0:de4320f74764 30 #define L3Hpin D10 //0x20
estott 0:de4320f74764 31
david_s95 5:e5313b695302 32 //Define sized for command arrays
david_s95 5:e5313b695302 33 #define ARRAYSIZE 8
david_s95 5:e5313b695302 34
estott 0:de4320f74764 35 //Mapping from sequential drive states to motor phase outputs
estott 0:de4320f74764 36 /*
estott 0:de4320f74764 37 State L1 L2 L3
estott 0:de4320f74764 38 0 H - L
estott 0:de4320f74764 39 1 - H L
estott 0:de4320f74764 40 2 L H -
estott 0:de4320f74764 41 3 L - H
estott 0:de4320f74764 42 4 - L H
estott 0:de4320f74764 43 5 H L -
estott 0:de4320f74764 44 6 - - -
estott 0:de4320f74764 45 7 - - -
estott 0:de4320f74764 46 */
estott 0:de4320f74764 47 //Drive state to output table
david_s95 9:575b29cbf5e4 48 //const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
david_s95 9:575b29cbf5e4 49 const int8_t driveTable[6] = {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32};
david_s95 9:575b29cbf5e4 50
david_s95 9:575b29cbf5e4 51 //const int8_t cwState[7] = {0, 4, 0, 5, 2, 3, 1};
david_s95 9:575b29cbf5e4 52 //const int8_t AcwState[7] = {0, 2, 4, 3, 0, 1, 5};
david_s95 9:575b29cbf5e4 53 //const int8_t cwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
david_s95 9:575b29cbf5e4 54 //const int8_t AcwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};
david_s95 9:575b29cbf5e4 55 const int8_t AcwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
david_s95 9:575b29cbf5e4 56 const int8_t cwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};
estott 2:4e88faab6988 57
estott 0:de4320f74764 58 //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
david_s95 9:575b29cbf5e4 59 //const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
estott 2:4e88faab6988 60 //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed
estott 2:4e88faab6988 61
estott 2:4e88faab6988 62 //Phase lead to make motor spin
david_s95 9:575b29cbf5e4 63 //int8_t lead = -2; //2 for forwards, -2 for backwards
estott 0:de4320f74764 64
estott 0:de4320f74764 65 //Status LED
estott 0:de4320f74764 66 DigitalOut led1(LED1);
estott 0:de4320f74764 67
estott 0:de4320f74764 68 //Photointerrupter inputs
david_s95 9:575b29cbf5e4 69 DigitalIn I1(I1pin);
david_s95 9:575b29cbf5e4 70 //InterruptIn I1(I1pin);
david_s95 9:575b29cbf5e4 71 InterruptIn I2(I2pin);
estott 2:4e88faab6988 72 DigitalIn I3(I3pin);
estott 0:de4320f74764 73
david_s95 8:77627657da80 74 InterruptIn qA(CHA);
david_s95 8:77627657da80 75 InterruptIn qB(CHB);
david_s95 8:77627657da80 76
estott 0:de4320f74764 77 //Motor Drive outputs
david_s95 9:575b29cbf5e4 78 //DigitalOut L1L(L1Lpin);
david_s95 9:575b29cbf5e4 79 //DigitalOut L1H(L1Hpin);
david_s95 9:575b29cbf5e4 80 //DigitalOut L2L(L2Lpin);
david_s95 9:575b29cbf5e4 81 //DigitalOut L2H(L2Hpin);
david_s95 9:575b29cbf5e4 82 //DigitalOut L3L(L3Lpin);
david_s95 9:575b29cbf5e4 83 //DigitalOut L3H(L3Hpin);
david_s95 5:e5313b695302 84 DigitalOut clk(LED1);
david_s95 8:77627657da80 85 DigitalOut Direction(LED2);
david_s95 9:575b29cbf5e4 86 DigitalOut testpin(D13);
david_s95 9:575b29cbf5e4 87
david_s95 9:575b29cbf5e4 88 //NOTE, BusOut declares things in reverse (ie, 0, 1, 2, 3) compared to binary represenation
david_s95 9:575b29cbf5e4 89 BusOut motor(L1Lpin, L1Hpin, L2Lpin, L2Hpin, L3Lpin, L3Hpin);
david_s95 5:e5313b695302 90
david_s95 5:e5313b695302 91 //Timeout function for rotating at set speed
david_s95 5:e5313b695302 92 Timeout spinTimer;
david_s95 5:e5313b695302 93 float spinWait = 10;
david_s95 5:e5313b695302 94 float revsec = 0;
david_s95 5:e5313b695302 95
david_s95 7:5932ed0bad6d 96 //Timer used for calculating speed
david_s95 7:5932ed0bad6d 97 Timer speedTimer;
david_s95 10:0309d6c49f26 98 float measuredRevs = 0, revtimer = 0;
david_s95 7:5932ed0bad6d 99 Ticker printSpeed;
david_s95 7:5932ed0bad6d 100
david_s95 5:e5313b695302 101 Serial pc(SERIAL_TX, SERIAL_RX);
david_s95 5:e5313b695302 102
david_s95 5:e5313b695302 103 int8_t orState = 0; //Rotor offset at motor state 0
david_s95 5:e5313b695302 104 int8_t intState = 0;
david_s95 5:e5313b695302 105 int8_t intStateOld = 0;
david_s95 9:575b29cbf5e4 106 int position = 0;
david_s95 5:e5313b695302 107
david_s95 5:e5313b695302 108 int i=0;
david_s95 10:0309d6c49f26 109 int quadraturePosition=0;
david_s95 9:575b29cbf5e4 110 bool spinCW=0;
david_s95 10:0309d6c49f26 111 float u = 0; //Set point for VPI
david_s95 5:e5313b695302 112
estott 0:de4320f74764 113 //Set a given drive state
david_s95 5:e5313b695302 114 void motorOut(int8_t driveState)
david_s95 5:e5313b695302 115 {
david_s95 5:e5313b695302 116
david_s95 9:575b29cbf5e4 117 //Set to zero
david_s95 9:575b29cbf5e4 118 motor=0x2A;
david_s95 10:0309d6c49f26 119
david_s95 9:575b29cbf5e4 120 //Go to next state
david_s95 9:575b29cbf5e4 121 if(!spinCW) motor = AcwState[driveState];
david_s95 9:575b29cbf5e4 122 else motor = cwState[driveState];
estott 2:4e88faab6988 123 //Lookup the output byte from the drive state.
david_s95 9:575b29cbf5e4 124 // int8_t driveOut = driveTable[driveState & 0x07];
david_s95 10:0309d6c49f26 125 }
david_s95 5:e5313b695302 126
david_s95 10:0309d6c49f26 127 inline void motorStop()
david_s95 10:0309d6c49f26 128 {
david_s95 10:0309d6c49f26 129 //revsec set to zero prevents recurring interrupt for constant speed
david_s95 10:0309d6c49f26 130 revsec = 0;
david_s95 10:0309d6c49f26 131 //0x2A turns all motor transistors off to prevent any power usage
david_s95 10:0309d6c49f26 132 motor = 0x2A;
david_s95 5:e5313b695302 133 }
david_s95 5:e5313b695302 134
david_s95 5:e5313b695302 135 //Convert photointerrupter inputs to a rotor state
david_s95 5:e5313b695302 136 inline int8_t readRotorState()
david_s95 5:e5313b695302 137 {
david_s95 9:575b29cbf5e4 138 return (I1 + 2*I2 + 4*I3);
david_s95 5:e5313b695302 139 }
estott 0:de4320f74764 140
david_s95 5:e5313b695302 141 //Basic synchronisation routine
david_s95 5:e5313b695302 142 int8_t motorHome()
david_s95 5:e5313b695302 143 {
estott 0:de4320f74764 144 //Put the motor in drive state 0 and wait for it to stabilise
david_s95 9:575b29cbf5e4 145 motor=cwState[1];
estott 0:de4320f74764 146 wait(1.0);
david_s95 10:0309d6c49f26 147
david_s95 9:575b29cbf5e4 148 position = 0;
david_s95 5:e5313b695302 149
estott 0:de4320f74764 150 //Get the rotor state
estott 2:4e88faab6988 151 return readRotorState();
estott 0:de4320f74764 152 }
david_s95 5:e5313b695302 153
david_s95 5:e5313b695302 154 void fixedSpeed()
david_s95 5:e5313b695302 155 {
david_s95 6:4edbe75736d9 156 //Read current motor state
david_s95 10:0309d6c49f26 157 // clk=!clk;
david_s95 10:0309d6c49f26 158 // {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32};
david_s95 10:0309d6c49f26 159 //if(spinCW) {
david_s95 10:0309d6c49f26 160 // switch(motor) {
david_s95 10:0309d6c49f26 161 // case 0x38:
david_s95 10:0309d6c49f26 162 // motor=0x2C;
david_s95 10:0309d6c49f26 163 // break;
david_s95 10:0309d6c49f26 164 // case 0x2C:
david_s95 10:0309d6c49f26 165 // motor=0x0E;
david_s95 10:0309d6c49f26 166 // break;
david_s95 10:0309d6c49f26 167 // case 0x0E:
david_s95 10:0309d6c49f26 168 // motor=0x0B;
david_s95 10:0309d6c49f26 169 // break;
david_s95 10:0309d6c49f26 170 // case 0x0B:
david_s95 10:0309d6c49f26 171 // motor=0x23;
david_s95 10:0309d6c49f26 172 // break;
david_s95 10:0309d6c49f26 173 // case 0x23:
david_s95 10:0309d6c49f26 174 // motor=0x32;
david_s95 10:0309d6c49f26 175 // break;
david_s95 10:0309d6c49f26 176 // case 0x32:
david_s95 10:0309d6c49f26 177 // motor=0x38;
david_s95 10:0309d6c49f26 178 // break;
david_s95 10:0309d6c49f26 179 // }
david_s95 10:0309d6c49f26 180 // } else {
david_s95 10:0309d6c49f26 181 // switch(motor) {
david_s95 10:0309d6c49f26 182 // case 0x38:
david_s95 10:0309d6c49f26 183 // motor=0x32;
david_s95 10:0309d6c49f26 184 // break;
david_s95 10:0309d6c49f26 185 // case 0x2C:
david_s95 10:0309d6c49f26 186 // motor=0x38;
david_s95 10:0309d6c49f26 187 // break;
david_s95 10:0309d6c49f26 188 // case 0x0E:
david_s95 10:0309d6c49f26 189 // motor=0x2C;
david_s95 10:0309d6c49f26 190 // break;
david_s95 10:0309d6c49f26 191 // case 0x0B:
david_s95 10:0309d6c49f26 192 // motor=0x0E;
david_s95 10:0309d6c49f26 193 // break;
david_s95 10:0309d6c49f26 194 // case 0x23:
david_s95 10:0309d6c49f26 195 // motor=0x0B;
david_s95 10:0309d6c49f26 196 // break;
david_s95 10:0309d6c49f26 197 // case 0x32:
david_s95 10:0309d6c49f26 198 // motor=0x23;
david_s95 10:0309d6c49f26 199 // break;
david_s95 10:0309d6c49f26 200 // }
david_s95 10:0309d6c49f26 201 // }
david_s95 5:e5313b695302 202 intState = readRotorState();
david_s95 6:4edbe75736d9 203 //Increment state machine to next state
david_s95 9:575b29cbf5e4 204 motorOut(intState);
david_s95 6:4edbe75736d9 205 //If spinning is required, attach the necessary wait to the
david_s95 6:4edbe75736d9 206 //timeout interrupt to call this function again and
david_s95 6:4edbe75736d9 207 //keep the motor spinning at the right speed
david_s95 5:e5313b695302 208 if(revsec) spinTimer.attach(&fixedSpeed, spinWait);
david_s95 5:e5313b695302 209 }
david_s95 5:e5313b695302 210
david_s95 10:0309d6c49f26 211 void rps()
david_s95 7:5932ed0bad6d 212 {
david_s95 10:0309d6c49f26 213
david_s95 10:0309d6c49f26 214 clk=!clk;
david_s95 10:0309d6c49f26 215 speedTimer.stop();
david_s95 10:0309d6c49f26 216 revtimer = speedTimer.read_ms();
david_s95 10:0309d6c49f26 217 speedTimer.reset();
david_s95 10:0309d6c49f26 218 speedTimer.start();
david_s95 10:0309d6c49f26 219
david_s95 10:0309d6c49f26 220 measuredRevs = 1000/(revtimer);
david_s95 10:0309d6c49f26 221 quadraturePosition=0;
david_s95 10:0309d6c49f26 222
david_s95 7:5932ed0bad6d 223 }
david_s95 7:5932ed0bad6d 224
david_s95 10:0309d6c49f26 225 void VPID()
david_s95 10:0309d6c49f26 226 {
david_s95 10:0309d6c49f26 227 while(1) {
david_s95 10:0309d6c49f26 228 controller.setSetPoint(revsec);
david_s95 10:0309d6c49f26 229 // printf("revsec: %2.3f\r\n", revsec);
david_s95 10:0309d6c49f26 230 controller.setProcessValue(measuredRevs);
david_s95 10:0309d6c49f26 231 speedControl = controller.compute();
david_s95 10:0309d6c49f26 232 // printf("speed setpoint: %2.3f\r\n", speedControl);
david_s95 10:0309d6c49f26 233 Thread::wait(PIDrate);
david_s95 10:0309d6c49f26 234 }
david_s95 10:0309d6c49f26 235 }
david_s95 10:0309d6c49f26 236 /*
david_s95 7:5932ed0bad6d 237
david_s95 9:575b29cbf5e4 238 void edgeRiseA()
david_s95 9:575b29cbf5e4 239 {
david_s95 8:77627657da80 240 pos++;
david_s95 9:575b29cbf5e4 241 if(pos>=468) {
david_s95 8:77627657da80 242 // Direction=!Direction;
david_s95 8:77627657da80 243 pos=pos%468;
david_s95 8:77627657da80 244 // testpin=!testpin;
david_s95 8:77627657da80 245 }
david_s95 8:77627657da80 246 if(qB) DIR = 0;
david_s95 8:77627657da80 247 else DIR = 1;
david_s95 9:575b29cbf5e4 248 // clk=DIR;
david_s95 8:77627657da80 249 //CLOCKWISE: A rises before B -> On A edge, B low -> DIR = 1
david_s95 8:77627657da80 250 //ANTICLOCKWISE: B rises before A -> On A edge, B high-> DIR = 0
david_s95 8:77627657da80 251 }
david_s95 8:77627657da80 252
david_s95 9:575b29cbf5e4 253 void edgeIncr()
david_s95 9:575b29cbf5e4 254 {
david_s95 8:77627657da80 255 pos++;
david_s95 9:575b29cbf5e4 256 if(pos>=468) {
david_s95 8:77627657da80 257 // Direction=!Direction;
david_s95 8:77627657da80 258 pos=pos%468;
david_s95 8:77627657da80 259 // testpin=!testpin;
david_s95 8:77627657da80 260 }
david_s95 9:575b29cbf5e4 261 }*/
david_s95 8:77627657da80 262
david_s95 9:575b29cbf5e4 263 //#define WAIT 2
mengkiang 4:f8a9ce214db9 264 //Main function
david_s95 5:e5313b695302 265 int main()
david_s95 5:e5313b695302 266 {
david_s95 9:575b29cbf5e4 267 pc.printf("spin\n\r");
david_s95 10:0309d6c49f26 268
david_s95 9:575b29cbf5e4 269 // motor = 0x0E;
david_s95 10:0309d6c49f26 270 /* while(1){
david_s95 10:0309d6c49f26 271 motor=0x38;
david_s95 10:0309d6c49f26 272 printf("0x38\r\n");
david_s95 10:0309d6c49f26 273 wait(WAIT);
david_s95 10:0309d6c49f26 274 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 275 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 276 motor=0x2C;
david_s95 10:0309d6c49f26 277 printf("0x2C\r\n");
david_s95 10:0309d6c49f26 278 wait(WAIT);
david_s95 10:0309d6c49f26 279 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 280 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 281 motor=0x0E;
david_s95 10:0309d6c49f26 282 printf("0x0E\r\n");
david_s95 10:0309d6c49f26 283 wait(WAIT);
david_s95 10:0309d6c49f26 284 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 285 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 286 motor=0x0B;
david_s95 10:0309d6c49f26 287 printf("0x0B\r\n");
david_s95 10:0309d6c49f26 288 wait(WAIT);
david_s95 10:0309d6c49f26 289 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 290 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 291 motor=0x23;
david_s95 10:0309d6c49f26 292 printf("0x23\r\n");
david_s95 10:0309d6c49f26 293 wait(WAIT);
david_s95 10:0309d6c49f26 294 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 295 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 296 motor=0x32;
david_s95 10:0309d6c49f26 297 printf("0x32\r\n");
david_s95 10:0309d6c49f26 298 wait(WAIT);
david_s95 10:0309d6c49f26 299 position = I1 + 2*I2 + 4*I3;
david_s95 10:0309d6c49f26 300 printf("position: %d\r\n", position);
david_s95 10:0309d6c49f26 301 }*/
david_s95 7:5932ed0bad6d 302
estott 0:de4320f74764 303 //Run the motor synchronisation
estott 2:4e88faab6988 304 orState = motorHome();
david_s95 6:4edbe75736d9 305 //orState is subtracted from future rotor state inputs to align rotor and motor states
david_s95 6:4edbe75736d9 306
estott 2:4e88faab6988 307 pc.printf("Rotor origin: %x\n\r",orState);
david_s95 5:e5313b695302 308
david_s95 6:4edbe75736d9 309 char command[ARRAYSIZE];
david_s95 6:4edbe75736d9 310 int index=0;
david_s95 6:4edbe75736d9 311 int units = 0, tens = 0, decimals = 0;
david_s95 6:4edbe75736d9 312 char ch;
david_s95 9:575b29cbf5e4 313 testpin=0;
david_s95 7:5932ed0bad6d 314
david_s95 10:0309d6c49f26 315 speedTimer.reset();
david_s95 10:0309d6c49f26 316 speedTimer.start();
david_s95 10:0309d6c49f26 317 I2.mode(PullNone);
david_s95 10:0309d6c49f26 318 I2.fall(&rps);
david_s95 9:575b29cbf5e4 319 //
david_s95 9:575b29cbf5e4 320 // qA.rise(&edgeRiseA);
david_s95 9:575b29cbf5e4 321 // qB.rise(&edgeIncr);
david_s95 9:575b29cbf5e4 322 // qA.fall(&edgeIncr);
david_s95 9:575b29cbf5e4 323 // qB.fall(&edgeIncr);
david_s95 7:5932ed0bad6d 324
david_s95 10:0309d6c49f26 325 VPIDthread.start(VPID);
david_s95 10:0309d6c49f26 326
david_s95 5:e5313b695302 327 while(1) {
david_s95 9:575b29cbf5e4 328 // clk = I2;
david_s95 6:4edbe75736d9 329 //Toggle LED so we know something's happening
david_s95 8:77627657da80 330 // clk = !clk;
david_s95 7:5932ed0bad6d 331
david_s95 6:4edbe75736d9 332 //If there's a character to read from the serial port
david_s95 6:4edbe75736d9 333 if (pc.readable()) {
david_s95 7:5932ed0bad6d 334
david_s95 6:4edbe75736d9 335 //Clear index counter and control variables
david_s95 6:4edbe75736d9 336 index = 0;
david_s95 7:5932ed0bad6d 337 // revsec = spinWait = 0;
david_s95 7:5932ed0bad6d 338
david_s95 6:4edbe75736d9 339 //Read each value from the serial port until Enter key is pressed
david_s95 6:4edbe75736d9 340 do {
david_s95 6:4edbe75736d9 341 //Read character
david_s95 6:4edbe75736d9 342 ch = pc.getc();
david_s95 6:4edbe75736d9 343 //Print character to serial for visual feedback
david_s95 6:4edbe75736d9 344 pc.putc(ch);
david_s95 6:4edbe75736d9 345 //Add character to input array
david_s95 6:4edbe75736d9 346 command[index++]=ch; // put it into the value array and increment the index
david_s95 7:5932ed0bad6d 347 //d10 and d13 used for detecting Enter key on Windows/Unix/Mac
david_s95 6:4edbe75736d9 348 } while(ch != 10 && ch != 13);
david_s95 7:5932ed0bad6d 349
david_s95 6:4edbe75736d9 350 //Start new line on terminal for printing data
david_s95 6:4edbe75736d9 351 pc.putc('\n');
david_s95 6:4edbe75736d9 352 pc.putc('\r');
david_s95 7:5932ed0bad6d 353
david_s95 6:4edbe75736d9 354 //Analyse the input string
david_s95 6:4edbe75736d9 355 switch (command[0]) {
david_s95 7:5932ed0bad6d 356 //If a V was typed...
david_s95 6:4edbe75736d9 357 case 'V':
david_s95 7:5932ed0bad6d 358 units = 0, tens = 0, decimals = 0;
david_s95 7:5932ed0bad6d 359 //For each character received, subtract ASCII 0 from ASCII
david_s95 7:5932ed0bad6d 360 //representation to obtain the integer value of the number
david_s95 9:575b29cbf5e4 361 if(command[1]=='-') {
david_s95 9:575b29cbf5e4 362 spinCW = 0;
david_s95 9:575b29cbf5e4 363 //If decimal point is in the second character (eg, V-.1)
david_s95 9:575b29cbf5e4 364 if(command[2]=='.') {
david_s95 9:575b29cbf5e4 365 //Extract decimal rev/s
david_s95 9:575b29cbf5e4 366 decimals = command[3] - '0';
david_s95 7:5932ed0bad6d 367
david_s95 9:575b29cbf5e4 368 //If decimal point is in the third character (eg, V-0.1)
david_s95 9:575b29cbf5e4 369 } else if(command[3]=='.') {
david_s95 9:575b29cbf5e4 370 units = command[2] - '0';
david_s95 9:575b29cbf5e4 371 decimals = command[4] - '0';
david_s95 7:5932ed0bad6d 372
david_s95 9:575b29cbf5e4 373 //If decimal point is in the fourth character (eg, V-10.1)
david_s95 9:575b29cbf5e4 374 } else if(command[4]=='.') {
david_s95 9:575b29cbf5e4 375 tens = command[2] - '0';
david_s95 9:575b29cbf5e4 376 units = command[3] - '0';
david_s95 9:575b29cbf5e4 377 decimals = command[5] - '0';
david_s95 9:575b29cbf5e4 378 }
david_s95 9:575b29cbf5e4 379 } else {
david_s95 9:575b29cbf5e4 380 spinCW = 1;
david_s95 9:575b29cbf5e4 381 //If decimal point is in the second character (eg, V.1)
david_s95 9:575b29cbf5e4 382 if(command[1]=='.') {
david_s95 9:575b29cbf5e4 383 //Extract decimal rev/s
david_s95 9:575b29cbf5e4 384 decimals = command[2] - '0';
david_s95 7:5932ed0bad6d 385
david_s95 9:575b29cbf5e4 386 //If decimal point is in the third character (eg, V0.1)
david_s95 9:575b29cbf5e4 387 } else if(command[2]=='.') {
david_s95 9:575b29cbf5e4 388 units = command[1] - '0';
david_s95 9:575b29cbf5e4 389 decimals = command[3] - '0';
david_s95 9:575b29cbf5e4 390
david_s95 9:575b29cbf5e4 391 //If decimal point is in the fourth character (eg, V10.1)
david_s95 9:575b29cbf5e4 392 } else if(command[3]=='.') {
david_s95 9:575b29cbf5e4 393 tens = command[1] - '0';
david_s95 9:575b29cbf5e4 394 units = command[2] - '0';
david_s95 9:575b29cbf5e4 395 decimals = command[4] - '0';
david_s95 9:575b29cbf5e4 396 }
david_s95 6:4edbe75736d9 397 }
david_s95 7:5932ed0bad6d 398
david_s95 6:4edbe75736d9 399 //Calculate the number of revolutions per second required
david_s95 6:4edbe75736d9 400 revsec = float(tens)*10 + float(units) + float(decimals)/10;
david_s95 6:4edbe75736d9 401 //Calculate the required wait period
david_s95 6:4edbe75736d9 402 spinWait = (1/revsec)/6;
david_s95 7:5932ed0bad6d 403
david_s95 6:4edbe75736d9 404 //Print values for verification
david_s95 7:5932ed0bad6d 405 pc.printf("Rev/S: %2.4f, Wait: %2.4f\n\r", revsec, spinWait);
david_s95 7:5932ed0bad6d 406
david_s95 6:4edbe75736d9 407 //Run the function to start rotating at a fixed speed
david_s95 6:4edbe75736d9 408 fixedSpeed();
david_s95 6:4edbe75736d9 409 break;
david_s95 7:5932ed0bad6d 410 //If anything unexpected was received
david_s95 7:5932ed0bad6d 411 case 's':
david_s95 9:575b29cbf5e4 412 // pc.printf("Revs / sec: %2.2f\r", revs);
david_s95 9:575b29cbf5e4 413 // printSpeed.attach(&speedo, 1.0);
david_s95 10:0309d6c49f26 414 printf("Measured: %2.3f, revsec: %2.3f\r\n", measuredRevs, revsec);
david_s95 10:0309d6c49f26 415 printf("speed setpoint: %2.3f\r\n", speedControl);
david_s95 7:5932ed0bad6d 416 break;
david_s95 8:77627657da80 417 case 't':
david_s95 10:0309d6c49f26 418 // pc.printf("%d\n\r", pos);
david_s95 8:77627657da80 419 break;
david_s95 6:4edbe75736d9 420 default:
david_s95 6:4edbe75736d9 421 //Set speed variables to zero to stop motor spinning
david_s95 6:4edbe75736d9 422 //Print error message
david_s95 10:0309d6c49f26 423 motorStop();
david_s95 10:0309d6c49f26 424 pc.printf("Error in received data 0\n\r");
david_s95 6:4edbe75736d9 425 break;
david_s95 6:4edbe75736d9 426 }
david_s95 6:4edbe75736d9 427 }
david_s95 7:5932ed0bad6d 428 // printSpeed.attach(&speedo, 1.0);
david_s95 7:5932ed0bad6d 429 // pc.printf("Revs / sec: %2.2f\r", revs);
estott 2:4e88faab6988 430 }
david_s95 5:e5313b695302 431
estott 0:de4320f74764 432 }