David Salmon
/
ES_CW2_Starter_MDMA
ES2017 coursework 2
Fork of ES_CW2_Starter by
main.cpp
- Committer:
- david_s95
- Date:
- 2017-03-09
- Revision:
- 11:1f596bf4182b
- Parent:
- 10:0309d6c49f26
- Child:
- 12:8ea29b18d289
File content as of revision 11:1f596bf4182b:
#include "mbed.h" #include "rtos.h" #include <string> #include "PID.h" //PID controller configuration float PIDrate = 0.2; float Kc = 1.0; float Ti = 0.0; float Td = 0.0; float speedControl = 0; PID controller(Kc, Ti, Td, PIDrate); Thread VPIDthread; //Photointerrupter input pins #define I1pin D2 #define I2pin D11 #define I3pin D12 //Incremental encoder input pins #define CHA D7 #define CHB D8 //Motor Drive output pins //Mask in output byte #define L1Lpin D4 //0x01 #define L1Hpin D5 //0x02 #define L2Lpin D3 //0x04 #define L2Hpin D6 //0x08 #define L3Lpin D9 //0x10 #define L3Hpin D10 //0x20 //Define sized for command arrays #define ARRAYSIZE 8 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table //const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; const int8_t driveTable[6] = {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32}; //const int8_t cwState[7] = {0, 4, 0, 5, 2, 3, 1}; //const int8_t AcwState[7] = {0, 2, 4, 3, 0, 1, 5}; //const int8_t cwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C}; //const int8_t AcwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32}; const int8_t AcwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C}; const int8_t cwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid //const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin //int8_t lead = -2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs DigitalIn I1(I1pin); //InterruptIn I1(I1pin); InterruptIn I2(I2pin); DigitalIn I3(I3pin); InterruptIn qA(CHA); InterruptIn qB(CHB); //Motor Drive outputs //DigitalOut L1L(L1Lpin); //DigitalOut L1H(L1Hpin); //DigitalOut L2L(L2Lpin); //DigitalOut L2H(L2Hpin); //DigitalOut L3L(L3Lpin); //DigitalOut L3H(L3Hpin); DigitalOut clk(LED1); DigitalOut Direction(LED2); DigitalOut testpin(D13); //NOTE, BusOut declares things in reverse (ie, 0, 1, 2, 3) compared to binary represenation BusOut motor(L1Lpin, L1Hpin, L2Lpin, L2Hpin, L3Lpin, L3Hpin); //Timeout function for rotating at set speed Timeout spinTimer; float spinWait = 10; float revsec = 0; //Timer used for calculating speed Timer speedTimer; float measuredRevs = 0, revtimer = 0; Ticker printSpeed; Serial pc(SERIAL_TX, SERIAL_RX); int8_t orState = 0; //Rotor offset at motor state 0 int8_t intState = 0; int8_t intStateOld = 0; int position = 0; int i=0; int quadraturePosition=0; bool spinCW=0; float u = 0; //Set point for VPI //Set a given drive state void motorOut(int8_t driveState) { //Set to zero motor=0x2A; //Go to next state if(!spinCW) motor = AcwState[driveState]; else motor = cwState[driveState]; //Lookup the output byte from the drive state. // int8_t driveOut = driveTable[driveState & 0x07]; } inline void motorStop() { //revsec set to zero prevents recurring interrupt for constant speed revsec = 0; //0x2A turns all motor transistors off to prevent any power usage motor = 0x2A; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState() { return (I1 + 2*I2 + 4*I3); } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motor=cwState[1]; wait(1.0); position = 0; //Get the rotor state return readRotorState(); } void fixedSpeed() { //Read current motor state // clk=!clk; // {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32}; //if(spinCW) { // switch(motor) { // case 0x38: // motor=0x2C; // break; // case 0x2C: // motor=0x0E; // break; // case 0x0E: // motor=0x0B; // break; // case 0x0B: // motor=0x23; // break; // case 0x23: // motor=0x32; // break; // case 0x32: // motor=0x38; // break; // } // } else { // switch(motor) { // case 0x38: // motor=0x32; // break; // case 0x2C: // motor=0x38; // break; // case 0x0E: // motor=0x2C; // break; // case 0x0B: // motor=0x0E; // break; // case 0x23: // motor=0x0B; // break; // case 0x32: // motor=0x23; // break; // } // } intState = readRotorState(); //Increment state machine to next state motorOut(intState); //If spinning is required, attach the necessary wait to the //timeout interrupt to call this function again and //keep the motor spinning at the right speed if(revsec) spinTimer.attach(&fixedSpeed, spinWait); } void rps() { clk=!clk; speedTimer.stop(); revtimer = speedTimer.read_ms(); speedTimer.reset(); speedTimer.start(); measuredRevs = 1000/(revtimer); quadraturePosition=0; } void VPID() { while(1) { controller.setSetPoint(revsec); // printf("revsec: %2.3f\r\n", revsec); controller.setProcessValue(measuredRevs); speedControl = controller.compute(); // printf("speed setpoint: %2.3f\r\n", speedControl); Thread::wait(PIDrate); } } /* void edgeRiseA() { pos++; if(pos>=468) { // Direction=!Direction; pos=pos%468; // testpin=!testpin; } if(qB) DIR = 0; else DIR = 1; // clk=DIR; //CLOCKWISE: A rises before B -> On A edge, B low -> DIR = 1 //ANTICLOCKWISE: B rises before A -> On A edge, B high-> DIR = 0 } void edgeIncr() { pos++; if(pos>=468) { // Direction=!Direction; pos=pos%468; // testpin=!testpin; } }*/ //#define WAIT 2 //Main function int main() { pc.printf("spin\n\r"); // motor = 0x0E; /* while(1){ motor=0x38; printf("0x38\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); motor=0x2C; printf("0x2C\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); motor=0x0E; printf("0x0E\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); motor=0x0B; printf("0x0B\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); motor=0x23; printf("0x23\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); motor=0x32; printf("0x32\r\n"); wait(WAIT); position = I1 + 2*I2 + 4*I3; printf("position: %d\r\n", position); }*/ //Run the motor synchronisation orState = motorHome(); //orState is subtracted from future rotor state inputs to align rotor and motor states pc.printf("Rotor origin: %x\n\r",orState); char command[ARRAYSIZE]; int index=0; int units = 0, tens = 0, decimals = 0; char ch; testpin=0; speedTimer.reset(); speedTimer.start(); I2.mode(PullNone); I2.fall(&rps); // // qA.rise(&edgeRiseA); // qB.rise(&edgeIncr); // qA.fall(&edgeIncr); // qB.fall(&edgeIncr); VPIDthread.start(VPID); while(1) { // clk = I2; //Toggle LED so we know something's happening // clk = !clk; //If there's a character to read from the serial port if (pc.readable()) { //Clear index counter and control variables index = 0; // revsec = spinWait = 0; //Read each value from the serial port until Enter key is pressed do { //Read character ch = pc.getc(); //Print character to serial for visual feedback pc.putc(ch); //Add character to input array command[index++]=ch; // put it into the value array and increment the index //d10 and d13 used for detecting Enter key on Windows/Unix/Mac } while(ch != 10 && ch != 13); //Start new line on terminal for printing data pc.putc('\n'); pc.putc('\r'); //Analyse the input string switch (command[0]) { //If a V was typed... case 'V': units = 0, tens = 0, decimals = 0; //For each character received, subtract ASCII 0 from ASCII //representation to obtain the integer value of the number if(command[1]=='-') { spinCW = 0; //If decimal point is in the second character (eg, V-.1) if(command[2]=='.') { //Extract decimal rev/s decimals = command[3] - '0'; //If decimal point is in the third character (eg, V-0.1) } else if(command[3]=='.') { units = command[2] - '0'; decimals = command[4] - '0'; //If decimal point is in the fourth character (eg, V-10.1) } else if(command[4]=='.') { tens = command[2] - '0'; units = command[3] - '0'; decimals = command[5] - '0'; } } else { spinCW = 1; //If decimal point is in the second character (eg, V.1) if(command[1]=='.') { //Extract decimal rev/s decimals = command[2] - '0'; //If decimal point is in the third character (eg, V0.1) } else if(command[2]=='.') { units = command[1] - '0'; decimals = command[3] - '0'; //If decimal point is in the fourth character (eg, V10.1) } else if(command[3]=='.') { tens = command[1] - '0'; units = command[2] - '0'; decimals = command[4] - '0'; } } //Calculate the number of revolutions per second required revsec = float(tens)*10 + float(units) + float(decimals)/10; //Calculate the required wait period spinWait = (1/revsec)/6; //Print values for verification pc.printf("Rev/S: %2.4f, Wait: %2.4f\n\r", revsec, spinWait); //Run the function to start rotating at a fixed speed fixedSpeed(); break; //If anything unexpected was received case 's': // pc.printf("Revs / sec: %2.2f\r", revs); // printSpeed.attach(&speedo, 1.0); printf("Measured: %2.3f, revsec: %2.3f\r\n", measuredRevs, revsec); printf("speed setpoint: %2.3f\r\n", speedControl); break; case 't': // pc.printf("%d\n\r", pos); break; default: //Set speed variables to zero to stop motor spinning //Print error message motorStop(); pc.printf("Error in received data 0\n\r"); break; } } // printSpeed.attach(&speedo, 1.0); // pc.printf("Revs / sec: %2.2f\r", revs); } }