ES2017 coursework 2

Dependencies:   PID

Fork of ES_CW2_Starter by Edward Stott

main.cpp

Committer:
david_s95
Date:
2017-03-02
Revision:
5:e5313b695302
Parent:
4:f8a9ce214db9
Child:
6:4edbe75736d9

File content as of revision 5:e5313b695302:

#include "mbed.h"
#include "rtos.h"
#include <string>

//Photointerrupter input pins
#define I1pin D2
#define I2pin D11
#define I3pin D12

//Incremental encoder input pins
#define CHA   D7
#define CHB   D8

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D4           //0x01
#define L1Hpin D5           //0x02
#define L2Lpin D3           //0x04
#define L2Hpin D6           //0x08
#define L3Lpin D9           //0x10
#define L3Hpin D10          //0x20

//Define sized for command arrays
#define ARRAYSIZE 8

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
DigitalIn I1(I1pin);
DigitalIn I2(I2pin);
DigitalIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);
DigitalOut clk(LED1);

//Timeout function for rotating at set speed
Timeout spinTimer;
float spinWait = 10;
float revsec = 0;

Serial pc(SERIAL_TX, SERIAL_RX);

int8_t orState = 0;    //Rotor offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;

int i=0;



//Set a given drive state
void motorOut(int8_t driveState)
{

    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];

    //Turn off first
    if (~driveOut & 0x01) L1L = 0;
    if (~driveOut & 0x02) L1H = 1;
    if (~driveOut & 0x04) L2L = 0;
    if (~driveOut & 0x08) L2H = 1;
    if (~driveOut & 0x10) L3L = 0;
    if (~driveOut & 0x20) L3H = 1;

    //Then turn on
    if (driveOut & 0x01) L1L = 1;
    if (driveOut & 0x02) L1H = 0;
    if (driveOut & 0x04) L2L = 1;
    if (driveOut & 0x08) L2H = 0;
    if (driveOut & 0x10) L3L = 1;
    if (driveOut & 0x20) L3H = 0;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return stateMap[I1 + 2*I2 + 4*I3];
}

//Basic synchronisation routine
int8_t motorHome()
{
    //Put the motor in drive state 0 and wait for it to stabilise
    motorOut(0);
    wait(1.0);

    //Get the rotor state
    return readRotorState();
}

void fixedSpeed()
{
    intState = readRotorState();
    motorOut((intState-orState+lead+6)%6);
    if(revsec) spinTimer.attach(&fixedSpeed, spinWait);

}

void Rx_interrupt(void)
{
//    NVIC_DisableIRQ(USB_IRQn);
    HAL_NVIC_DisableIRQ(USB0_IRQn);
////    printf("Interrupt\n\r");
//    pc.putc(48);
//    pc.putc(pc.getc());
//    printf("Lol");

    char command[ARRAYSIZE];
    int index=0;
    char ch;
//
//    //command[i++]=pc.getc();
//    ch=pc.getc();

    do {
        if (pc.readable()) {    // if there is a character to read from the device
            ch = USB->RBR;   // read it
            if (index<ARRAYSIZE) command[index++]=ch;  // put it into the value array and increment the index
        }
    } while (ch!='\n');    // loop until the \n character

//    NVIC_EnableIRQ(USB_IRQn);
    HAL_NVIC_EnableIRQ(USB_IRQn);

//    command[index]='\x0';  // add un 0 to end the c string

    int units = 0, tens = 0, decimals = 0;
    switch (command[0]) {
        case 'V':
            //If decimal point is in the second character (eg, V.1)
            if(command[1]=='.') {
                //Extract decimal rev/s
                decimals = command[2] - '0';
                //If decimal point is in the third character (eg, V0.1)
            } else if(command[2]=='.') {
                units = command[1] - '0';
                decimals = command[3] - '0';
                //If decimal point is in the fourth character (eg, V10.1)
            } else if(command[3]=='.') {
                tens = command[1] - '0';
                units = command[2] - '0';
                decimals = command[4] - '0';
            }
            //Calculate the number of revolutions per second required
            revsec = tens*10 + units + decimals/10;
            //Calculate the required wait period
            spinWait = (1/revsec)/6;
            //Print values for verification
//            pc.printf("Rev/S: %2.2f, Wait: %2.2f\n\r", revsec, spinWait);
            break;
        default:
//            pc.printf("Error in received data\n\r");
            break;
    }
    return;
}
//Main function
int main()
{
    pc.printf("Hello\n\r");

    // Setup a serial interrupt function to receive data
    pc.attach(&Rx_interrupt, Serial::RxIrq);
//    NVIC_EnableIRQ(USB_IRQn);
    HAL_NVIC_EnableIRQ(USB_IRQn);
    pc.putc('a');
    //Run the motor synchronisation
    orState = motorHome();
    pc.printf("Rotor origin: %x\n\r",orState);
    //orState is subtracted from future rotor state inputs to align rotor and motor states
    int counter = 0;

    while(1) {
        clk = !clk;
        wait(0.5);
    }


}


//#include "mbed.h"
//#include "RawSerial.h"
//
//DigitalOut clk(LED1);
//DigitalOut dat(LED2);
//DigitalOut enable(LED3);
//DigitalOut bit(LED4);
//
//RawSerial pc(USBTX, USBRX);
//
//char ch;
//
//void flip(void) {
//    clk = !clk;
//    ch = LPC_UART0->RBR;
//
//    LPC_UART0->RBR = ch;
//}
//
//int main() {
//    clk = 1;
//    pc.attach(&flip, Serial::RxIrq);
//    while(1) {
//        dat = !dat;
//        wait(0.5);
//    }
//}
//