David Salmon
/
ES_CW2_Starter_MDMA
ES2017 coursework 2
Fork of ES_CW2_Starter by
main.cpp
- Committer:
- david_s95
- Date:
- 2017-03-02
- Revision:
- 5:e5313b695302
- Parent:
- 4:f8a9ce214db9
- Child:
- 6:4edbe75736d9
File content as of revision 5:e5313b695302:
#include "mbed.h" #include "rtos.h" #include <string> //Photointerrupter input pins #define I1pin D2 #define I2pin D11 #define I3pin D12 //Incremental encoder input pins #define CHA D7 #define CHB D8 //Motor Drive output pins //Mask in output byte #define L1Lpin D4 //0x01 #define L1Hpin D5 //0x02 #define L2Lpin D3 //0x04 #define L2Hpin D6 //0x08 #define L3Lpin D9 //0x10 #define L3Hpin D10 //0x20 //Define sized for command arrays #define ARRAYSIZE 8 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs DigitalIn I1(I1pin); DigitalIn I2(I2pin); DigitalIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); DigitalOut clk(LED1); //Timeout function for rotating at set speed Timeout spinTimer; float spinWait = 10; float revsec = 0; Serial pc(SERIAL_TX, SERIAL_RX); int8_t orState = 0; //Rotor offset at motor state 0 int8_t intState = 0; int8_t intStateOld = 0; int i=0; //Set a given drive state void motorOut(int8_t driveState) { //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState() { return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0); wait(1.0); //Get the rotor state return readRotorState(); } void fixedSpeed() { intState = readRotorState(); motorOut((intState-orState+lead+6)%6); if(revsec) spinTimer.attach(&fixedSpeed, spinWait); } void Rx_interrupt(void) { // NVIC_DisableIRQ(USB_IRQn); HAL_NVIC_DisableIRQ(USB0_IRQn); //// printf("Interrupt\n\r"); // pc.putc(48); // pc.putc(pc.getc()); // printf("Lol"); char command[ARRAYSIZE]; int index=0; char ch; // // //command[i++]=pc.getc(); // ch=pc.getc(); do { if (pc.readable()) { // if there is a character to read from the device ch = USB->RBR; // read it if (index<ARRAYSIZE) command[index++]=ch; // put it into the value array and increment the index } } while (ch!='\n'); // loop until the \n character // NVIC_EnableIRQ(USB_IRQn); HAL_NVIC_EnableIRQ(USB_IRQn); // command[index]='\x0'; // add un 0 to end the c string int units = 0, tens = 0, decimals = 0; switch (command[0]) { case 'V': //If decimal point is in the second character (eg, V.1) if(command[1]=='.') { //Extract decimal rev/s decimals = command[2] - '0'; //If decimal point is in the third character (eg, V0.1) } else if(command[2]=='.') { units = command[1] - '0'; decimals = command[3] - '0'; //If decimal point is in the fourth character (eg, V10.1) } else if(command[3]=='.') { tens = command[1] - '0'; units = command[2] - '0'; decimals = command[4] - '0'; } //Calculate the number of revolutions per second required revsec = tens*10 + units + decimals/10; //Calculate the required wait period spinWait = (1/revsec)/6; //Print values for verification // pc.printf("Rev/S: %2.2f, Wait: %2.2f\n\r", revsec, spinWait); break; default: // pc.printf("Error in received data\n\r"); break; } return; } //Main function int main() { pc.printf("Hello\n\r"); // Setup a serial interrupt function to receive data pc.attach(&Rx_interrupt, Serial::RxIrq); // NVIC_EnableIRQ(USB_IRQn); HAL_NVIC_EnableIRQ(USB_IRQn); pc.putc('a'); //Run the motor synchronisation orState = motorHome(); pc.printf("Rotor origin: %x\n\r",orState); //orState is subtracted from future rotor state inputs to align rotor and motor states int counter = 0; while(1) { clk = !clk; wait(0.5); } } //#include "mbed.h" //#include "RawSerial.h" // //DigitalOut clk(LED1); //DigitalOut dat(LED2); //DigitalOut enable(LED3); //DigitalOut bit(LED4); // //RawSerial pc(USBTX, USBRX); // //char ch; // //void flip(void) { // clk = !clk; // ch = LPC_UART0->RBR; // // LPC_UART0->RBR = ch; //} // //int main() { // clk = 1; // pc.attach(&flip, Serial::RxIrq); // while(1) { // dat = !dat; // wait(0.5); // } //} //