ES2017 coursework 2

Dependencies:   PID

Fork of ES_CW2_Starter by Edward Stott

main.cpp

Committer:
david_s95
Date:
2017-03-09
Revision:
13:87ab3b008803
Parent:
12:8ea29b18d289
Child:
15:d9e50101a17e

File content as of revision 13:87ab3b008803:

#include "mbed.h"
#include "rtos.h"
#include <string>
#include "PID.h"

//PID controller configuration
float PIDrate = 0.2;
float Kc = 4.5;
float Ti = 0.1;
float Td = 0.5;
float speedControl = 0;
PID controller(Kc, Ti, Td, PIDrate);
Thread VPIDthread;

//Photointerrupter input pins
#define I1pin D2
#define I2pin D11
#define I3pin D12

//Incremental encoder input pins
#define CHA   D7
#define CHB   D8

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D4           //0x01
#define L1Hpin D5           //0x02
#define L2Lpin D3           //0x04
#define L2Hpin D6           //0x08
#define L3Lpin D9           //0x10
#define L3Hpin D10          //0x20

//Define sized for command arrays
#define ARRAYSIZE 8

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
//const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
const int8_t driveTable[6] = {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32};

//const int8_t cwState[7] = {0, 4, 0, 5, 2, 3, 1};
//const int8_t AcwState[7] = {0, 2, 4, 3, 0, 1, 5};
//const int8_t cwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
//const int8_t AcwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};
const int8_t AcwState[7] = {0x00, 0x23, 0x38, 0x32, 0x0E, 0x0B, 0x2C};
const int8_t cwState[7] = {0x00, 0x0E, 0x23, 0x0B, 0x38, 0x2C, 0x32};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
//const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
//int8_t lead = -2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
DigitalIn I1(I1pin);
//InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
DigitalIn I3(I3pin);

InterruptIn qA(CHA);
InterruptIn qB(CHB);

//Motor Drive outputs
//DigitalOut L1L(L1Lpin);
//DigitalOut L1H(L1Hpin);
//DigitalOut L2L(L2Lpin);
//DigitalOut L2H(L2Hpin);
//DigitalOut L3L(L3Lpin);
//DigitalOut L3H(L3Hpin);
DigitalOut clk(LED1);
DigitalOut Direction(LED2);
DigitalOut testpin(D13);

//NOTE, BusOut declares things in reverse (ie, 0, 1, 2, 3) compared to binary represenation
BusOut motor(L1Lpin, L1Hpin, L2Lpin, L2Hpin, L3Lpin, L3Hpin);

//Timeout function for rotating at set speed
Timeout spinTimer;
float spinWait = 10;
float revsec = 0;

//Timer used for calculating speed
Timer speedTimer;
float measuredRevs = 0, revtimer = 0;
Ticker printSpeed;

Serial pc(SERIAL_TX, SERIAL_RX);

int8_t orState = 0;    //Rotor offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;
int position = 0;

int i=0;
int quadraturePosition=0;
bool spinCW=0;
float u = 0; //Set point for VPI

//Set a given drive state
void motorOut(int8_t driveState)
{

    //Set to zero
    motor=0x2A;

    //Go to next state
    if(!spinCW) motor = AcwState[driveState];
    else motor = cwState[driveState];
    //Lookup the output byte from the drive state.
//    int8_t driveOut = driveTable[driveState & 0x07];
}

inline void motorStop()
{
    //revsec set to zero prevents recurring interrupt for constant speed
    revsec = 0;
    //0x2A turns all motor transistors off to prevent any power usage
    motor = 0x2A;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return (I1 + 2*I2 + 4*I3);
}

//Basic synchronisation routine
int8_t motorHome()
{
    //Put the motor in drive state 0 and wait for it to stabilise
    motor=cwState[1];
    wait(1.0);

    position = 0;

    //Get the rotor state
    return readRotorState();
}

void fixedSpeed()
{
    //Read current motor state
//    clk=!clk;
//    {0x38, 0x2C, 0x0E, 0x0B, 0x23, 0x32};
    //if(spinCW) {
//        switch(motor) {
//            case 0x38:
//                motor=0x2C;
//                break;
//            case 0x2C:
//                motor=0x0E;
//                break;
//            case 0x0E:
//                motor=0x0B;
//                break;
//            case 0x0B:
//                motor=0x23;
//                break;
//            case 0x23:
//                motor=0x32;
//                break;
//            case 0x32:
//                motor=0x38;
//                break;
//        }
//    } else {
//        switch(motor) {
//            case 0x38:
//                motor=0x32;
//                break;
//            case 0x2C:
//                motor=0x38;
//                break;
//            case 0x0E:
//                motor=0x2C;
//                break;
//            case 0x0B:
//                motor=0x0E;
//                break;
//            case 0x23:
//                motor=0x0B;
//                break;
//            case 0x32:
//                motor=0x23;
//                break;
//        }
//    }
    intState = readRotorState();
    //Increment state machine to next state
    motorOut(intState);
    //If spinning is required, attach the necessary wait to the
    //timeout interrupt to call this function again and
    //keep the motor spinning at the right speed
    if(revsec) spinTimer.attach(&fixedSpeed, spinWait);
}

void rps()
{

    clk=!clk;
    speedTimer.stop();
    revtimer = speedTimer.read_ms();
    speedTimer.reset();
    speedTimer.start();

    measuredRevs = 1000/(revtimer);
    quadraturePosition=0;

}

void VPID()
{
    controller.setMode(1);
    while(1) {
        controller.setSetPoint(revsec);
//        printf("revsec: %2.3f\r\n", revsec);
        controller.setProcessValue(measuredRevs);
        speedControl = controller.compute();
//        printf("speed setpoint: %2.3f\r\n", speedControl);
        if(speedControl<0) speedControl = -speedControl;
        else if (speedControl==0) speedControl = 1;
        spinWait = (1/speedControl)/6;
        Thread::wait(PIDrate);
    }
}

//void edgeRiseA()
//{
//    pos++;
//    if(pos>=468) {
////        Direction=!Direction;
//        pos=pos%468;
////        testpin=!testpin;
//    }
//    if(qB) DIR = 0;
//    else DIR = 1;
////    clk=DIR;
////CLOCKWISE:        A rises before B -> On A edge, B low -> DIR = 1
////ANTICLOCKWISE:    B rises before A -> On A edge, B high-> DIR = 0
//}

void sing(float singFreq)
{
    motor = driveTable[1];
    wait(1.0);
    float singDelayus = 1000000/singFreq;
    for(int count=0; count<singFreq; count++) {
        motor = driveTable[2];
        wait_us(singDelayus);
        motor = driveTable[1];
    }
    singFreq = 15000;
    singDelayus = 1000000/singFreq;
    for(int count=0; count<singFreq; count++) {
        motor = driveTable[2];
        wait_us(singDelayus);
        motor = driveTable[1];
    }
}

//void edgeIncr()
//{
//    pos++;
//    if(pos>=468) {
////        Direction=!Direction;
//        pos=pos%468;
////        testpin=!testpin;
//    }
//}

//#define WAIT 2
//Main function
int main()
{
    pc.printf("spin\n\r");

//    motor = 0x0E;
    /*    while(1){
            motor=0x38;
            printf("0x38\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
            motor=0x2C;
            printf("0x2C\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
            motor=0x0E;
            printf("0x0E\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
            motor=0x0B;
            printf("0x0B\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
            motor=0x23;
            printf("0x23\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
            motor=0x32;
            printf("0x32\r\n");
            wait(WAIT);
            position = I1 + 2*I2 + 4*I3;
            printf("position: %d\r\n", position);
        }*/

    //Run the motor synchronisation
    orState = motorHome();
    //orState is subtracted from future rotor state inputs to align rotor and motor states

    pc.printf("Rotor origin: %x\n\r",orState);

    char command[ARRAYSIZE];
    int index=0;
    int units = 0, tens = 0, decimals = 0;
    char ch;
    testpin=0;
    int vartens = 0, varunits = 0, vardecs = 0;

    speedTimer.reset();
    speedTimer.start();
    I2.mode(PullNone);
    I2.fall(&rps);

//    qA.rise(&edgeRiseA);
//    qB.rise(&edgeIncr);
//    qA.fall(&edgeIncr);
//    qB.fall(&edgeIncr);

    VPIDthread.start(VPID);

    while(1) {
//        clk = I2;
        //Toggle LED so we know something's happening
//        clk = !clk;

        //If there's a character to read from the serial port
        if (pc.readable()) {

            //Clear index counter and control variables
            index = 0;
//            revsec = spinWait = 0;

            //Read each value from the serial port until Enter key is pressed
            do {
                //Read character
                ch = pc.getc();
                //Print character to serial for visual feedback
                pc.putc(ch);
                //Add character to input array
                command[index++]=ch;  // put it into the value array and increment the index
                //d10 and d13 used for detecting Enter key on Windows/Unix/Mac
            } while(ch != 10 && ch != 13);

            //Start new line on terminal for printing data
            pc.putc('\n');
            pc.putc('\r');

            //Analyse the input string
            switch (command[0]) {
                    //If a V was typed...
                case 'V':
                    units = 0, tens = 0, decimals = 0;
                    //For each character received, subtract ASCII 0 from ASCII
                    //representation to obtain the integer value of the number
                    if(command[1]=='-') {
                        spinCW = 0;
                        //If decimal point is in the second character (eg, V-.1)
                        if(command[2]=='.') {
                            //Extract decimal rev/s
                            decimals = command[3] - '0';

                            //If decimal point is in the third character (eg, V-0.1)
                        } else if(command[3]=='.') {
                            units = command[2] - '0';
                            decimals = command[4] - '0';

                            //If decimal point is in the fourth character (eg, V-10.1)
                        } else if(command[4]=='.') {
                            tens = command[2] - '0';
                            units = command[3] - '0';
                            decimals = command[5] - '0';
                        }
                    } else {
                        spinCW = 1;
                        //If decimal point is in the second character (eg, V.1)
                        if(command[1]=='.') {
                            //Extract decimal rev/s
                            decimals = command[2] - '0';

                            //If decimal point is in the third character (eg, V0.1)
                        } else if(command[2]=='.') {
                            units = command[1] - '0';
                            decimals = command[3] - '0';

                            //If decimal point is in the fourth character (eg, V10.1)
                        } else if(command[3]=='.') {
                            tens = command[1] - '0';
                            units = command[2] - '0';
                            decimals = command[4] - '0';
                        }
                    }

                    //Calculate the number of revolutions per second required
                    revsec = float(tens)*10 + float(units) + float(decimals)/10;
                    //Calculate the required wait period


                    //Print values for verification
                    pc.printf("Rev/S: %2.4f\n\r", revsec);

                    //Run the function to start rotating at a fixed speed
                    fixedSpeed();
                    break;
                    //If anything unexpected was received
                case 's':
//                    pc.printf("Revs / sec: %2.2f\r", revs);
//                    printSpeed.attach(&speedo, 1.0);
                    printf("Measured: %2.3f, revsec: %2.3f\r\n", measuredRevs, revsec);
                    printf("speed setpoint: %2.3f\r\n", speedControl);
                    break;
                case 't':
//                    pc.printf("%d\n\r", pos);
                    break;

                case 'K':
                    vartens = command[1] - '0';
                    varunits = command[2] - '0';
                    vardecs = command[4] - '0';
                    Kc = float(vartens)*10 + float(varunits) + float(vardecs)/10;
                    printf("Kc: %2.1f\r\n", Kc);
                    controller.setTunings(Kc, Ti, Td);
//                    controller.setMode(1);
                    break;
                case 'i':
                    vartens = command[1] - '0';
                    varunits = command[2] - '0';
                    vardecs = command[4] - '0';
                    Ti = float(vartens)*10 + float(varunits) + float(vardecs)/10;
                    printf("Ti: %2.1f\r\n", Ti);
                    controller.setTunings(Kc, Ti, Td);
//                    controller.setMode(1);
                    break;
                case 'd':
                    vartens = command[1] - '0';
                    varunits = command[2] - '0';
                    vardecs = command[4] - '0';
                    Td = float(vartens)*10 + float(varunits) + float(vardecs)/10;
                    printf("Td: %2.1f\r\n", Td);
                    controller.setTunings(Kc, Ti, Td);
//                    controller.setMode(1);
                    break;
                case 'l':
                    sing(10000);
                    break;
                default:
                    //Set speed variables to zero to stop motor spinning
                    //Print error message
                    motorStop();
                    pc.printf("Error in received data 0\n\r");
                    break;
            }
        }
//        printSpeed.attach(&speedo, 1.0);
//        pc.printf("Revs / sec: %2.2f\r", revs);
    }

}