This is the latest working repository used in our demo video for the Maxim to display temperature readings on Bluetooth
hspguisourcev301/HspGuiSourceV301/HSPGui/NimitzHID.cs
- Committer:
- darienf
- Date:
- 2021-04-10
- Revision:
- 3:36de8b9e4b1a
File content as of revision 3:36de8b9e4b1a:
using Microsoft.VisualBasic; using System; using System.Collections; using System.Data; using System.Diagnostics; using System.Drawing; using System.Windows.Forms; using Microsoft.Win32.SafeHandles; using System.Runtime.InteropServices; namespace SimpleHID { class NimitzHID { internal const byte COMMAND_SUCCEED = 0xEE; internal const byte COMMAND_FAILED = 0xFA; // private IntPtr deviceNotificationHandle; // private Boolean exclusiveAccess; private SafeFileHandle hidHandle; private String hidUsage; private Boolean myDeviceDetected; private String myDevicePathName; private SafeFileHandle readHandle; private SafeFileHandle writeHandle; // private Debugging MyDebugging = new Debugging(); // For viewing results of API calls via Debug.Write. private Guid hidGuid; private IntPtr deviceNotificationHandle = System.IntPtr.Zero; private HID myHID; //internal FrmMain FrmMy; /// <summary> /// Define a class of delegates that point to the Hid.ReportIn.Read function. /// The delegate has the same parameters as Hid.ReportIn.Read. /// Used for asynchronous reads from the device. /// </summary> private delegate void ReadInputReportDelegate(SafeFileHandle hidHandle, SafeFileHandle readHandle, SafeFileHandle writeHandle, ref Boolean myDeviceDetected, ref Byte[] readBuffer, ref Boolean success); // This delegate has the same parameters as AccessForm. // Used in accessing the application's form from a different thread. private delegate void MarshalToForm(String action, String textToAdd); /// <summary> /// Uses a series of API calls to locate a HID-class device /// by its Vendor ID and Product ID. /// </summary> /// /// <returns> /// True if the device is detected, False if not detected. /// </returns> internal Boolean OpenNimitzH() { Boolean deviceFound = false; String[] devicePathName = new String[128]; Guid hidGuid = Guid.Empty; Int32 memberIndex = 0; Int32 myProductID = 0x1365; Int32 myVendorID = 0x0B6A; Boolean success = false; myDeviceDetected = false; myHID.findHIDs(); // *** // API function: 'HidD_GetHidGuid // Purpose: Retrieves the interface class GUID for the HID class. // Accepts: 'A System.Guid object for storing the GUID. // *** Hid.HidD_GetHidGuid(ref hidGuid); // Fill an array with the device path names of all attached HIDs. deviceFound = MyDeviceManagement.FindDeviceFromGuid(hidGuid, ref devicePathName); // If there is at least one HID, attempt to read the Vendor ID and Product ID // of each device until there is a match or all devices have been examined. if (deviceFound) { memberIndex = 0; do { // *** // API function: // CreateFile // Purpose: // Retrieves a handle to a device. // Accepts: // A device path name returned by SetupDiGetDeviceInterfaceDetail // The type of access requested (read/write). // FILE_SHARE attributes to allow other processes to access the device while this handle is open. // A Security structure or IntPtr.Zero. // A creation disposition value. Use OPEN_EXISTING for devices. // Flags and attributes for files. Not used for devices. // Handle to a template file. Not used. // Returns: a handle without read or write access. // This enables obtaining information about all HIDs, even system // keyboards and mice. // Separate handles are used for reading and writing. // *** hidHandle = FileIO.CreateFile(devicePathName[memberIndex], 0, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, FileIO.OPEN_EXISTING, 0, 0); if (!hidHandle.IsInvalid) { // The returned handle is valid, // so find out if this is the device we're looking for. // Set the Size property of DeviceAttributes to the number of bytes in the structure. MyHid.DeviceAttributes.Size = Marshal.SizeOf(MyHid.DeviceAttributes); // *** // API function: // HidD_GetAttributes // Purpose: // Retrieves a HIDD_ATTRIBUTES structure containing the Vendor ID, // Product ID, and Product Version Number for a device. // Accepts: // A handle returned by CreateFile. // A pointer to receive a HIDD_ATTRIBUTES structure. // Returns: // True on success, False on failure. // *** success = Hid.HidD_GetAttributes(hidHandle, ref MyHid.DeviceAttributes); if (success) { // Find out if the device matches the one we're looking for. if ((MyHid.DeviceAttributes.VendorID == myVendorID) && (MyHid.DeviceAttributes.ProductID == myProductID)) { myDeviceDetected = true; // Save the DevicePathName for OnDeviceChange(). myDevicePathName = devicePathName[memberIndex]; } else { // It's not a match, so close the handle. myDeviceDetected = false; hidHandle.Close(); } } else { // There was a problem in retrieving the information. myDeviceDetected = false; hidHandle.Close(); } } // Keep looking until we find the device or there are no devices left to examine. memberIndex = memberIndex + 1; } while (!((myDeviceDetected || (memberIndex == devicePathName.Length)))); } if (myDeviceDetected) { // The device was detected. // Learn the capabilities of the device. MyHid.Capabilities = MyHid.GetDeviceCapabilities(hidHandle); // Find out if the device is a system mouse or keyboard. hidUsage = MyHid.GetHidUsage(MyHid.Capabilities); // Get handles to use in requesting Input and Output reports. readHandle = FileIO.CreateFile(myDevicePathName, FileIO.GENERIC_READ, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, FileIO.OPEN_EXISTING, FileIO.FILE_FLAG_OVERLAPPED, 0); writeHandle = FileIO.CreateFile(myDevicePathName, FileIO.GENERIC_WRITE, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, FileIO.OPEN_EXISTING, 0, 0); // Flush any waiting reports in the input buffer. (optional) MyHid.FlushQueue(readHandle); } return myDeviceDetected; } internal void CloseNimitzH() { if (!(hidHandle == null)) { if (!(hidHandle.IsInvalid)) { hidHandle.Close(); } } if (!(readHandle == null)) { if (!(readHandle.IsInvalid)) { readHandle.Close(); } } if (!(writeHandle == null)) { if (!(writeHandle.IsInvalid)) { writeHandle.Close(); } } } // This function only checks the status variable and does not actively check // if the NimitzH is still present. This function // only checks the variable to avoid any timeout delays. internal Boolean NimitzHPresent() { if (myDeviceDetected) return true; else return false; } ////////////////////////////////////////////////////////////////////// // Functions that can be called once NimitzH is opened ////////////////////////////////////////////////////////////////////// // This function calls the NimitzH Read Revision command. // This is done by sending 0xC2, and then receiving 1 byte major rev, then 1byte minor Rev, and then 0xD2 // This function returns firmware MAJORVERSION in upper word and MINORVERSION in lower word // This function returns -1 if an error occurs internal int GetFirmwareVersion() { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[2]; dataOut[0] = 0x01;//number of bytes to send dataOut[1] = 0x02;//firmware command success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return -1; if (inputBuffer[2] == COMMAND_SUCCEED) return (inputBuffer[3] << 16) + inputBuffer[4]; else return -1; } internal Boolean TestSendPacket(byte[] sendData, ref byte[] readData) { Boolean success = false; Byte[] inputBuffer = null; byte numData = (byte)sendData.Length; Byte[] dataOut = new Byte[3 + numData]; if ((numData > 62) || (numData < 0)) return false; // Max packet size is 62 bytes dataOut[0] = (byte)(0x02 + numData);//number of bytes to send (include command and data bytes) dataOut[1] = 0x01;//command byte dataOut[2] = (byte)(numData);//number of data bytes for (int i = 0; i < numData; i++) dataOut[i + 3] = sendData[i]; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; for (int i = 0; i < numData; i++) readData[i] = inputBuffer[i + 3]; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } /****************I2CPacketWrite****************/ /* Description: Generates the correct sequence of events on the I2C bus for a packet write (up to 60 data bytes) /* Information: New Implementation for packet writes ( SHOULD BE USED in most ALLL Writes/Read of and I2C Device )!! /* Paramters: slaveAddress = slave address of DUT (R/W# is set in firmware), numBytes = Number of data bytes to write (1 to 60), /* memoryaddress = Desired memory location, databuffer = pointer to the data to write on the buss*/ internal Boolean I2CWritePacket(Byte slaveAddress, Byte memoryaddress, Byte numBytes, Byte[] databuffer) { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[64]; if ((numBytes > 59) || (numBytes < 0)) return false; // Max packet size is 60 bytes dataOut[0] = (byte)(numBytes + 4); dataOut[1] = 0x20; dataOut[2] = slaveAddress; dataOut[3] = memoryaddress; dataOut[4] = numBytes; for (int i = 0; i < numBytes; i++) dataOut[i + 5] = databuffer[i]; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } /****************I2CPacketRead****************/ /* Description: Generates the correct sequence of events on the I2C bus for a packet read (up to 60 data bytes) /* Information: New Implementation for packet reads ( SHOULD BE USED in most ALLL Writes/Read of and I2C Device )!! /* Paramters: slaveAddress = slave address of DUT (R/W# is set in firmware), numBytes = Number of data bytes to write (1 to 60), /* memoryaddress = Desired memory location, databuffer = pointer to the data read should be saved*/ internal Boolean I2CReadPacket(Byte slaveAddress, Byte memoryaddress, Byte numBytes, ref Byte[] databuffer) { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[5]; if ((numBytes > 62) || (numBytes < 1)) return false; // Max packet size is 62 bytes dataOut[0] = 0x04; dataOut[1] = 0x21; dataOut[2] = (byte)(slaveAddress | 0x01); dataOut[3] = memoryaddress; dataOut[4] = numBytes; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; for (int i = 0; i < numBytes; i++) databuffer[i] = inputBuffer[i + 3]; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } internal Boolean SPIReadPacket(Byte address, Byte numBytes, ref Byte[] data) { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[4]; if ((numBytes > 62) || (numBytes < 1)) return false; // Max packet size is 62 bytes dataOut[0] = 3; dataOut[1] = 0x41; dataOut[2] = address; dataOut[3] = numBytes; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; for (int i = 0; i < numBytes; i++) data[i] = inputBuffer[i + 3]; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } internal Boolean SPIStartSampling(Byte address, Byte numBytes, uint numSamples, ref Byte[] data) { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[6]; if ((numBytes > 62) || (numBytes < 1)) return false; // Max packet size is 62 bytes dataOut[0] = 5; dataOut[1] = 0x45; dataOut[2] = address; dataOut[3] = numBytes; dataOut[4] = (byte)(numSamples >> 8); dataOut[5] = (byte)numSamples; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; for (int i = 0; i < numBytes; i++) data[i] = inputBuffer[i + 3]; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } internal bool SPIWritePacket(Byte address, Byte numBytes, Byte[] data) { Boolean success = false; Byte[] inputBuffer = null; Byte[] dataOut = new Byte[64]; if ((numBytes > 60) || (numBytes < 1)) return false; // Max packet size is 60 bytes dataOut[0] = (byte)(numBytes + 3); dataOut[1] = 0x40; dataOut[2] = address; dataOut[3] = numBytes; for (int i = 0; i < numBytes; i++) dataOut[4 + i] = data[i]; success = InputOutputReports(dataOut, ref inputBuffer); if (!success) return false; if (inputBuffer[2] == COMMAND_SUCCEED) return true; else return false; } /// <summary> /// Sends an Output report, then retrieves an Input report. /// Assumes report ID = 0 for both reports. /// </summary> private Boolean InputOutputReports(Byte[] data, ref Byte[] inputReportBuffer) { // Byte[] inputReportBuffer = null; Byte[] outputReportBuffer = null; Boolean success = false; success = false; // Don't attempt to exchange reports if valid handles aren't available // (as for a mouse or keyboard under Windows 2000/XP.) if (!readHandle.IsInvalid && !writeHandle.IsInvalid) { // Don't attempt to send an Output report if the HID has no Output report. if (MyHid.Capabilities.OutputReportByteLength > 0) { // Set the size of the Output report buffer. outputReportBuffer = new Byte[MyHid.Capabilities.OutputReportByteLength]; outputReportBuffer[0] = 0; // Ensure Report ID = 0 for (int i = 0; i < data.Length; i++) outputReportBuffer[i + 1] = data[i]; // Use WriteFile to send the report. // If the HID has an interrupt OUT endpoint, WriteFile uses an // interrupt transfer to send the report. // If not, WriteFile uses a control transfer. Hid.OutputReportViaInterruptTransfer myOutputReport = new Hid.OutputReportViaInterruptTransfer(); success = myOutputReport.Write(outputReportBuffer, writeHandle); } if (!success) return false; // Read an Input report success = false; // Don't attempt to send an Input report if the HID has no Input report. // (The HID spec requires all HIDs to have an interrupt IN endpoint, // which suggests that all HIDs must support Input reports.) if (MyHid.Capabilities.InputReportByteLength > 0) { // Set the size of the Input report buffer. inputReportBuffer = new Byte[MyHid.Capabilities.InputReportByteLength]; Hid.InputReportViaInterruptTransfer myInputReport = new Hid.InputReportViaInterruptTransfer(); myInputReport.Read(hidHandle, readHandle, writeHandle, ref myDeviceDetected, ref inputReportBuffer, ref success); } } return success; } } }