lol

Dependencies:   MMA8451Q

Fork of Application by Mateusz Kowalik

Committer:
danix
Date:
Sun Jan 21 22:28:30 2018 +0000
Revision:
12:3a30cdffa27c
Parent:
10:41552d038a69
Working acelerometer and mouse

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Zaitsev 10:41552d038a69 1 /**
Zaitsev 10:41552d038a69 2 *******************************************************************************
Zaitsev 10:41552d038a69 3 * @file rtc.c
Zaitsev 10:41552d038a69 4 * @brief Implementation of a Rtc driver
Zaitsev 10:41552d038a69 5 * @internal
Zaitsev 10:41552d038a69 6 * @author ON Semiconductor
Zaitsev 10:41552d038a69 7 * $Rev: 3525 $
Zaitsev 10:41552d038a69 8 * $Date: 2015-07-20 15:24:25 +0530 (Mon, 20 Jul 2015) $
Zaitsev 10:41552d038a69 9 ******************************************************************************
Zaitsev 10:41552d038a69 10 * Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
Zaitsev 10:41552d038a69 11 * All rights reserved. This software and/or documentation is licensed by ON Semiconductor
Zaitsev 10:41552d038a69 12 * under limited terms and conditions. The terms and conditions pertaining to the software
Zaitsev 10:41552d038a69 13 * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
Zaitsev 10:41552d038a69 14 * (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
Zaitsev 10:41552d038a69 15 * if applicable the software license agreement. Do not use this software and/or
Zaitsev 10:41552d038a69 16 * documentation unless you have carefully read and you agree to the limited terms and
Zaitsev 10:41552d038a69 17 * conditions. By using this software and/or documentation, you agree to the limited
Zaitsev 10:41552d038a69 18 * terms and conditions.
Zaitsev 10:41552d038a69 19 *
Zaitsev 10:41552d038a69 20 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
Zaitsev 10:41552d038a69 21 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
Zaitsev 10:41552d038a69 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
Zaitsev 10:41552d038a69 23 * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
Zaitsev 10:41552d038a69 24 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
Zaitsev 10:41552d038a69 25 * @endinternal
Zaitsev 10:41552d038a69 26 *
Zaitsev 10:41552d038a69 27 * @ingroup rtc
Zaitsev 10:41552d038a69 28 *
Zaitsev 10:41552d038a69 29 * @details
Zaitsev 10:41552d038a69 30 * A real-time clock (RTC) is a computer clock ,that keeps track of the current time. The heart of the RTC is a series of
Zaitsev 10:41552d038a69 31 * freely running counters one for each time unit, The series of counters is linked as follows: a roll over event of
Zaitsev 10:41552d038a69 32 * the seconds counter produces a minutes enable pulse; a roll over event of the minutes counter produces an hours
Zaitsev 10:41552d038a69 33 * enable pulse, etc.Note that all Counter registers are in an undefined state on power-up.
Zaitsev 10:41552d038a69 34 * Use the Reset bit in the Control Register to reset the counters to their default values.
Zaitsev 10:41552d038a69 35 * DIVISOR is the register containing the value to divide the clock frequency to produce 1Hz strobe ; 1Hz strobe is used
Zaitsev 10:41552d038a69 36 * internally to time the incrementing of the Seconds Counter.
Zaitsev 10:41552d038a69 37 * There is a set of register to set the values in the counter for each time unit.from where time is start to increment.
Zaitsev 10:41552d038a69 38 * There is another set of register to set the ALARM ...Each of the Alarm Registers can be programmed with a value that
Zaitsev 10:41552d038a69 39 * is used to compare to a Counter Register in order to produce an alarm (an interrupt) when the values match.
Zaitsev 10:41552d038a69 40 * There is a programmable bit in each Alarm Register that determines if the alarm occurs upon a value match, or
Zaitsev 10:41552d038a69 41 * if the alarm occurs upon a Counter increment condition.
Zaitsev 10:41552d038a69 42 *
Zaitsev 10:41552d038a69 43 */
Zaitsev 10:41552d038a69 44 #include "rtc.h"
Zaitsev 10:41552d038a69 45 #include "mbed_assert.h"
Zaitsev 10:41552d038a69 46 #include "lp_ticker_api.h"
Zaitsev 10:41552d038a69 47
Zaitsev 10:41552d038a69 48 static uint16_t SubSecond;
Zaitsev 10:41552d038a69 49 static uint64_t LastRtcTimeus;
Zaitsev 10:41552d038a69 50
Zaitsev 10:41552d038a69 51 /* See rtc.h for details */
Zaitsev 10:41552d038a69 52 void fRtcInit(void)
Zaitsev 10:41552d038a69 53 {
Zaitsev 10:41552d038a69 54 CLOCK_ENABLE(CLOCK_RTC); /* enable rtc peripheral */
Zaitsev 10:41552d038a69 55 CLOCKREG->CCR.BITS.RTCEN = True; /* Enable RTC clock 32K */
Zaitsev 10:41552d038a69 56
Zaitsev 10:41552d038a69 57 /* Reset RTC control register */
Zaitsev 10:41552d038a69 58 RTCREG->CONTROL.WORD = False;
Zaitsev 10:41552d038a69 59
Zaitsev 10:41552d038a69 60 /* Initialize all counters */
Zaitsev 10:41552d038a69 61 RTCREG->SECOND_COUNTER = False;
Zaitsev 10:41552d038a69 62 RTCREG->SUB_SECOND_COUNTER = False;
Zaitsev 10:41552d038a69 63 RTCREG->SECOND_ALARM = False;
Zaitsev 10:41552d038a69 64 RTCREG->SUB_SECOND_ALARM = False;
Zaitsev 10:41552d038a69 65 LastRtcTimeus = 0;
Zaitsev 10:41552d038a69 66
Zaitsev 10:41552d038a69 67 /* Reset RTC Status register */
Zaitsev 10:41552d038a69 68 RTCREG->STATUS.WORD = False;
Zaitsev 10:41552d038a69 69
Zaitsev 10:41552d038a69 70 /* Clear interrupt status */
Zaitsev 10:41552d038a69 71 RTCREG->INT_CLEAR.WORD = False;
Zaitsev 10:41552d038a69 72
Zaitsev 10:41552d038a69 73 /* Start sec & sub_sec counter */
Zaitsev 10:41552d038a69 74 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True);/* Wait previous write to complete */
Zaitsev 10:41552d038a69 75 RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
Zaitsev 10:41552d038a69 76 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
Zaitsev 10:41552d038a69 77
Zaitsev 10:41552d038a69 78 /* enable interruption associated with the rtc at NVIC level */
Zaitsev 10:41552d038a69 79 NVIC_SetVector(Rtc_IRQn,(uint32_t)fRtcHandler); /* TODO define lp_ticker_isr */
Zaitsev 10:41552d038a69 80 NVIC_ClearPendingIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 81 NVIC_EnableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 82
Zaitsev 10:41552d038a69 83 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 84
Zaitsev 10:41552d038a69 85 return;
Zaitsev 10:41552d038a69 86 }
Zaitsev 10:41552d038a69 87
Zaitsev 10:41552d038a69 88 /* See rtc.h for details */
Zaitsev 10:41552d038a69 89 void fRtcFree(void)
Zaitsev 10:41552d038a69 90 {
Zaitsev 10:41552d038a69 91 /* Reset RTC control register */
Zaitsev 10:41552d038a69 92 RTCREG->CONTROL.WORD = False;
Zaitsev 10:41552d038a69 93
Zaitsev 10:41552d038a69 94 /* disable interruption associated with the rtc */
Zaitsev 10:41552d038a69 95 NVIC_DisableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 96
Zaitsev 10:41552d038a69 97 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 98 }
Zaitsev 10:41552d038a69 99
Zaitsev 10:41552d038a69 100 /* See rtc.h for details */
Zaitsev 10:41552d038a69 101 void fRtcSetInterrupt(uint32_t timestamp)
Zaitsev 10:41552d038a69 102 {
Zaitsev 10:41552d038a69 103 SubSecond = False;
Zaitsev 10:41552d038a69 104 uint32_t Second = False, EnableInterrupt = False;
Zaitsev 10:41552d038a69 105 uint8_t DividerAdjust = 1;
Zaitsev 10:41552d038a69 106
Zaitsev 10:41552d038a69 107 if(timestamp) {
Zaitsev 10:41552d038a69 108 if(timestamp >= RTC_SEC_TO_US) {
Zaitsev 10:41552d038a69 109 /* TimeStamp is big enough to set second alarm */
Zaitsev 10:41552d038a69 110 Second = ((timestamp / RTC_SEC_TO_US) & RTC_SEC_MASK); /* Convert micro second to second */
Zaitsev 10:41552d038a69 111 RTCREG->SECOND_ALARM = Second; /* Write to alarm register */
Zaitsev 10:41552d038a69 112
Zaitsev 10:41552d038a69 113 /* Enable second interrupt */
Zaitsev 10:41552d038a69 114 EnableInterrupt = True << RTC_CONTROL_SEC_CNT_INT_BIT_POS;
Zaitsev 10:41552d038a69 115 }
Zaitsev 10:41552d038a69 116 timestamp = timestamp - Second * RTC_SEC_TO_US; /* Take out micro second for sub second alarm */
Zaitsev 10:41552d038a69 117 if(timestamp > False) {
Zaitsev 10:41552d038a69 118 /* We have some thing for sub second */
Zaitsev 10:41552d038a69 119
Zaitsev 10:41552d038a69 120 /* Convert micro second to sub_seconds(each count = 30.5 us) */
Zaitsev 10:41552d038a69 121 if(timestamp > 131000) {
Zaitsev 10:41552d038a69 122 DividerAdjust = 100;
Zaitsev 10:41552d038a69 123 }
Zaitsev 10:41552d038a69 124
Zaitsev 10:41552d038a69 125 volatile uint64_t Temp = (timestamp / DividerAdjust * RTC_CLOCK_HZ);
Zaitsev 10:41552d038a69 126 Temp = (uint64_t)(Temp / RTC_SEC_TO_US * DividerAdjust);
Zaitsev 10:41552d038a69 127 SubSecond = Temp & RTC_SUB_SEC_MASK;
Zaitsev 10:41552d038a69 128
Zaitsev 10:41552d038a69 129 if(SubSecond <= 5) {
Zaitsev 10:41552d038a69 130 SubSecond = 0;
Zaitsev 10:41552d038a69 131 }
Zaitsev 10:41552d038a69 132
Zaitsev 10:41552d038a69 133 if(SubSecond > False) {
Zaitsev 10:41552d038a69 134 /* Second interrupt not enabled */
Zaitsev 10:41552d038a69 135
Zaitsev 10:41552d038a69 136 /* Set SUB SEC_ALARM */
Zaitsev 10:41552d038a69 137 RTCREG->SUB_SECOND_ALARM = SubSecond; /* Write to sub second alarm */
Zaitsev 10:41552d038a69 138
Zaitsev 10:41552d038a69 139 /* Enable sub second interrupt */
Zaitsev 10:41552d038a69 140 EnableInterrupt |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
Zaitsev 10:41552d038a69 141 }
Zaitsev 10:41552d038a69 142 }
Zaitsev 10:41552d038a69 143
Zaitsev 10:41552d038a69 144 RTCREG->CONTROL.WORD |= EnableInterrupt;
Zaitsev 10:41552d038a69 145 /* Enable RTC interrupt */
Zaitsev 10:41552d038a69 146 NVIC_EnableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 147
Zaitsev 10:41552d038a69 148 /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 149 while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 150 (True << RTC_STATUS_SEC_ALARM_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 151 (True << RTC_STATUS_CONTROL_WRT_BIT_POS))) == True);
Zaitsev 10:41552d038a69 152 }
Zaitsev 10:41552d038a69 153 return;
Zaitsev 10:41552d038a69 154 }
Zaitsev 10:41552d038a69 155
Zaitsev 10:41552d038a69 156 /* See rtc.h for details */
Zaitsev 10:41552d038a69 157 void fRtcDisableInterrupt(void)
Zaitsev 10:41552d038a69 158 {
Zaitsev 10:41552d038a69 159 /* Disable RTC interrupt */
Zaitsev 10:41552d038a69 160 NVIC_DisableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 161 }
Zaitsev 10:41552d038a69 162
Zaitsev 10:41552d038a69 163 /* See rtc.h for details */
Zaitsev 10:41552d038a69 164 void fRtcEnableInterrupt(void)
Zaitsev 10:41552d038a69 165 {
Zaitsev 10:41552d038a69 166 /* Enable RTC interrupt */
Zaitsev 10:41552d038a69 167 NVIC_EnableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 168 }
Zaitsev 10:41552d038a69 169
Zaitsev 10:41552d038a69 170 /* See rtc.h for details */
Zaitsev 10:41552d038a69 171 void fRtcClearInterrupt(void)
Zaitsev 10:41552d038a69 172 {
Zaitsev 10:41552d038a69 173 /* Disable subsec/sec interrupt */
Zaitsev 10:41552d038a69 174 /* Clear sec & sub_sec interrupts */
Zaitsev 10:41552d038a69 175 RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
Zaitsev 10:41552d038a69 176 (True << RTC_INT_CLR_SEC_BIT_POS));
Zaitsev 10:41552d038a69 177
Zaitsev 10:41552d038a69 178 while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 179 (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 180 }
Zaitsev 10:41552d038a69 181
Zaitsev 10:41552d038a69 182 /* See rtc.h for details */
Zaitsev 10:41552d038a69 183 uint64_t fRtcRead(void)
Zaitsev 10:41552d038a69 184 {
Zaitsev 10:41552d038a69 185 uint32_t Second;
Zaitsev 10:41552d038a69 186 uint16_t SubSecond;
Zaitsev 10:41552d038a69 187
Zaitsev 10:41552d038a69 188 /* Hardware Bug fix: The rollover of the sub-second counter initiates the increment of the second counter.
Zaitsev 10:41552d038a69 189 * That means there is one cycle where the sub-second has rolled back to zero and the second counter has not incremented
Zaitsev 10:41552d038a69 190 * and a read during that cycle will be incorrect. That will occur for one RTC cycle and that is about 31us of exposure.
Zaitsev 10:41552d038a69 191 * If you read a zero in the sub-second counter then increment the second counter by 1.
Zaitsev 10:41552d038a69 192 * Alternatively, subtract 1 from the Sub-seconds counter to align the Second and Sub-Second rollover.
Zaitsev 10:41552d038a69 193 */
Zaitsev 10:41552d038a69 194
Zaitsev 10:41552d038a69 195 /* Read the Second and Sub-second counters, then read the Second counter again.
Zaitsev 10:41552d038a69 196 * If it changed, then the Second rolled over while reading Sub-seconds, so go back and read them both again.
Zaitsev 10:41552d038a69 197 */
Zaitsev 10:41552d038a69 198
Zaitsev 10:41552d038a69 199 do {
Zaitsev 10:41552d038a69 200 Second = RTCREG->SECOND_COUNTER; /* Get SEC_COUNTER reg value */
Zaitsev 10:41552d038a69 201 SubSecond = (RTCREG->SUB_SECOND_COUNTER - 1) & SUB_SEC_MASK; /* Get SUB_SEC_COUNTER reg value */
Zaitsev 10:41552d038a69 202 } while (Second != RTCREG->SECOND_COUNTER); /* Repeat if the second has changed */
Zaitsev 10:41552d038a69 203
Zaitsev 10:41552d038a69 204 //note: casting to float removed to avoid reduction in resolution
Zaitsev 10:41552d038a69 205 uint64_t RtcTimeus = ((uint64_t)SubSecond * RTC_SEC_TO_US / RTC_CLOCK_HZ) + ((uint64_t)Second * RTC_SEC_TO_US);
Zaitsev 10:41552d038a69 206
Zaitsev 10:41552d038a69 207 /*check that the time did not go backwards */
Zaitsev 10:41552d038a69 208 MBED_ASSERT(RtcTimeus >= LastRtcTimeus);
Zaitsev 10:41552d038a69 209 LastRtcTimeus = RtcTimeus;
Zaitsev 10:41552d038a69 210
Zaitsev 10:41552d038a69 211 return RtcTimeus;
Zaitsev 10:41552d038a69 212 }
Zaitsev 10:41552d038a69 213
Zaitsev 10:41552d038a69 214 /* See rtc.h for details */
Zaitsev 10:41552d038a69 215 void fRtcWrite(uint64_t RtcTimeus)
Zaitsev 10:41552d038a69 216 {
Zaitsev 10:41552d038a69 217 uint32_t Second = False;
Zaitsev 10:41552d038a69 218 uint16_t SubSecond = False;
Zaitsev 10:41552d038a69 219 /* Stop RTC */
Zaitsev 10:41552d038a69 220 RTCREG->CONTROL.WORD &= ~((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
Zaitsev 10:41552d038a69 221 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
Zaitsev 10:41552d038a69 222
Zaitsev 10:41552d038a69 223 if(RtcTimeus > RTC_SEC_TO_US) {
Zaitsev 10:41552d038a69 224 /* TimeStamp is big enough to set second counter */
Zaitsev 10:41552d038a69 225 Second = ((RtcTimeus / RTC_SEC_TO_US) & RTC_SEC_MASK);
Zaitsev 10:41552d038a69 226 }
Zaitsev 10:41552d038a69 227 RTCREG->SECOND_COUNTER = Second;
Zaitsev 10:41552d038a69 228 RtcTimeus = RtcTimeus - (Second * RTC_SEC_TO_US);
Zaitsev 10:41552d038a69 229 if(RtcTimeus > False) {
Zaitsev 10:41552d038a69 230 /* Convert TimeStamp to sub_seconds */
Zaitsev 10:41552d038a69 231 SubSecond = (uint16_t)((float)(RtcTimeus * RTC_CLOCK_HZ / RTC_SEC_TO_US)) & RTC_SUB_SEC_MASK;
Zaitsev 10:41552d038a69 232 }
Zaitsev 10:41552d038a69 233 /* Set SUB_SEC_ALARM */
Zaitsev 10:41552d038a69 234 RTCREG->SUB_SECOND_COUNTER = SubSecond;
Zaitsev 10:41552d038a69 235
Zaitsev 10:41552d038a69 236 while(RTCREG->STATUS.BITS.BSY_CTRL_REG_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 237 /* Start RTC */
Zaitsev 10:41552d038a69 238 RTCREG->CONTROL.WORD |= ((True << RTC_CONTROL_SUBSEC_CNT_START_BIT_POS) |
Zaitsev 10:41552d038a69 239 (True << RTC_CONTROL_SEC_CNT_START_BIT_POS));
Zaitsev 10:41552d038a69 240
Zaitsev 10:41552d038a69 241 while(RTCREG->STATUS.BITS.BSY_ANY_WRT == True); /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 242 }
Zaitsev 10:41552d038a69 243
Zaitsev 10:41552d038a69 244 /* See rtc.h for details */
Zaitsev 10:41552d038a69 245 void fRtcHandler(void)
Zaitsev 10:41552d038a69 246 {
Zaitsev 10:41552d038a69 247 /* SUB_SECOND/SECOND interrupt occured */
Zaitsev 10:41552d038a69 248 volatile uint32_t TempStatus = RTCREG->STATUS.WORD;
Zaitsev 10:41552d038a69 249
Zaitsev 10:41552d038a69 250 /* Disable RTC interrupt */
Zaitsev 10:41552d038a69 251 NVIC_DisableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 252
Zaitsev 10:41552d038a69 253 /* Clear sec & sub_sec interrupts */
Zaitsev 10:41552d038a69 254 RTCREG->INT_CLEAR.WORD = ((True << RTC_INT_CLR_SUB_SEC_BIT_POS) |
Zaitsev 10:41552d038a69 255 (True << RTC_INT_CLR_SEC_BIT_POS));
Zaitsev 10:41552d038a69 256
Zaitsev 10:41552d038a69 257 /* TODO ANDing SUB_SEC & SEC interrupt - work around for RTC issue - will be resolved in REV G */
Zaitsev 10:41552d038a69 258 if(TempStatus & RTC_SEC_INT_STATUS_MASK) {
Zaitsev 10:41552d038a69 259 /* Second interrupt occured */
Zaitsev 10:41552d038a69 260 if(SubSecond > False) {
Zaitsev 10:41552d038a69 261 /* Set SUB SEC_ALARM */
Zaitsev 10:41552d038a69 262 RTCREG->SUB_SECOND_ALARM = SubSecond + RTCREG->SUB_SECOND_COUNTER;
Zaitsev 10:41552d038a69 263 /* Enable sub second interrupt */
Zaitsev 10:41552d038a69 264 RTCREG->CONTROL.WORD |= (True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS);
Zaitsev 10:41552d038a69 265 } else {
Zaitsev 10:41552d038a69 266 /* We reach here after second interrupt is occured */
Zaitsev 10:41552d038a69 267 RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
Zaitsev 10:41552d038a69 268 (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
Zaitsev 10:41552d038a69 269 }
Zaitsev 10:41552d038a69 270 } else {
Zaitsev 10:41552d038a69 271 /* We reach here after sub_second or (Sub second + second) interrupt occured */
Zaitsev 10:41552d038a69 272 /* Disable Second and sub_second interrupt */
Zaitsev 10:41552d038a69 273 RTCREG->CONTROL.WORD &= ~(True << RTC_CONTROL_SUBSEC_CNT_INT_BIT_POS) |
Zaitsev 10:41552d038a69 274 (True << RTC_CONTROL_SEC_CNT_INT_BIT_POS);
Zaitsev 10:41552d038a69 275 }
Zaitsev 10:41552d038a69 276
Zaitsev 10:41552d038a69 277 NVIC_EnableIRQ(Rtc_IRQn);
Zaitsev 10:41552d038a69 278
Zaitsev 10:41552d038a69 279 /* Wait for RTC to finish writing register - RTC operates on 32K clock as compared to 32M core*/
Zaitsev 10:41552d038a69 280 while((RTCREG->STATUS.WORD & ((True << RTC_STATUS_SUB_SEC_ALARM_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 281 (True << RTC_STATUS_CONTROL_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 282 (True << RTC_STATUS_SUB_SEC_INT_CLR_WRT_BIT_POS) |
Zaitsev 10:41552d038a69 283 (True << RTC_STATUS_SEC_INT_CLR_WRT_BIT_POS))) == True);
Zaitsev 10:41552d038a69 284
Zaitsev 10:41552d038a69 285 lp_ticker_irq_handler();
Zaitsev 10:41552d038a69 286 }
Zaitsev 10:41552d038a69 287
Zaitsev 10:41552d038a69 288 boolean fIsRtcEnabled(void)
Zaitsev 10:41552d038a69 289 {
Zaitsev 10:41552d038a69 290 if(RTCREG->CONTROL.BITS.SUB_SEC_COUNTER_EN | RTCREG->CONTROL.BITS.SEC_COUNTER_EN) {
Zaitsev 10:41552d038a69 291 return True;
Zaitsev 10:41552d038a69 292 } else {
Zaitsev 10:41552d038a69 293 return False;
Zaitsev 10:41552d038a69 294 }
Zaitsev 10:41552d038a69 295 }