Fork of CyaSSL for my specific settings
Fork of CyaSSL by
src/ssl.c
- Committer:
- wolfSSL
- Date:
- 2014-07-12
- Revision:
- 0:1239e9b70ca2
File content as of revision 0:1239e9b70ca2:
/* ssl.c * * Copyright (C) 2006-2014 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #ifdef HAVE_ERRNO_H #include <errno.h> #endif #include <cyassl/ssl.h> #include <cyassl/internal.h> #include <cyassl/error-ssl.h> #include <cyassl/ctaocrypt/coding.h> #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) #include <cyassl/openssl/evp.h> #endif #ifdef OPENSSL_EXTRA /* openssl headers begin */ #include <cyassl/openssl/hmac.h> #include <cyassl/openssl/crypto.h> #include <cyassl/openssl/des.h> #include <cyassl/openssl/bn.h> #include <cyassl/openssl/dh.h> #include <cyassl/openssl/rsa.h> #include <cyassl/openssl/pem.h> /* openssl headers end, cyassl internal headers next */ #include <cyassl/ctaocrypt/hmac.h> #include <cyassl/ctaocrypt/random.h> #include <cyassl/ctaocrypt/des3.h> #include <cyassl/ctaocrypt/md4.h> #include <cyassl/ctaocrypt/md5.h> #include <cyassl/ctaocrypt/arc4.h> #ifdef CYASSL_SHA512 #include <cyassl/ctaocrypt/sha512.h> #endif #endif #ifndef NO_FILESYSTEM #if !defined(USE_WINDOWS_API) && !defined(NO_CYASSL_DIR) \ && !defined(EBSNET) #include <dirent.h> #include <sys/stat.h> #endif #ifdef EBSNET #include "vfapi.h" #include "vfile.h" #endif #endif /* NO_FILESYSTEM */ #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif #ifndef min static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* min */ #ifndef max #ifdef CYASSL_DTLS static INLINE word32 max(word32 a, word32 b) { return a > b ? a : b; } #endif #endif /* min */ #ifndef CYASSL_LEANPSK char* mystrnstr(const char* s1, const char* s2, unsigned int n) { unsigned int s2_len = (unsigned int)XSTRLEN(s2); if (s2_len == 0) return (char*)s1; while (n >= s2_len && s1[0]) { if (s1[0] == s2[0]) if (XMEMCMP(s1, s2, s2_len) == 0) return (char*)s1; s1++; n--; } return NULL; } #endif /* prevent multiple mutex initializations */ static volatile int initRefCount = 0; static CyaSSL_Mutex count_mutex; /* init ref count mutex */ CYASSL_CTX* CyaSSL_CTX_new(CYASSL_METHOD* method) { CYASSL_CTX* ctx = NULL; CYASSL_ENTER("CYASSL_CTX_new"); if (initRefCount == 0) CyaSSL_Init(); /* user no longer forced to call Init themselves */ if (method == NULL) return ctx; ctx = (CYASSL_CTX*) XMALLOC(sizeof(CYASSL_CTX), 0, DYNAMIC_TYPE_CTX); if (ctx) { if (InitSSL_Ctx(ctx, method) < 0) { CYASSL_MSG("Init CTX failed"); CyaSSL_CTX_free(ctx); ctx = NULL; } } else { CYASSL_MSG("Alloc CTX failed, method freed"); XFREE(method, NULL, DYNAMIC_TYPE_METHOD); } CYASSL_LEAVE("CYASSL_CTX_new", 0); return ctx; } void CyaSSL_CTX_free(CYASSL_CTX* ctx) { CYASSL_ENTER("SSL_CTX_free"); if (ctx) FreeSSL_Ctx(ctx); CYASSL_LEAVE("SSL_CTX_free", 0); } CYASSL* CyaSSL_new(CYASSL_CTX* ctx) { CYASSL* ssl = NULL; int ret = 0; (void)ret; CYASSL_ENTER("SSL_new"); if (ctx == NULL) return ssl; ssl = (CYASSL*) XMALLOC(sizeof(CYASSL), ctx->heap,DYNAMIC_TYPE_SSL); if (ssl) if ( (ret = InitSSL(ssl, ctx)) < 0) { FreeSSL(ssl); ssl = 0; } CYASSL_LEAVE("SSL_new", ret); return ssl; } void CyaSSL_free(CYASSL* ssl) { CYASSL_ENTER("SSL_free"); if (ssl) FreeSSL(ssl); CYASSL_LEAVE("SSL_free", 0); } int CyaSSL_set_fd(CYASSL* ssl, int fd) { CYASSL_ENTER("SSL_set_fd"); ssl->rfd = fd; /* not used directly to allow IO callbacks */ ssl->wfd = fd; ssl->IOCB_ReadCtx = &ssl->rfd; ssl->IOCB_WriteCtx = &ssl->wfd; #ifdef CYASSL_DTLS if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.fd = fd; } #endif CYASSL_LEAVE("SSL_set_fd", SSL_SUCCESS); return SSL_SUCCESS; } int CyaSSL_get_fd(const CYASSL* ssl) { CYASSL_ENTER("SSL_get_fd"); CYASSL_LEAVE("SSL_get_fd", ssl->rfd); return ssl->rfd; } int CyaSSL_get_using_nonblock(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_get_using_nonblock"); CYASSL_LEAVE("CyaSSL_get_using_nonblock", ssl->options.usingNonblock); return ssl->options.usingNonblock; } int CyaSSL_dtls(CYASSL* ssl) { return ssl->options.dtls; } #ifndef CYASSL_LEANPSK void CyaSSL_set_using_nonblock(CYASSL* ssl, int nonblock) { CYASSL_ENTER("CyaSSL_set_using_nonblock"); ssl->options.usingNonblock = (nonblock != 0); } int CyaSSL_dtls_set_peer(CYASSL* ssl, void* peer, unsigned int peerSz) { #ifdef CYASSL_DTLS void* sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR); if (sa != NULL) { XMEMCPY(sa, peer, peerSz); ssl->buffers.dtlsCtx.peer.sa = sa; ssl->buffers.dtlsCtx.peer.sz = peerSz; return SSL_SUCCESS; } return SSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return SSL_NOT_IMPLEMENTED; #endif } int CyaSSL_dtls_get_peer(CYASSL* ssl, void* peer, unsigned int* peerSz) { #ifdef CYASSL_DTLS if (peer != NULL && peerSz != NULL && *peerSz >= ssl->buffers.dtlsCtx.peer.sz) { *peerSz = ssl->buffers.dtlsCtx.peer.sz; XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz); return SSL_SUCCESS; } return SSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return SSL_NOT_IMPLEMENTED; #endif } #endif /* CYASSL_LEANPSK */ /* return underlyig connect or accept, SSL_SUCCESS on ok */ int CyaSSL_negotiate(CYASSL* ssl) { int err = SSL_FATAL_ERROR; CYASSL_ENTER("CyaSSL_negotiate"); #ifndef NO_CYASSL_SERVER if (ssl->options.side == CYASSL_SERVER_END) err = CyaSSL_accept(ssl); #endif #ifndef NO_CYASSL_CLIENT if (ssl->options.side == CYASSL_CLIENT_END) err = CyaSSL_connect(ssl); #endif CYASSL_LEAVE("CyaSSL_negotiate", err); return err; } #ifndef CYASSL_LEANPSK /* object size based on build */ int CyaSSL_GetObjectSize(void) { #ifdef SHOW_SIZES printf("sizeof suites = %lu\n", sizeof(Suites)); printf("sizeof ciphers(2) = %lu\n", sizeof(Ciphers)); #ifndef NO_RC4 printf(" sizeof arc4 = %lu\n", sizeof(Arc4)); #endif printf(" sizeof aes = %lu\n", sizeof(Aes)); #ifndef NO_DES3 printf(" sizeof des3 = %lu\n", sizeof(Des3)); #endif #ifndef NO_RABBIT printf(" sizeof rabbit = %lu\n", sizeof(Rabbit)); #endif printf("sizeof cipher specs = %lu\n", sizeof(CipherSpecs)); printf("sizeof keys = %lu\n", sizeof(Keys)); printf("sizeof Hashes(2) = %lu\n", sizeof(Hashes)); #ifndef NO_MD5 printf(" sizeof MD5 = %lu\n", sizeof(Md5)); #endif #ifndef NO_SHA printf(" sizeof SHA = %lu\n", sizeof(Sha)); #endif #ifndef NO_SHA256 printf(" sizeof SHA256 = %lu\n", sizeof(Sha256)); #endif #ifdef CYASSL_SHA384 printf(" sizeof SHA384 = %lu\n", sizeof(Sha384)); #endif #ifdef CYASSL_SHA384 printf(" sizeof SHA512 = %lu\n", sizeof(Sha512)); #endif printf("sizeof Buffers = %lu\n", sizeof(Buffers)); printf("sizeof Options = %lu\n", sizeof(Options)); printf("sizeof Arrays = %lu\n", sizeof(Arrays)); #ifndef NO_RSA printf("sizeof RsaKey = %lu\n", sizeof(RsaKey)); #endif #ifdef HAVE_ECC printf("sizeof ecc_key = %lu\n", sizeof(ecc_key)); #endif printf("sizeof CYASSL_CIPHER = %lu\n", sizeof(CYASSL_CIPHER)); printf("sizeof CYASSL_SESSION = %lu\n", sizeof(CYASSL_SESSION)); printf("sizeof CYASSL = %lu\n", sizeof(CYASSL)); printf("sizeof CYASSL_CTX = %lu\n", sizeof(CYASSL_CTX)); #endif return sizeof(CYASSL); } #endif /* XXX should be NO_DH */ #ifndef NO_CERTS /* server Diffie-Hellman parameters, SSL_SUCCESS on ok */ int CyaSSL_SetTmpDH(CYASSL* ssl, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { byte havePSK = 0; byte haveRSA = 1; CYASSL_ENTER("CyaSSL_SetTmpDH"); if (ssl == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; if (ssl->options.side != CYASSL_SERVER_END) return SIDE_ERROR; if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) XFREE(ssl->buffers.serverDH_P.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH); if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) XFREE(ssl->buffers.serverDH_G.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH); ssl->buffers.weOwnDH = 1; /* SSL owns now */ ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->ctx->heap, DYNAMIC_TYPE_DH); if (ssl->buffers.serverDH_P.buffer == NULL) return MEMORY_E; ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->ctx->heap, DYNAMIC_TYPE_DH); if (ssl->buffers.serverDH_G.buffer == NULL) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->ctx->heap, DYNAMIC_TYPE_DH); return MEMORY_E; } ssl->buffers.serverDH_P.length = pSz; ssl->buffers.serverDH_G.length = gSz; XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz); XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz); ssl->options.haveDH = 1; #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifdef NO_RSA haveRSA = 0; #endif InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); CYASSL_LEAVE("CyaSSL_SetTmpDH", 0); return SSL_SUCCESS; } #endif /* !NO_CERTS */ int CyaSSL_write(CYASSL* ssl, const void* data, int sz) { int ret; CYASSL_ENTER("SSL_write()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef HAVE_ERRNO_H errno = 0; #endif ret = SendData(ssl, data, sz); CYASSL_LEAVE("SSL_write()", ret); if (ret < 0) return SSL_FATAL_ERROR; else return ret; } static int CyaSSL_read_internal(CYASSL* ssl, void* data, int sz, int peek) { int ret; CYASSL_ENTER("CyaSSL_read_internal()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef CYASSL_DTLS if (ssl->options.dtls) ssl->dtls_expected_rx = max(sz + 100, MAX_MTU); #endif #ifdef HAVE_MAX_FRAGMENT ret = ReceiveData(ssl, (byte*)data, min(sz, min(ssl->max_fragment, OUTPUT_RECORD_SIZE)), peek); #else ret = ReceiveData(ssl, (byte*)data, min(sz, OUTPUT_RECORD_SIZE), peek); #endif CYASSL_LEAVE("CyaSSL_read_internal()", ret); if (ret < 0) return SSL_FATAL_ERROR; else return ret; } int CyaSSL_peek(CYASSL* ssl, void* data, int sz) { CYASSL_ENTER("CyaSSL_peek()"); return CyaSSL_read_internal(ssl, data, sz, TRUE); } int CyaSSL_read(CYASSL* ssl, void* data, int sz) { CYASSL_ENTER("CyaSSL_read()"); return CyaSSL_read_internal(ssl, data, sz, FALSE); } #ifdef HAVE_CAVIUM /* let's use cavium, SSL_SUCCESS on ok */ int CyaSSL_UseCavium(CYASSL* ssl, int devId) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->devId = devId; return SSL_SUCCESS; } /* let's use cavium, SSL_SUCCESS on ok */ int CyaSSL_CTX_UseCavium(CYASSL_CTX* ctx, int devId) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->devId = devId; return SSL_SUCCESS; } #endif /* HAVE_CAVIUM */ #ifdef HAVE_SNI int CyaSSL_UseSNI(CYASSL* ssl, byte type, const void* data, word16 size) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ssl->extensions, type, data, size); } int CyaSSL_CTX_UseSNI(CYASSL_CTX* ctx, byte type, const void* data, word16 size) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ctx->extensions, type, data, size); } #ifndef NO_CYASSL_SERVER void CyaSSL_SNI_SetOptions(CYASSL* ssl, byte type, byte options) { if (ssl && ssl->extensions) TLSX_SNI_SetOptions(ssl->extensions, type, options); } void CyaSSL_CTX_SNI_SetOptions(CYASSL_CTX* ctx, byte type, byte options) { if (ctx && ctx->extensions) TLSX_SNI_SetOptions(ctx->extensions, type, options); } byte CyaSSL_SNI_Status(CYASSL* ssl, byte type) { return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type); } word16 CyaSSL_SNI_GetRequest(CYASSL* ssl, byte type, void** data) { if (data) *data = NULL; if (ssl && ssl->extensions) return TLSX_SNI_GetRequest(ssl->extensions, type, data); return 0; } int CyaSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz, byte type, byte* sni, word32* inOutSz) { if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0) return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz); return BAD_FUNC_ARG; } #endif /* NO_CYASSL_SERVER */ #endif /* HAVE_SNI */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_CYASSL_CLIENT int CyaSSL_UseMaxFragment(CYASSL* ssl, byte mfl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ssl->extensions, mfl); } int CyaSSL_CTX_UseMaxFragment(CYASSL_CTX* ctx, byte mfl) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ctx->extensions, mfl); } #endif /* NO_CYASSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #ifdef HAVE_TRUNCATED_HMAC #ifndef NO_CYASSL_CLIENT int CyaSSL_UseTruncatedHMAC(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ssl->extensions); } int CyaSSL_CTX_UseTruncatedHMAC(CYASSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ctx->extensions); } #endif /* NO_CYASSL_CLIENT */ #endif /* HAVE_TRUNCATED_HMAC */ /* Elliptic Curves */ #ifdef HAVE_SUPPORTED_CURVES #ifndef NO_CYASSL_CLIENT int CyaSSL_UseSupportedCurve(CYASSL* ssl, word16 name) { if (ssl == NULL) return BAD_FUNC_ARG; switch (name) { case CYASSL_ECC_SECP160R1: case CYASSL_ECC_SECP192R1: case CYASSL_ECC_SECP224R1: case CYASSL_ECC_SECP256R1: case CYASSL_ECC_SECP384R1: case CYASSL_ECC_SECP521R1: break; default: return BAD_FUNC_ARG; } return TLSX_UseSupportedCurve(&ssl->extensions, name); } int CyaSSL_CTX_UseSupportedCurve(CYASSL_CTX* ctx, word16 name) { if (ctx == NULL) return BAD_FUNC_ARG; switch (name) { case CYASSL_ECC_SECP160R1: case CYASSL_ECC_SECP192R1: case CYASSL_ECC_SECP224R1: case CYASSL_ECC_SECP256R1: case CYASSL_ECC_SECP384R1: case CYASSL_ECC_SECP521R1: break; default: return BAD_FUNC_ARG; } return TLSX_UseSupportedCurve(&ctx->extensions, name); } #endif /* NO_CYASSL_CLIENT */ #endif /* HAVE_SUPPORTED_CURVES */ #ifndef CYASSL_LEANPSK int CyaSSL_send(CYASSL* ssl, const void* data, int sz, int flags) { int ret; int oldFlags; CYASSL_ENTER("CyaSSL_send()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->wflags; ssl->wflags = flags; ret = CyaSSL_write(ssl, data, sz); ssl->wflags = oldFlags; CYASSL_LEAVE("CyaSSL_send()", ret); return ret; } int CyaSSL_recv(CYASSL* ssl, void* data, int sz, int flags) { int ret; int oldFlags; CYASSL_ENTER("CyaSSL_recv()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->rflags; ssl->rflags = flags; ret = CyaSSL_read(ssl, data, sz); ssl->rflags = oldFlags; CYASSL_LEAVE("CyaSSL_recv()", ret); return ret; } #endif /* SSL_SUCCESS on ok */ int CyaSSL_shutdown(CYASSL* ssl) { CYASSL_ENTER("SSL_shutdown()"); if (ssl == NULL) return SSL_FATAL_ERROR; if (ssl->options.quietShutdown) { CYASSL_MSG("quiet shutdown, no close notify sent"); return SSL_SUCCESS; } /* try to send close notify, not an error if can't */ if (!ssl->options.isClosed && !ssl->options.connReset && !ssl->options.sentNotify) { ssl->error = SendAlert(ssl, alert_warning, close_notify); if (ssl->error < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.sentNotify = 1; /* don't send close_notify twice */ } CYASSL_LEAVE("SSL_shutdown()", ssl->error); ssl->error = SSL_ERROR_SYSCALL; /* simulate OpenSSL behavior */ return SSL_SUCCESS; } int CyaSSL_get_error(CYASSL* ssl, int ret) { CYASSL_ENTER("SSL_get_error"); if (ret > 0) return SSL_ERROR_NONE; if (ssl == NULL) return BAD_FUNC_ARG; CYASSL_LEAVE("SSL_get_error", ssl->error); /* make sure converted types are handled in SetErrorString() too */ if (ssl->error == WANT_READ) return SSL_ERROR_WANT_READ; /* convert to OpenSSL type */ else if (ssl->error == WANT_WRITE) return SSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */ else if (ssl->error == ZERO_RETURN) return SSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */ return ssl->error; } /* retrive alert history, SSL_SUCCESS on ok */ int CyaSSL_get_alert_history(CYASSL* ssl, CYASSL_ALERT_HISTORY *h) { if (ssl && h) { *h = ssl->alert_history; } return SSL_SUCCESS; } /* return TRUE if current error is want read */ int CyaSSL_want_read(CYASSL* ssl) { CYASSL_ENTER("SSL_want_read"); if (ssl->error == WANT_READ) return 1; return 0; } /* return TRUE if current error is want write */ int CyaSSL_want_write(CYASSL* ssl) { CYASSL_ENTER("SSL_want_write"); if (ssl->error == WANT_WRITE) return 1; return 0; } char* CyaSSL_ERR_error_string(unsigned long errNumber, char* data) { static const char* msg = "Please supply a buffer for error string"; CYASSL_ENTER("ERR_error_string"); if (data) { SetErrorString((int)errNumber, data); return data; } return (char*)msg; } void CyaSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len) { CYASSL_ENTER("CyaSSL_ERR_error_string_n"); if (len >= CYASSL_MAX_ERROR_SZ) CyaSSL_ERR_error_string(e, buf); else { char tmp[CYASSL_MAX_ERROR_SZ]; CYASSL_MSG("Error buffer too short, truncating"); if (len) { CyaSSL_ERR_error_string(e, tmp); XMEMCPY(buf, tmp, len-1); buf[len-1] = '\0'; } } } /* don't free temporary arrays at end of handshake */ void CyaSSL_KeepArrays(CYASSL* ssl) { if (ssl) ssl->options.saveArrays = 1; } /* user doesn't need temporary arrays anymore, Free */ void CyaSSL_FreeArrays(CYASSL* ssl) { if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) { ssl->options.saveArrays = 0; FreeArrays(ssl, 1); } } const byte* CyaSSL_GetMacSecret(CYASSL* ssl, int verify) { if (ssl == NULL) return NULL; if ( (ssl->options.side == CYASSL_CLIENT_END && !verify) || (ssl->options.side == CYASSL_SERVER_END && verify) ) return ssl->keys.client_write_MAC_secret; else return ssl->keys.server_write_MAC_secret; } #ifdef ATOMIC_USER void CyaSSL_CTX_SetMacEncryptCb(CYASSL_CTX* ctx, CallbackMacEncrypt cb) { if (ctx) ctx->MacEncryptCb = cb; } void CyaSSL_SetMacEncryptCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->MacEncryptCtx = ctx; } void* CyaSSL_GetMacEncryptCtx(CYASSL* ssl) { if (ssl) return ssl->MacEncryptCtx; return NULL; } void CyaSSL_CTX_SetDecryptVerifyCb(CYASSL_CTX* ctx, CallbackDecryptVerify cb) { if (ctx) ctx->DecryptVerifyCb = cb; } void CyaSSL_SetDecryptVerifyCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->DecryptVerifyCtx = ctx; } void* CyaSSL_GetDecryptVerifyCtx(CYASSL* ssl) { if (ssl) return ssl->DecryptVerifyCtx; return NULL; } const byte* CyaSSL_GetClientWriteKey(CYASSL* ssl) { if (ssl) return ssl->keys.client_write_key; return NULL; } const byte* CyaSSL_GetClientWriteIV(CYASSL* ssl) { if (ssl) return ssl->keys.client_write_IV; return NULL; } const byte* CyaSSL_GetServerWriteKey(CYASSL* ssl) { if (ssl) return ssl->keys.server_write_key; return NULL; } const byte* CyaSSL_GetServerWriteIV(CYASSL* ssl) { if (ssl) return ssl->keys.server_write_IV; return NULL; } int CyaSSL_GetKeySize(CYASSL* ssl) { if (ssl) return ssl->specs.key_size; return BAD_FUNC_ARG; } int CyaSSL_GetIVSize(CYASSL* ssl) { if (ssl) return ssl->specs.iv_size; return BAD_FUNC_ARG; } int CyaSSL_GetBulkCipher(CYASSL* ssl) { if (ssl) return ssl->specs.bulk_cipher_algorithm; return BAD_FUNC_ARG; } int CyaSSL_GetCipherType(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->specs.cipher_type == block) return CYASSL_BLOCK_TYPE; if (ssl->specs.cipher_type == stream) return CYASSL_STREAM_TYPE; if (ssl->specs.cipher_type == aead) return CYASSL_AEAD_TYPE; return -1; } int CyaSSL_GetCipherBlockSize(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.block_size; } int CyaSSL_GetAeadMacSize(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.aead_mac_size; } int CyaSSL_IsTLSv1_1(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.tls1_1) return 1; return 0; } int CyaSSL_GetSide(CYASSL* ssl) { if (ssl) return ssl->options.side; return BAD_FUNC_ARG; } int CyaSSL_GetHmacSize(CYASSL* ssl) { /* AEAD ciphers don't have HMAC keys */ if (ssl) return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0; return BAD_FUNC_ARG; } #endif /* ATOMIC_USER */ #ifndef NO_CERTS CYASSL_CERT_MANAGER* CyaSSL_CertManagerNew(void) { CYASSL_CERT_MANAGER* cm = NULL; CYASSL_ENTER("CyaSSL_CertManagerNew"); cm = (CYASSL_CERT_MANAGER*) XMALLOC(sizeof(CYASSL_CERT_MANAGER), 0, DYNAMIC_TYPE_CERT_MANAGER); if (cm) { XMEMSET(cm, 0, sizeof(CYASSL_CERT_MANAGER)); if (InitMutex(&cm->caLock) != 0) { CYASSL_MSG("Bad mutex init"); CyaSSL_CertManagerFree(cm); return NULL; } } return cm; } void CyaSSL_CertManagerFree(CYASSL_CERT_MANAGER* cm) { CYASSL_ENTER("CyaSSL_CertManagerFree"); if (cm) { #ifdef HAVE_CRL if (cm->crl) FreeCRL(cm->crl, 1); #endif #ifdef HAVE_OCSP if (cm->ocsp) FreeOCSP(cm->ocsp, 1); #endif FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL); FreeMutex(&cm->caLock); XFREE(cm, NULL, DYNAMIC_TYPE_CERT_MANAGER); } } /* Unload the CA signer list */ int CyaSSL_CertManagerUnloadCAs(CYASSL_CERT_MANAGER* cm) { CYASSL_ENTER("CyaSSL_CertManagerUnloadCAs"); if (cm == NULL) return BAD_FUNC_ARG; if (LockMutex(&cm->caLock) != 0) return BAD_MUTEX_E; FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL); UnLockMutex(&cm->caLock); return SSL_SUCCESS; } /* Return bytes written to buff or < 0 for error */ int CyaSSL_CertPemToDer(const unsigned char* pem, int pemSz, unsigned char* buff, int buffSz, int type) { EncryptedInfo info; int eccKey = 0; int ret; buffer der; CYASSL_ENTER("CyaSSL_CertPemToDer"); if (pem == NULL || buff == NULL || buffSz <= 0) { CYASSL_MSG("Bad pem der args"); return BAD_FUNC_ARG; } if (type != CERT_TYPE && type != CA_TYPE && type != CERTREQ_TYPE) { CYASSL_MSG("Bad cert type"); return BAD_FUNC_ARG; } info.set = 0; info.ctx = NULL; info.consumed = 0; der.buffer = NULL; ret = PemToDer(pem, pemSz, type, &der, NULL, &info, &eccKey); if (ret < 0) { CYASSL_MSG("Bad Pem To Der"); } else { if (der.length <= (word32)buffSz) { XMEMCPY(buff, der.buffer, der.length); ret = der.length; } else { CYASSL_MSG("Bad der length"); ret = BAD_FUNC_ARG; } } XFREE(der.buffer, NULL, DYNAMIC_TYPE_KEY); return ret; } #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) /* our KeyPemToDer password callback, password in userData */ static INLINE int OurPasswordCb(char* passwd, int sz, int rw, void* userdata) { (void)rw; if (userdata == NULL) return 0; XSTRNCPY(passwd, (char*)userdata, sz); return min((word32)sz, (word32)XSTRLEN((char*)userdata)); } #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ /* Return bytes written to buff or < 0 for error */ int CyaSSL_KeyPemToDer(const unsigned char* pem, int pemSz, unsigned char* buff, int buffSz, const char* pass) { EncryptedInfo info; int eccKey = 0; int ret; buffer der; (void)pass; CYASSL_ENTER("CyaSSL_KeyPemToDer"); if (pem == NULL || buff == NULL || buffSz <= 0) { CYASSL_MSG("Bad pem der args"); return BAD_FUNC_ARG; } info.set = 0; info.ctx = NULL; info.consumed = 0; der.buffer = NULL; #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) if (pass) { info.ctx = CyaSSL_CTX_new(CyaSSLv23_client_method()); if (info.ctx == NULL) return MEMORY_E; CyaSSL_CTX_set_default_passwd_cb(info.ctx, OurPasswordCb); CyaSSL_CTX_set_default_passwd_cb_userdata(info.ctx, (void*)pass); } #endif ret = PemToDer(pem, pemSz, PRIVATEKEY_TYPE, &der, NULL, &info, &eccKey); if (ret < 0) { CYASSL_MSG("Bad Pem To Der"); } else { if (der.length <= (word32)buffSz) { XMEMCPY(buff, der.buffer, der.length); ret = der.length; } else { CYASSL_MSG("Bad der length"); ret = BAD_FUNC_ARG; } } XFREE(der.buffer, NULL, DYNAMIC_TYPE_KEY); if (info.ctx) CyaSSL_CTX_free(info.ctx); return ret; } #endif /* !NO_CERTS */ #if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) void CyaSSL_ERR_print_errors_fp(FILE* fp, int err) { char data[CYASSL_MAX_ERROR_SZ + 1]; CYASSL_ENTER("CyaSSL_ERR_print_errors_fp"); SetErrorString(err, data); fprintf(fp, "%s", data); } #endif int CyaSSL_pending(CYASSL* ssl) { CYASSL_ENTER("SSL_pending"); return ssl->buffers.clearOutputBuffer.length; } #ifndef CYASSL_LEANPSK /* trun on handshake group messages for context */ int CyaSSL_CTX_set_group_messages(CYASSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->groupMessages = 1; return SSL_SUCCESS; } #endif #ifndef NO_CYASSL_CLIENT /* connect enough to get peer cert chain */ int CyaSSL_connect_cert(CYASSL* ssl) { int ret; if (ssl == NULL) return SSL_FAILURE; ssl->options.certOnly = 1; ret = CyaSSL_connect(ssl); ssl->options.certOnly = 0; return ret; } #endif #ifndef CYASSL_LEANPSK /* trun on handshake group messages for ssl object */ int CyaSSL_set_group_messages(CYASSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.groupMessages = 1; return SSL_SUCCESS; } int CyaSSL_SetVersion(CYASSL* ssl, int version) { byte haveRSA = 1; byte havePSK = 0; CYASSL_ENTER("CyaSSL_SetVersion"); if (ssl == NULL) { CYASSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } switch (version) { #ifndef NO_OLD_TLS case CYASSL_SSLV3: ssl->version = MakeSSLv3(); break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS case CYASSL_TLSV1: ssl->version = MakeTLSv1(); break; case CYASSL_TLSV1_1: ssl->version = MakeTLSv1_1(); break; #endif case CYASSL_TLSV1_2: ssl->version = MakeTLSv1_2(); break; #endif default: CYASSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); return SSL_SUCCESS; } #endif /* !leanpsk */ #if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE) /* Make a work from the front of random hash */ static INLINE word32 MakeWordFromHash(const byte* hashID) { return (hashID[0] << 24) | (hashID[1] << 16) | (hashID[2] << 8) | hashID[3]; } #endif /* !NO_CERTS || !NO_SESSION_CACHE */ #ifndef NO_CERTS /* hash is the SHA digest of name, just use first 32 bits as hash */ static INLINE word32 HashSigner(const byte* hash) { return MakeWordFromHash(hash) % CA_TABLE_SIZE; } /* does CA already exist on signer list */ int AlreadySigner(CYASSL_CERT_MANAGER* cm, byte* hash) { Signer* signers; int ret = 0; word32 row = HashSigner(hash); if (LockMutex(&cm->caLock) != 0) return ret; signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SHA_DIGEST_SIZE) == 0) { ret = 1; break; } signers = signers->next; } UnLockMutex(&cm->caLock); return ret; } /* return CA if found, otherwise NULL */ Signer* GetCA(void* vp, byte* hash) { CYASSL_CERT_MANAGER* cm = (CYASSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row = HashSigner(hash); if (cm == NULL) return NULL; if (LockMutex(&cm->caLock) != 0) return ret; signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SHA_DIGEST_SIZE) == 0) { ret = signers; break; } signers = signers->next; } UnLockMutex(&cm->caLock); return ret; } #ifndef NO_SKID /* return CA if found, otherwise NULL. Walk through hash table. */ Signer* GetCAByName(void* vp, byte* hash) { CYASSL_CERT_MANAGER* cm = (CYASSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row; if (cm == NULL) return NULL; if (LockMutex(&cm->caLock) != 0) return ret; for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) { signers = cm->caTable[row]; while (signers && ret == NULL) { if (XMEMCMP(hash, signers->subjectNameHash, SHA_DIGEST_SIZE) == 0) { ret = signers; } signers = signers->next; } } UnLockMutex(&cm->caLock); return ret; } #endif /* owns der, internal now uses too */ /* type flag ids from user or from chain received during verify don't allow chain ones to be added w/o isCA extension */ int AddCA(CYASSL_CERT_MANAGER* cm, buffer der, int type, int verify) { int ret; DecodedCert cert; Signer* signer = 0; word32 row; byte* subjectHash; CYASSL_MSG("Adding a CA"); InitDecodedCert(&cert, der.buffer, der.length, cm->heap); ret = ParseCert(&cert, CA_TYPE, verify, cm); CYASSL_MSG(" Parsed new CA"); #ifndef NO_SKID subjectHash = cert.extSubjKeyId; #else subjectHash = cert.subjectHash; #endif if (ret == 0 && cert.isCA == 0 && type != CYASSL_USER_CA) { CYASSL_MSG(" Can't add as CA if not actually one"); ret = NOT_CA_ERROR; } #ifndef ALLOW_INVALID_CERTSIGN else if (ret == 0 && cert.isCA == 1 && type != CYASSL_USER_CA && (cert.extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) { /* Intermediate CA certs are required to have the keyCertSign * extension set. User loaded root certs are not. */ CYASSL_MSG(" Doesn't have key usage certificate signing"); ret = NOT_CA_ERROR; } #endif else if (ret == 0 && AlreadySigner(cm, subjectHash)) { CYASSL_MSG(" Already have this CA, not adding again"); (void)ret; } else if (ret == 0) { /* take over signer parts */ signer = MakeSigner(cm->heap); if (!signer) ret = MEMORY_ERROR; else { signer->keyOID = cert.keyOID; signer->publicKey = cert.publicKey; signer->pubKeySize = cert.pubKeySize; signer->nameLen = cert.subjectCNLen; signer->name = cert.subjectCN; #ifndef IGNORE_NAME_CONSTRAINTS signer->permittedNames = cert.permittedNames; signer->excludedNames = cert.excludedNames; #endif #ifndef NO_SKID XMEMCPY(signer->subjectKeyIdHash, cert.extSubjKeyId, SHA_DIGEST_SIZE); #endif XMEMCPY(signer->subjectNameHash, cert.subjectHash, SHA_DIGEST_SIZE); signer->keyUsage = cert.extKeyUsageSet ? cert.extKeyUsage : 0xFFFF; /* If Key Usage not set, all uses valid. */ signer->next = NULL; /* in case lock fails */ cert.publicKey = 0; /* don't free here */ cert.subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert.permittedNames = NULL; cert.excludedNames = NULL; #endif #ifndef NO_SKID row = HashSigner(signer->subjectKeyIdHash); #else row = HashSigner(signer->subjectNameHash); #endif if (LockMutex(&cm->caLock) == 0) { signer->next = cm->caTable[row]; cm->caTable[row] = signer; /* takes ownership */ UnLockMutex(&cm->caLock); if (cm->caCacheCallback) cm->caCacheCallback(der.buffer, (int)der.length, type); } else { CYASSL_MSG(" CA Mutex Lock failed"); ret = BAD_MUTEX_E; FreeSigner(signer, cm->heap); } } } CYASSL_MSG(" Freeing Parsed CA"); FreeDecodedCert(&cert); CYASSL_MSG(" Freeing der CA"); XFREE(der.buffer, cm->heap, DYNAMIC_TYPE_CA); CYASSL_MSG(" OK Freeing der CA"); CYASSL_LEAVE("AddCA", ret); if (ret == 0) return SSL_SUCCESS; return ret; } #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE /* basic config gives a cache with 33 sessions, adequate for clients and embedded servers MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that aren't under heavy load, basically allows 200 new sessions per minute BIG_SESSION_CACHE yields 20,027 sessions HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load, allows over 13,000 new sessions per minute or over 200 new sessions per second SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients or systems where the default of nearly 3kB is too much RAM, this define uses less than 500 bytes RAM default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined) */ #ifdef HUGE_SESSION_CACHE #define SESSIONS_PER_ROW 11 #define SESSION_ROWS 5981 #elif defined(BIG_SESSION_CACHE) #define SESSIONS_PER_ROW 7 #define SESSION_ROWS 2861 #elif defined(MEDIUM_SESSION_CACHE) #define SESSIONS_PER_ROW 5 #define SESSION_ROWS 211 #elif defined(SMALL_SESSION_CACHE) #define SESSIONS_PER_ROW 2 #define SESSION_ROWS 3 #else #define SESSIONS_PER_ROW 3 #define SESSION_ROWS 11 #endif typedef struct SessionRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ CYASSL_SESSION Sessions[SESSIONS_PER_ROW]; } SessionRow; static SessionRow SessionCache[SESSION_ROWS]; static CyaSSL_Mutex session_mutex; /* SessionCache mutex */ #ifndef NO_CLIENT_CACHE typedef struct ClientSession { word16 serverRow; /* SessionCache Row id */ word16 serverIdx; /* SessionCache Idx (column) */ } ClientSession; typedef struct ClientRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ ClientSession Clients[SESSIONS_PER_ROW]; } ClientRow; static ClientRow ClientCache[SESSION_ROWS]; /* Client Cache */ /* uses session mutex */ #endif /* NO_CLIENT_CACHE */ #endif /* NO_SESSION_CACHE */ int CyaSSL_Init(void) { int ret = SSL_SUCCESS; CYASSL_ENTER("CyaSSL_Init"); if (initRefCount == 0) { #ifndef NO_SESSION_CACHE if (InitMutex(&session_mutex) != 0) ret = BAD_MUTEX_E; #endif if (InitMutex(&count_mutex) != 0) ret = BAD_MUTEX_E; } if (ret == SSL_SUCCESS) { if (LockMutex(&count_mutex) != 0) { CYASSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } initRefCount++; UnLockMutex(&count_mutex); } return ret; } #ifndef NO_CERTS /* Remove PEM header/footer, convert to ASN1, store any encrypted data info->consumed tracks of PEM bytes consumed in case multiple parts */ int PemToDer(const unsigned char* buff, long longSz, int type, buffer* der, void* heap, EncryptedInfo* info, int* eccKey) { char header[PEM_LINE_LEN]; char footer[PEM_LINE_LEN]; char* headerEnd; char* footerEnd; char* consumedEnd; char* bufferEnd = (char*)(buff + longSz); long neededSz; int ret = 0; int pkcs8 = 0; int pkcs8Enc = 0; int dynamicType = 0; int sz = (int)longSz; (void)heap; (void)dynamicType; if (type == CERT_TYPE || type == CA_TYPE) { XSTRNCPY(header, "-----BEGIN CERTIFICATE-----", sizeof(header)); XSTRNCPY(footer, "-----END CERTIFICATE-----", sizeof(footer)); dynamicType = (type == CA_TYPE) ? DYNAMIC_TYPE_CA : DYNAMIC_TYPE_CERT; } else if (type == CERTREQ_TYPE) { XSTRNCPY(header, "-----BEGIN CERTIFICATE REQUEST-----", sizeof(header)); XSTRNCPY(footer, "-----END CERTIFICATE REQUEST-----", sizeof(footer)); dynamicType = DYNAMIC_TYPE_KEY; } else if (type == DH_PARAM_TYPE) { XSTRNCPY(header, "-----BEGIN DH PARAMETERS-----", sizeof(header)); XSTRNCPY(footer, "-----END DH PARAMETERS-----", sizeof(footer)); dynamicType = DYNAMIC_TYPE_KEY; } else if (type == CRL_TYPE) { XSTRNCPY(header, "-----BEGIN X509 CRL-----", sizeof(header)); XSTRNCPY(footer, "-----END X509 CRL-----", sizeof(footer)); dynamicType = DYNAMIC_TYPE_CRL; } else { XSTRNCPY(header, "-----BEGIN RSA PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END RSA PRIVATE KEY-----", sizeof(footer)); dynamicType = DYNAMIC_TYPE_KEY; } /* find header */ headerEnd = XSTRNSTR((char*)buff, header, sz); if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be pkcs8 */ XSTRNCPY(header, "-----BEGIN PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END PRIVATE KEY-----", sizeof(footer)); headerEnd = XSTRNSTR((char*)buff, header, sz); if (headerEnd) pkcs8 = 1; else { XSTRNCPY(header, "-----BEGIN ENCRYPTED PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END ENCRYPTED PRIVATE KEY-----", sizeof(footer)); headerEnd = XSTRNSTR((char*)buff, header, sz); if (headerEnd) { pkcs8Enc = 1; (void)pkcs8Enc; /* only opensslextra will read */ } } } if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be ecc */ XSTRNCPY(header, "-----BEGIN EC PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END EC PRIVATE KEY-----", sizeof(footer)); headerEnd = XSTRNSTR((char*)buff, header, sz); if (headerEnd) *eccKey = 1; } if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be dsa */ XSTRNCPY(header, "-----BEGIN DSA PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END DSA PRIVATE KEY-----", sizeof(footer)); headerEnd = XSTRNSTR((char*)buff, header, sz); } if (!headerEnd) { CYASSL_MSG("Couldn't find PEM header"); return SSL_NO_PEM_HEADER; } headerEnd += XSTRLEN(header); /* eat end of line */ if (headerEnd[0] == '\n') headerEnd++; else if (headerEnd[1] == '\n') headerEnd += 2; else return SSL_BAD_FILE; #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) { /* remove encrypted header if there */ char encHeader[] = "Proc-Type"; char* line = XSTRNSTR((char*)buff, encHeader, PEM_LINE_LEN); if (line) { char* newline; char* finish; char* start = XSTRNSTR(line, "DES", PEM_LINE_LEN); if (!start) start = XSTRNSTR(line, "AES", PEM_LINE_LEN); if (!start) return SSL_BAD_FILE; if (!info) return SSL_BAD_FILE; finish = XSTRNSTR(start, ",", PEM_LINE_LEN); if (start && finish && (start < finish)) { newline = XSTRNSTR(finish, "\r", PEM_LINE_LEN); XMEMCPY(info->name, start, finish - start); info->name[finish - start] = 0; XMEMCPY(info->iv, finish + 1, sizeof(info->iv)); if (!newline) newline = XSTRNSTR(finish, "\n", PEM_LINE_LEN); if (newline && (newline > finish)) { info->ivSz = (word32)(newline - (finish + 1)); info->set = 1; } else return SSL_BAD_FILE; } else return SSL_BAD_FILE; /* eat blank line */ while (*newline == '\r' || *newline == '\n') newline++; headerEnd = newline; } } #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ /* find footer */ footerEnd = XSTRNSTR((char*)buff, footer, sz); if (!footerEnd) return SSL_BAD_FILE; consumedEnd = footerEnd + XSTRLEN(footer); if (consumedEnd < bufferEnd) { /* handle no end of line on last line */ /* eat end of line */ if (consumedEnd[0] == '\n') consumedEnd++; else if (consumedEnd[1] == '\n') consumedEnd += 2; else return SSL_BAD_FILE; } if (info) info->consumed = (long)(consumedEnd - (char*)buff); /* set up der buffer */ neededSz = (long)(footerEnd - headerEnd); if (neededSz > sz || neededSz < 0) return SSL_BAD_FILE; der->buffer = (byte*) XMALLOC(neededSz, heap, dynamicType); if (!der->buffer) return MEMORY_ERROR; der->length = (word32)neededSz; if (Base64_Decode((byte*)headerEnd, (word32)neededSz, der->buffer, &der->length) < 0) return SSL_BAD_FILE; if (pkcs8) { /* convert and adjust length */ if ( (ret = ToTraditional(der->buffer, der->length)) < 0 ) { return ret; } else { der->length = ret; return 0; } } #if (defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)) && !defined(NO_PWDBASED) if (pkcs8Enc) { int passwordSz; char password[80]; if (!info || !info->ctx || !info->ctx->passwd_cb) return SSL_BAD_FILE; /* no callback error */ passwordSz = info->ctx->passwd_cb(password, sizeof(password), 0, info->ctx->userdata); /* convert and adjust length */ if ( (ret = ToTraditionalEnc(der->buffer, der->length, password, passwordSz)) < 0 ) { return ret; } else { der->length = ret; return 0; } } #endif return 0; } /* process the buffer buff, legnth sz, into ctx of format and type used tracks bytes consumed, userChain specifies a user cert chain to pass during the handshake */ static int ProcessBuffer(CYASSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, CYASSL* ssl, long* used, int userChain) { EncryptedInfo info; buffer der; /* holds DER or RAW (for NTRU) */ int ret; int dynamicType = 0; int eccKey = 0; int rsaKey = 0; void* heap = ctx ? ctx->heap : NULL; info.set = 0; info.ctx = ctx; info.consumed = 0; der.buffer = 0; (void)dynamicType; (void)rsaKey; if (used) *used = sz; /* used bytes default to sz, PEM chain may shorten*/ if (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM && format != SSL_FILETYPE_RAW) return SSL_BAD_FILETYPE; if (type == CA_TYPE) dynamicType = DYNAMIC_TYPE_CA; else if (type == CERT_TYPE) dynamicType = DYNAMIC_TYPE_CERT; else dynamicType = DYNAMIC_TYPE_KEY; if (format == SSL_FILETYPE_PEM) { ret = PemToDer(buff, sz, type, &der, heap, &info, &eccKey); if (ret < 0) { XFREE(der.buffer, heap, dynamicType); return ret; } if (used) *used = info.consumed; /* we may have a user cert chain, try to consume */ if (userChain && type == CERT_TYPE && info.consumed < sz) { byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */ byte* chainBuffer = staticBuffer; int dynamicBuffer = 0; word32 bufferSz = sizeof(staticBuffer); long consumed = info.consumed; word32 idx = 0; int gotOne = 0; if ( (sz - consumed) > (int)bufferSz) { CYASSL_MSG("Growing Tmp Chain Buffer"); bufferSz = (word32)(sz - consumed); /* will shrink to actual size */ chainBuffer = (byte*)XMALLOC(bufferSz, heap, DYNAMIC_TYPE_FILE); if (chainBuffer == NULL) { XFREE(der.buffer, heap, dynamicType); return MEMORY_E; } dynamicBuffer = 1; } CYASSL_MSG("Processing Cert Chain"); while (consumed < sz) { buffer part; info.consumed = 0; part.buffer = 0; ret = PemToDer(buff + consumed, sz - consumed, type, &part, heap, &info, &eccKey); if (ret == 0) { gotOne = 1; if ( (idx + part.length) > bufferSz) { CYASSL_MSG(" Cert Chain bigger than buffer"); ret = BUFFER_E; } else { c32to24(part.length, &chainBuffer[idx]); idx += CERT_HEADER_SZ; XMEMCPY(&chainBuffer[idx], part.buffer,part.length); idx += part.length; consumed += info.consumed; if (used) *used += info.consumed; } } XFREE(part.buffer, heap, dynamicType); if (ret == SSL_NO_PEM_HEADER && gotOne) { CYASSL_MSG("We got one good PEM so stuff at end ok"); break; } if (ret < 0) { CYASSL_MSG(" Error in Cert in Chain"); XFREE(der.buffer, heap, dynamicType); return ret; } CYASSL_MSG(" Consumed another Cert in Chain"); } CYASSL_MSG("Finished Processing Cert Chain"); if (ctx == NULL) { CYASSL_MSG("certChain needs context"); return BAD_FUNC_ARG; } ctx->certChain.buffer = (byte*)XMALLOC(idx, heap, dynamicType); if (ctx->certChain.buffer) { ctx->certChain.length = idx; XMEMCPY(ctx->certChain.buffer, chainBuffer, idx); } if (dynamicBuffer) XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE); if (ctx->certChain.buffer == NULL) { XFREE(der.buffer, heap, dynamicType); return MEMORY_E; } } } else { /* ASN1 (DER) or RAW (NTRU) */ der.buffer = (byte*) XMALLOC(sz, heap, dynamicType); if (!der.buffer) return MEMORY_ERROR; XMEMCPY(der.buffer, buff, sz); der.length = (word32)sz; } #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) if (info.set) { /* decrypt */ char password[80]; int passwordSz; byte key[AES_256_KEY_SIZE]; byte iv[AES_IV_SIZE]; if (!ctx || !ctx->passwd_cb) { XFREE(der.buffer, heap, dynamicType); return NO_PASSWORD; } /* use file's salt for key derivation, hex decode first */ if (Base16_Decode(info.iv, info.ivSz, info.iv, &info.ivSz) != 0) { XFREE(der.buffer, heap, dynamicType); return ASN_INPUT_E; } passwordSz = ctx->passwd_cb(password, sizeof(password), 0, ctx->userdata); if ( (ret = EVP_BytesToKey(info.name, "MD5", info.iv, (byte*)password, passwordSz, 1, key, iv)) <= 0) { XFREE(der.buffer, heap, dynamicType); return ret; } if (XSTRNCMP(info.name, "DES-CBC", 7) == 0) { Des enc; ret = Des_SetKey(&enc, key, info.iv, DES_DECRYPTION); if (ret != 0) return ret; Des_CbcDecrypt(&enc, der.buffer, der.buffer, der.length); } else if (XSTRNCMP(info.name, "DES-EDE3-CBC", 13) == 0) { Des3 enc; ret = Des3_SetKey(&enc, key, info.iv, DES_DECRYPTION); if (ret != 0) return ret; ret = Des3_CbcDecrypt(&enc, der.buffer, der.buffer, der.length); if (ret != 0) return ret; } else if (XSTRNCMP(info.name, "AES-128-CBC", 13) == 0) { Aes enc; ret = AesSetKey(&enc, key, AES_128_KEY_SIZE, info.iv, AES_DECRYPTION); if (ret == 0) ret = AesCbcDecrypt(&enc, der.buffer,der.buffer,der.length); } else if (XSTRNCMP(info.name, "AES-192-CBC", 13) == 0) { Aes enc; ret = AesSetKey(&enc, key, AES_192_KEY_SIZE, info.iv, AES_DECRYPTION); if (ret == 0) ret = AesCbcDecrypt(&enc, der.buffer,der.buffer,der.length); } else if (XSTRNCMP(info.name, "AES-256-CBC", 13) == 0) { Aes enc; ret = AesSetKey(&enc, key, AES_256_KEY_SIZE, info.iv, AES_DECRYPTION); if (ret == 0) ret = AesCbcDecrypt(&enc, der.buffer,der.buffer,der.length); } else { XFREE(der.buffer, heap, dynamicType); return SSL_BAD_FILE; } if (ret != 0) { XFREE(der.buffer, heap, dynamicType); return ret; } } #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ if (type == CA_TYPE) { if (ctx == NULL) { CYASSL_MSG("Need context for CA load"); XFREE(der.buffer, heap, dynamicType); return BAD_FUNC_ARG; } return AddCA(ctx->cm, der, CYASSL_USER_CA, ctx->verifyPeer); /* takes der over */ } else if (type == CERT_TYPE) { if (ssl) { if (ssl->buffers.weOwnCert && ssl->buffers.certificate.buffer) XFREE(ssl->buffers.certificate.buffer, heap, dynamicType); ssl->buffers.certificate = der; ssl->buffers.weOwnCert = 1; } else if (ctx) { if (ctx->certificate.buffer) XFREE(ctx->certificate.buffer, heap, dynamicType); ctx->certificate = der; /* takes der over */ } } else if (type == PRIVATEKEY_TYPE) { if (ssl) { if (ssl->buffers.weOwnKey && ssl->buffers.key.buffer) XFREE(ssl->buffers.key.buffer, heap, dynamicType); ssl->buffers.key = der; ssl->buffers.weOwnKey = 1; } else if (ctx) { if (ctx->privateKey.buffer) XFREE(ctx->privateKey.buffer, heap, dynamicType); ctx->privateKey = der; /* takes der over */ } } else { XFREE(der.buffer, heap, dynamicType); return SSL_BAD_CERTTYPE; } if (type == PRIVATEKEY_TYPE && format != SSL_FILETYPE_RAW) { #ifndef NO_RSA if (!eccKey) { /* make sure RSA key can be used */ RsaKey key; word32 idx = 0; ret = InitRsaKey(&key, 0); if (ret != 0) return ret; if (RsaPrivateKeyDecode(der.buffer,&idx,&key,der.length) != 0) { #ifdef HAVE_ECC /* could have DER ECC (or pkcs8 ecc), no easy way to tell */ eccKey = 1; /* so try it out */ #endif if (!eccKey) { FreeRsaKey(&key); return SSL_BAD_FILE; } } else { rsaKey = 1; (void)rsaKey; /* for no ecc builds */ } FreeRsaKey(&key); } #endif #ifdef HAVE_ECC if (!rsaKey) { /* make sure ECC key can be used */ word32 idx = 0; ecc_key key; ecc_init(&key); if (EccPrivateKeyDecode(der.buffer,&idx,&key,der.length) != 0) { ecc_free(&key); return SSL_BAD_FILE; } ecc_free(&key); eccKey = 1; if (ctx) ctx->haveStaticECC = 1; if (ssl) ssl->options.haveStaticECC = 1; } #endif /* HAVE_ECC */ } else if (type == CERT_TYPE) { DecodedCert cert; CYASSL_MSG("Checking cert signature type"); InitDecodedCert(&cert, der.buffer, der.length, heap); if (DecodeToKey(&cert, 0) < 0) { CYASSL_MSG("Decode to key failed"); return SSL_BAD_FILE; } switch (cert.signatureOID) { case CTC_SHAwECDSA: case CTC_SHA256wECDSA: case CTC_SHA384wECDSA: case CTC_SHA512wECDSA: CYASSL_MSG("ECDSA cert signature"); if (ctx) ctx->haveECDSAsig = 1; if (ssl) ssl->options.haveECDSAsig = 1; break; default: CYASSL_MSG("Not ECDSA cert signature"); break; } #ifdef HAVE_ECC if (ctx) ctx->pkCurveOID = cert.pkCurveOID; if (ssl) ssl->pkCurveOID = cert.pkCurveOID; #endif FreeDecodedCert(&cert); } return SSL_SUCCESS; } /* CA PEM file for verification, may have multiple/chain certs to process */ static int ProcessChainBuffer(CYASSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, CYASSL* ssl) { long used = 0; int ret = 0; int gotOne = 0; CYASSL_MSG("Processing CA PEM file"); while (used < sz) { long consumed = 0; ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl, &consumed, 0); if (ret == SSL_NO_PEM_HEADER && gotOne) { CYASSL_MSG("We got one good PEM file so stuff at end ok"); ret = SSL_SUCCESS; break; } if (ret < 0) break; CYASSL_MSG(" Processed a CA"); gotOne = 1; used += consumed; } return ret; } /* Verify the ceritficate, SSL_SUCCESS for ok, < 0 for error */ int CyaSSL_CertManagerVerifyBuffer(CYASSL_CERT_MANAGER* cm, const byte* buff, long sz, int format) { int ret = 0; int eccKey = 0; /* not used */ DecodedCert cert; buffer der; CYASSL_ENTER("CyaSSL_CertManagerVerifyBuffer"); der.buffer = NULL; der.length = 0; if (format == SSL_FILETYPE_PEM) { EncryptedInfo info; info.set = 0; info.ctx = NULL; info.consumed = 0; ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, &info, &eccKey); InitDecodedCert(&cert, der.buffer, der.length, cm->heap); } else InitDecodedCert(&cert, (byte*)buff, (word32)sz, cm->heap); if (ret == 0) ret = ParseCertRelative(&cert, CERT_TYPE, 1, cm); #ifdef HAVE_CRL if (ret == 0 && cm->crlEnabled) ret = CheckCertCRL(cm->crl, &cert); #endif FreeDecodedCert(&cert); XFREE(der.buffer, cm->heap, DYNAMIC_TYPE_CERT); if (ret == 0) return SSL_SUCCESS; return ret; } #ifndef NO_FILESYSTEM #if defined(CYASSL_MDK_ARM) extern FILE * CyaSSL_fopen(const char *name, const char *mode) ; #define XFOPEN CyaSSL_fopen #else #define XFOPEN fopen #endif /* process a file with name fname into ctx of format and type userChain specifies a user certificate chain to pass during handshake */ int ProcessFile(CYASSL_CTX* ctx, const char* fname, int format, int type, CYASSL* ssl, int userChain, CYASSL_CRL* crl) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; void* heapHint = ctx ? ctx->heap : NULL; (void)crl; (void)heapHint; if (fname == NULL) return SSL_BAD_FILE; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { CYASSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } else if (sz < 0) { XFCLOSE(file); return SSL_BAD_FILE; } if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else { if (type == CA_TYPE && format == SSL_FILETYPE_PEM) ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl); #ifdef HAVE_CRL else if (type == CRL_TYPE) ret = BufferLoadCRL(crl, myBuffer, sz, format); #endif else ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL, userChain); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE); return ret; } /* loads file then loads each file in path, no c_rehash */ int CyaSSL_CTX_load_verify_locations(CYASSL_CTX* ctx, const char* file, const char* path) { int ret = SSL_SUCCESS; CYASSL_ENTER("CyaSSL_CTX_load_verify_locations"); (void)path; if (ctx == NULL || (file == NULL && path == NULL) ) return SSL_FAILURE; if (file) ret = ProcessFile(ctx, file, SSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL); if (ret == SSL_SUCCESS && path) { /* try to load each regular file in path */ #ifdef USE_WINDOWS_API WIN32_FIND_DATAA FindFileData; HANDLE hFind; char name[MAX_FILENAME_SZ]; XMEMSET(name, 0, sizeof(name)); XSTRNCPY(name, path, MAX_FILENAME_SZ - 4); XSTRNCAT(name, "\\*", 3); hFind = FindFirstFileA(name, &FindFileData); if (hFind == INVALID_HANDLE_VALUE) { CYASSL_MSG("FindFirstFile for path verify locations failed"); return BAD_PATH_ERROR; } do { if (FindFileData.dwFileAttributes != FILE_ATTRIBUTE_DIRECTORY) { XSTRNCPY(name, path, MAX_FILENAME_SZ/2 - 3); XSTRNCAT(name, "\\", 2); XSTRNCAT(name, FindFileData.cFileName, MAX_FILENAME_SZ/2); ret = ProcessFile(ctx, name, SSL_FILETYPE_PEM, CA_TYPE, NULL,0, NULL); } } while (ret == SSL_SUCCESS && FindNextFileA(hFind, &FindFileData)); FindClose(hFind); #elif !defined(NO_CYASSL_DIR) struct dirent* entry; DIR* dir = opendir(path); if (dir == NULL) { CYASSL_MSG("opendir path verify locations failed"); return BAD_PATH_ERROR; } while ( ret == SSL_SUCCESS && (entry = readdir(dir)) != NULL) { char name[MAX_FILENAME_SZ]; struct stat s; XMEMSET(name, 0, sizeof(name)); XSTRNCPY(name, path, MAX_FILENAME_SZ/2 - 2); XSTRNCAT(name, "/", 1); XSTRNCAT(name, entry->d_name, MAX_FILENAME_SZ/2); if (stat(name, &s) != 0) { CYASSL_MSG("stat on name failed"); closedir(dir); return BAD_PATH_ERROR; } if (s.st_mode & S_IFREG) { ret = ProcessFile(ctx, name, SSL_FILETYPE_PEM, CA_TYPE, NULL,0, NULL); } } closedir(dir); #endif } return ret; } /* Verify the ceritficate, SSL_SUCCESS for ok, < 0 for error */ int CyaSSL_CertManagerVerify(CYASSL_CERT_MANAGER* cm, const char* fname, int format) { int ret = SSL_FATAL_ERROR; byte staticBuffer[FILE_BUFFER_SIZE]; byte* myBuffer = staticBuffer; int dynamic = 0; long sz = 0; XFILE file = XFOPEN(fname, "rb"); CYASSL_ENTER("CyaSSL_CertManagerVerify"); if (file == XBADFILE) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > MAX_CYASSL_FILE_SIZE || sz < 0) { CYASSL_MSG("CertManagerVerify file bad size"); XFCLOSE(file); return SSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { CYASSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else ret = CyaSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format); XFCLOSE(file); if (dynamic) XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE); return ret; } static INLINE CYASSL_METHOD* cm_pick_method(void) { #ifndef NO_CYASSL_CLIENT #ifdef NO_OLD_TLS return CyaTLSv1_2_client_method(); #else return CyaSSLv3_client_method(); #endif #elif !defined(NO_CYASSL_SERVER) #ifdef NO_OLD_TLS return CyaTLSv1_2_server_method(); #else return CyaSSLv3_server_method(); #endif #else return NULL; #endif } /* like load verify locations, 1 for success, < 0 for error */ int CyaSSL_CertManagerLoadCA(CYASSL_CERT_MANAGER* cm, const char* file, const char* path) { int ret = SSL_FATAL_ERROR; CYASSL_CTX* tmp; CYASSL_ENTER("CyaSSL_CertManagerLoadCA"); if (cm == NULL) { CYASSL_MSG("No CertManager error"); return ret; } tmp = CyaSSL_CTX_new(cm_pick_method()); if (tmp == NULL) { CYASSL_MSG("CTX new failed"); return ret; } /* for tmp use */ CyaSSL_CertManagerFree(tmp->cm); tmp->cm = cm; ret = CyaSSL_CTX_load_verify_locations(tmp, file, path); /* don't loose our good one */ tmp->cm = NULL; CyaSSL_CTX_free(tmp); return ret; } /* turn on CRL if off and compiled in, set options */ int CyaSSL_CertManagerEnableCRL(CYASSL_CERT_MANAGER* cm, int options) { int ret = SSL_SUCCESS; (void)options; CYASSL_ENTER("CyaSSL_CertManagerEnableCRL"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_CRL if (cm->crl == NULL) { cm->crl = (CYASSL_CRL*)XMALLOC(sizeof(CYASSL_CRL), cm->heap, DYNAMIC_TYPE_CRL); if (cm->crl == NULL) return MEMORY_E; if (InitCRL(cm->crl, cm) != 0) { CYASSL_MSG("Init CRL failed"); FreeCRL(cm->crl, 1); cm->crl = NULL; return SSL_FAILURE; } } cm->crlEnabled = 1; if (options & CYASSL_CRL_CHECKALL) cm->crlCheckAll = 1; #else ret = NOT_COMPILED_IN; #endif return ret; } int CyaSSL_CertManagerDisableCRL(CYASSL_CERT_MANAGER* cm) { CYASSL_ENTER("CyaSSL_CertManagerDisableCRL"); if (cm == NULL) return BAD_FUNC_ARG; cm->crlEnabled = 0; return SSL_SUCCESS; } /* turn on OCSP if off and compiled in, set options */ int CyaSSL_CertManagerEnableOCSP(CYASSL_CERT_MANAGER* cm, int options) { int ret = SSL_SUCCESS; (void)options; CYASSL_ENTER("CyaSSL_CertManagerEnableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_OCSP if (cm->ocsp == NULL) { cm->ocsp = (CYASSL_OCSP*)XMALLOC(sizeof(CYASSL_OCSP), cm->heap, DYNAMIC_TYPE_OCSP); if (cm->ocsp == NULL) return MEMORY_E; if (InitOCSP(cm->ocsp, cm) != 0) { CYASSL_MSG("Init OCSP failed"); FreeOCSP(cm->ocsp, 1); cm->ocsp = NULL; return SSL_FAILURE; } } cm->ocspEnabled = 1; if (options & CYASSL_OCSP_URL_OVERRIDE) cm->ocspUseOverrideURL = 1; if (options & CYASSL_OCSP_NO_NONCE) cm->ocspSendNonce = 0; else cm->ocspSendNonce = 1; #ifndef CYASSL_USER_IO cm->ocspIOCb = EmbedOcspLookup; cm->ocspRespFreeCb = EmbedOcspRespFree; #endif /* CYASSL_USER_IO */ #else ret = NOT_COMPILED_IN; #endif return ret; } int CyaSSL_CertManagerDisableOCSP(CYASSL_CERT_MANAGER* cm) { CYASSL_ENTER("CyaSSL_CertManagerDisableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspEnabled = 0; return SSL_SUCCESS; } int CyaSSL_CTX_check_private_key(CYASSL_CTX* ctx) { /* TODO: check private against public for RSA match */ (void)ctx; CYASSL_ENTER("SSL_CTX_check_private_key"); return SSL_SUCCESS; } #ifdef HAVE_CRL /* check CRL if enabled, SSL_SUCCESS */ int CyaSSL_CertManagerCheckCRL(CYASSL_CERT_MANAGER* cm, byte* der, int sz) { int ret; DecodedCert cert; CYASSL_ENTER("CyaSSL_CertManagerCheckCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crlEnabled == 0) return SSL_SUCCESS; InitDecodedCert(&cert, der, sz, NULL); ret = ParseCertRelative(&cert, CERT_TYPE, NO_VERIFY, cm); if (ret != 0) { CYASSL_MSG("ParseCert failed"); return ret; } else { ret = CheckCertCRL(cm->crl, &cert); if (ret != 0) { CYASSL_MSG("CheckCertCRL failed"); } } FreeDecodedCert(&cert); if (ret == 0) return SSL_SUCCESS; /* convert */ return ret; } int CyaSSL_CertManagerSetCRL_Cb(CYASSL_CERT_MANAGER* cm, CbMissingCRL cb) { CYASSL_ENTER("CyaSSL_CertManagerSetCRL_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->cbMissingCRL = cb; return SSL_SUCCESS; } int CyaSSL_CertManagerLoadCRL(CYASSL_CERT_MANAGER* cm, const char* path, int type, int monitor) { CYASSL_ENTER("CyaSSL_CertManagerLoadCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (CyaSSL_CertManagerEnableCRL(cm, 0) != SSL_SUCCESS) { CYASSL_MSG("Enable CRL failed"); return SSL_FATAL_ERROR; } } return LoadCRL(cm->crl, path, type, monitor); } int CyaSSL_EnableCRL(CYASSL* ssl, int options) { CYASSL_ENTER("CyaSSL_EnableCRL"); if (ssl) return CyaSSL_CertManagerEnableCRL(ssl->ctx->cm, options); else return BAD_FUNC_ARG; } int CyaSSL_DisableCRL(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_DisableCRL"); if (ssl) return CyaSSL_CertManagerDisableCRL(ssl->ctx->cm); else return BAD_FUNC_ARG; } int CyaSSL_LoadCRL(CYASSL* ssl, const char* path, int type, int monitor) { CYASSL_ENTER("CyaSSL_LoadCRL"); if (ssl) return CyaSSL_CertManagerLoadCRL(ssl->ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int CyaSSL_SetCRL_Cb(CYASSL* ssl, CbMissingCRL cb) { CYASSL_ENTER("CyaSSL_SetCRL_Cb"); if (ssl) return CyaSSL_CertManagerSetCRL_Cb(ssl->ctx->cm, cb); else return BAD_FUNC_ARG; } int CyaSSL_CTX_EnableCRL(CYASSL_CTX* ctx, int options) { CYASSL_ENTER("CyaSSL_CTX_EnableCRL"); if (ctx) return CyaSSL_CertManagerEnableCRL(ctx->cm, options); else return BAD_FUNC_ARG; } int CyaSSL_CTX_DisableCRL(CYASSL_CTX* ctx) { CYASSL_ENTER("CyaSSL_CTX_DisableCRL"); if (ctx) return CyaSSL_CertManagerDisableCRL(ctx->cm); else return BAD_FUNC_ARG; } int CyaSSL_CTX_LoadCRL(CYASSL_CTX* ctx, const char* path, int type, int monitor) { CYASSL_ENTER("CyaSSL_CTX_LoadCRL"); if (ctx) return CyaSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int CyaSSL_CTX_SetCRL_Cb(CYASSL_CTX* ctx, CbMissingCRL cb) { CYASSL_ENTER("CyaSSL_CTX_SetCRL_Cb"); if (ctx) return CyaSSL_CertManagerSetCRL_Cb(ctx->cm, cb); else return BAD_FUNC_ARG; } #endif /* HAVE_CRL */ #ifdef HAVE_OCSP /* check CRL if enabled, SSL_SUCCESS */ int CyaSSL_CertManagerCheckOCSP(CYASSL_CERT_MANAGER* cm, byte* der, int sz) { int ret; DecodedCert cert; CYASSL_ENTER("CyaSSL_CertManagerCheckOCSP"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->ocspEnabled == 0) return SSL_SUCCESS; InitDecodedCert(&cert, der, sz, NULL); ret = ParseCertRelative(&cert, CERT_TYPE, NO_VERIFY, cm); if (ret != 0) { CYASSL_MSG("ParseCert failed"); return ret; } else { ret = CheckCertOCSP(cm->ocsp, &cert); if (ret != 0) { CYASSL_MSG("CheckCertOCSP failed"); } } FreeDecodedCert(&cert); if (ret == 0) return SSL_SUCCESS; /* convert */ return ret; } int CyaSSL_CertManagerSetOCSPOverrideURL(CYASSL_CERT_MANAGER* cm, const char* url) { CYASSL_ENTER("CyaSSL_CertManagerSetOCSPOverrideURL"); if (cm == NULL) return BAD_FUNC_ARG; XFREE(cm->ocspOverrideURL, cm->heap, 0); if (url != NULL) { int urlSz = (int)XSTRLEN(url) + 1; cm->ocspOverrideURL = (char*)XMALLOC(urlSz, cm->heap, 0); if (cm->ocspOverrideURL != NULL) { XMEMCPY(cm->ocspOverrideURL, url, urlSz); } else return MEMORY_E; } else cm->ocspOverrideURL = NULL; return SSL_SUCCESS; } int CyaSSL_CertManagerSetOCSP_Cb(CYASSL_CERT_MANAGER* cm, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { CYASSL_ENTER("CyaSSL_CertManagerSetOCSP_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspIOCb = ioCb; cm->ocspRespFreeCb = respFreeCb; cm->ocspIOCtx = ioCbCtx; return SSL_SUCCESS; } int CyaSSL_EnableOCSP(CYASSL* ssl, int options) { CYASSL_ENTER("CyaSSL_EnableOCSP"); if (ssl) return CyaSSL_CertManagerEnableOCSP(ssl->ctx->cm, options); else return BAD_FUNC_ARG; } int CyaSSL_DisableOCSP(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_DisableOCSP"); if (ssl) return CyaSSL_CertManagerDisableOCSP(ssl->ctx->cm); else return BAD_FUNC_ARG; } int CyaSSL_SetOCSP_OverrideURL(CYASSL* ssl, const char* url) { CYASSL_ENTER("CyaSSL_SetOCSP_OverrideURL"); if (ssl) return CyaSSL_CertManagerSetOCSPOverrideURL(ssl->ctx->cm, url); else return BAD_FUNC_ARG; } int CyaSSL_SetOCSP_Cb(CYASSL* ssl, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { CYASSL_ENTER("CyaSSL_SetOCSP_Cb"); if (ssl) return CyaSSL_CertManagerSetOCSP_Cb(ssl->ctx->cm, ioCb, respFreeCb, ioCbCtx); else return BAD_FUNC_ARG; } int CyaSSL_CTX_EnableOCSP(CYASSL_CTX* ctx, int options) { CYASSL_ENTER("CyaSSL_CTX_EnableOCSP"); if (ctx) return CyaSSL_CertManagerEnableOCSP(ctx->cm, options); else return BAD_FUNC_ARG; } int CyaSSL_CTX_DisableOCSP(CYASSL_CTX* ctx) { CYASSL_ENTER("CyaSSL_CTX_DisableOCSP"); if (ctx) return CyaSSL_CertManagerDisableOCSP(ctx->cm); else return BAD_FUNC_ARG; } int CyaSSL_CTX_SetOCSP_OverrideURL(CYASSL_CTX* ctx, const char* url) { CYASSL_ENTER("CyaSSL_SetOCSP_OverrideURL"); if (ctx) return CyaSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url); else return BAD_FUNC_ARG; } int CyaSSL_CTX_SetOCSP_Cb(CYASSL_CTX* ctx, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { CYASSL_ENTER("CyaSSL_CTX_SetOCSP_Cb"); if (ctx) return CyaSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb, respFreeCb, ioCbCtx); else return BAD_FUNC_ARG; } #endif /* HAVE_OCSP */ #ifdef CYASSL_DER_LOAD /* Add format parameter to allow DER load of CA files */ int CyaSSL_CTX_der_load_verify_locations(CYASSL_CTX* ctx, const char* file, int format) { CYASSL_ENTER("CyaSSL_CTX_der_load_verify_locations"); if (ctx == NULL || file == NULL) return SSL_FAILURE; if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #endif /* CYASSL_DER_LOAD */ #ifdef CYASSL_CERT_GEN /* load pem cert from file into der buffer, return der size or error */ int CyaSSL_PemCertToDer(const char* fileName, unsigned char* derBuf, int derSz) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* fileBuf = staticBuffer; int dynamic = 0; int ret; int ecc = 0; long sz = 0; XFILE file = XFOPEN(fileName, "rb"); EncryptedInfo info; buffer converted; CYASSL_ENTER("CyaSSL_PemCertToDer"); converted.buffer = 0; if (file == XBADFILE) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { fileBuf = (byte*) XMALLOC(sz, 0, DYNAMIC_TYPE_FILE); if (fileBuf == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } else if (sz < 0) { XFCLOSE(file); return SSL_BAD_FILE; } if ( (ret = (int)XFREAD(fileBuf, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else ret = PemToDer(fileBuf, sz, CA_TYPE, &converted, 0, &info, &ecc); if (ret == 0) { if (converted.length < (word32)derSz) { XMEMCPY(derBuf, converted.buffer, converted.length); ret = converted.length; } else ret = BUFFER_E; } XFREE(converted.buffer, 0, DYNAMIC_TYPE_CA); if (dynamic) XFREE(fileBuf, 0, DYNAMIC_TYPE_FILE); XFCLOSE(file); return ret; } #endif /* CYASSL_CERT_GEN */ int CyaSSL_CTX_use_certificate_file(CYASSL_CTX* ctx, const char* file, int format) { CYASSL_ENTER("CyaSSL_CTX_use_certificate_file"); if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int CyaSSL_CTX_use_PrivateKey_file(CYASSL_CTX* ctx, const char* file,int format) { CYASSL_ENTER("CyaSSL_CTX_use_PrivateKey_file"); if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int CyaSSL_CTX_use_certificate_chain_file(CYASSL_CTX* ctx, const char* file) { /* procces up to MAX_CHAIN_DEPTH plus subject cert */ CYASSL_ENTER("CyaSSL_CTX_use_certificate_chain_file"); if (ProcessFile(ctx, file, SSL_FILETYPE_PEM,CERT_TYPE,NULL,1, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #ifdef OPENSSL_EXTRA /* put SSL type in extra for now, not very common */ int CyaSSL_use_certificate_file(CYASSL* ssl, const char* file, int format) { CYASSL_ENTER("CyaSSL_use_certificate_file"); if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 0, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int CyaSSL_use_PrivateKey_file(CYASSL* ssl, const char* file, int format) { CYASSL_ENTER("CyaSSL_use_PrivateKey_file"); if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE, ssl, 0, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int CyaSSL_use_certificate_chain_file(CYASSL* ssl, const char* file) { /* procces up to MAX_CHAIN_DEPTH plus subject cert */ CYASSL_ENTER("CyaSSL_use_certificate_chain_file"); if (ProcessFile(ssl->ctx, file, SSL_FILETYPE_PEM, CERT_TYPE, ssl, 1, NULL) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } /* server wrapper for ctx or ssl Diffie-Hellman parameters */ static int CyaSSL_SetTmpDH_buffer_wrapper(CYASSL_CTX* ctx, CYASSL* ssl, const unsigned char* buf, long sz, int format) { buffer der; int ret; int weOwnDer = 0; byte p[MAX_DH_SIZE]; byte g[MAX_DH_SIZE]; word32 pSz = sizeof(p); word32 gSz = sizeof(g); der.buffer = (byte*)buf; der.length = (word32)sz; if (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM) return SSL_BAD_FILETYPE; if (format == SSL_FILETYPE_PEM) { der.buffer = NULL; ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap, NULL,NULL); if (ret < 0) { XFREE(der.buffer, ctx->heap, DYNAMIC_TYPE_KEY); return ret; } weOwnDer = 1; } if (DhParamsLoad(der.buffer, der.length, p, &pSz, g, &gSz) < 0) ret = SSL_BAD_FILETYPE; else { if (ssl) ret = CyaSSL_SetTmpDH(ssl, p, pSz, g, gSz); else ret = CyaSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz); } if (weOwnDer) XFREE(der.buffer, ctx->heap, DYNAMIC_TYPE_KEY); return ret; } /* server Diffie-Hellman parameters, SSL_SUCCESS on ok */ int CyaSSL_SetTmpDH_buffer(CYASSL* ssl, const unsigned char* buf, long sz, int format) { return CyaSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format); } /* server ctx Diffie-Hellman parameters, SSL_SUCCESS on ok */ int CyaSSL_CTX_SetTmpDH_buffer(CYASSL_CTX* ctx, const unsigned char* buf, long sz, int format) { return CyaSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format); } #ifdef HAVE_ECC /* Set Temp CTX EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */ int CyaSSL_CTX_SetTmpEC_DHE_Sz(CYASSL_CTX* ctx, word16 sz) { if (ctx == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ctx->eccTempKeySz = sz; return SSL_SUCCESS; } /* Set Temp SSL EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */ int CyaSSL_SetTmpEC_DHE_Sz(CYASSL* ssl, word16 sz) { if (ssl == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ssl->eccTempKeySz = sz; return SSL_SUCCESS; } #endif /* HAVE_ECC */ #if !defined(NO_FILESYSTEM) /* server Diffie-Hellman parameters */ static int CyaSSL_SetTmpDH_file_wrapper(CYASSL_CTX* ctx, CYASSL* ssl, const char* fname, int format) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file = XFOPEN(fname, "rb"); if (file == XBADFILE) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { CYASSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } else if (sz < 0) { XFCLOSE(file); return SSL_BAD_FILE; } if ( (ret = (int)XFREAD(myBuffer, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else { if (ssl) ret = CyaSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format); else ret = CyaSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); return ret; } /* server Diffie-Hellman parameters */ int CyaSSL_SetTmpDH_file(CYASSL* ssl, const char* fname, int format) { return CyaSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format); } /* server Diffie-Hellman parameters */ int CyaSSL_CTX_SetTmpDH_file(CYASSL_CTX* ctx, const char* fname, int format) { return CyaSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format); } #endif /* !NO_FILESYSTEM */ #endif /* OPENSSL_EXTRA */ #ifdef HAVE_NTRU int CyaSSL_CTX_use_NTRUPrivateKey_file(CYASSL_CTX* ctx, const char* file) { CYASSL_ENTER("CyaSSL_CTX_use_NTRUPrivateKey_file"); if (ctx == NULL) return SSL_FAILURE; if (ProcessFile(ctx, file, SSL_FILETYPE_RAW, PRIVATEKEY_TYPE, NULL, 0, NULL) == SSL_SUCCESS) { ctx->haveNTRU = 1; return SSL_SUCCESS; } return SSL_FAILURE; } #endif /* HAVE_NTRU */ #if defined(OPENSSL_EXTRA) int CyaSSL_CTX_use_RSAPrivateKey_file(CYASSL_CTX* ctx,const char* file, int format) { CYASSL_ENTER("SSL_CTX_use_RSAPrivateKey_file"); return CyaSSL_CTX_use_PrivateKey_file(ctx, file, format); } int CyaSSL_use_RSAPrivateKey_file(CYASSL* ssl, const char* file, int format) { CYASSL_ENTER("CyaSSL_use_RSAPrivateKey_file"); return CyaSSL_use_PrivateKey_file(ssl, file, format); } #endif /* OPENSSL_EXTRA */ #endif /* NO_FILESYSTEM */ void CyaSSL_CTX_set_verify(CYASSL_CTX* ctx, int mode, VerifyCallback vc) { CYASSL_ENTER("CyaSSL_CTX_set_verify"); if (mode & SSL_VERIFY_PEER) { ctx->verifyPeer = 1; ctx->verifyNone = 0; /* in case perviously set */ } if (mode == SSL_VERIFY_NONE) { ctx->verifyNone = 1; ctx->verifyPeer = 0; /* in case previously set */ } if (mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) ctx->failNoCert = 1; ctx->verifyCallback = vc; } void CyaSSL_set_verify(CYASSL* ssl, int mode, VerifyCallback vc) { CYASSL_ENTER("CyaSSL_set_verify"); if (mode & SSL_VERIFY_PEER) { ssl->options.verifyPeer = 1; ssl->options.verifyNone = 0; /* in case perviously set */ } if (mode == SSL_VERIFY_NONE) { ssl->options.verifyNone = 1; ssl->options.verifyPeer = 0; /* in case previously set */ } if (mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) ssl->options.failNoCert = 1; ssl->verifyCallback = vc; } /* store user ctx for verify callback */ void CyaSSL_SetCertCbCtx(CYASSL* ssl, void* ctx) { CYASSL_ENTER("CyaSSL_SetCertCbCtx"); if (ssl) ssl->verifyCbCtx = ctx; } /* store context CA Cache addition callback */ void CyaSSL_CTX_SetCACb(CYASSL_CTX* ctx, CallbackCACache cb) { if (ctx && ctx->cm) ctx->cm->caCacheCallback = cb; } #if defined(PERSIST_CERT_CACHE) #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int CyaSSL_CTX_save_cert_cache(CYASSL_CTX* ctx, const char* fname) { CYASSL_ENTER("CyaSSL_CTX_save_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_SaveCertCache(ctx->cm, fname); } /* Persist cert cache from file */ int CyaSSL_CTX_restore_cert_cache(CYASSL_CTX* ctx, const char* fname) { CYASSL_ENTER("CyaSSL_CTX_restore_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_RestoreCertCache(ctx->cm, fname); } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int CyaSSL_CTX_memsave_cert_cache(CYASSL_CTX* ctx, void* mem, int sz, int* used) { CYASSL_ENTER("CyaSSL_CTX_memsave_cert_cache"); if (ctx == NULL || mem == NULL || used == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemSaveCertCache(ctx->cm, mem, sz, used); } /* Restore cert cache from memory */ int CyaSSL_CTX_memrestore_cert_cache(CYASSL_CTX* ctx, const void* mem, int sz) { CYASSL_ENTER("CyaSSL_CTX_memrestore_cert_cache"); if (ctx == NULL || mem == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemRestoreCertCache(ctx->cm, mem, sz); } /* get how big the the cert cache save buffer needs to be */ int CyaSSL_CTX_get_cert_cache_memsize(CYASSL_CTX* ctx) { CYASSL_ENTER("CyaSSL_CTX_get_cert_cache_memsize"); if (ctx == NULL) return BAD_FUNC_ARG; return CM_GetCertCacheMemSize(ctx->cm); } #endif /* PERSISTE_CERT_CACHE */ #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE CYASSL_SESSION* CyaSSL_get_session(CYASSL* ssl) { CYASSL_ENTER("SSL_get_session"); if (ssl) return GetSession(ssl, 0); return NULL; } int CyaSSL_set_session(CYASSL* ssl, CYASSL_SESSION* session) { CYASSL_ENTER("SSL_set_session"); if (session) return SetSession(ssl, session); return SSL_FAILURE; } #ifndef NO_CLIENT_CACHE /* Associate client session with serverID, find existing or store for saving if newSession flag on, don't reuse existing session SSL_SUCCESS on ok */ int CyaSSL_SetServerID(CYASSL* ssl, const byte* id, int len, int newSession) { CYASSL_SESSION* session = NULL; CYASSL_ENTER("CyaSSL_SetServerID"); if (ssl == NULL || id == NULL || len <= 0) return BAD_FUNC_ARG; if (newSession == 0) { session = GetSessionClient(ssl, id, len); if (session) { if (SetSession(ssl, session) != SSL_SUCCESS) { CYASSL_MSG("SetSession failed"); session = NULL; } } } if (session == NULL) { CYASSL_MSG("Valid ServerID not cached already"); ssl->session.idLen = (word16)min(SERVER_ID_LEN, (word32)len); XMEMCPY(ssl->session.serverID, id, ssl->session.idLen); } return SSL_SUCCESS; } #endif /* NO_CLIENT_CACHE */ #if defined(PERSIST_SESSION_CACHE) /* for persistance, if changes to layout need to increment and modify save_session_cache() and restore_session_cache and memory versions too */ #define CYASSL_CACHE_VERSION 2 /* Session Cache Header information */ typedef struct { int version; /* cache layout version id */ int rows; /* session rows */ int columns; /* session columns */ int sessionSz; /* sizeof CYASSL_SESSION */ } cache_header_t; /* current persistence layout is: 1) cache_header_t 2) SessionCache 3) ClientCache update CYASSL_CACHE_VERSION if change layout for the following PERSISTENT_SESSION_CACHE functions */ /* get how big the the session cache save buffer needs to be */ int CyaSSL_get_session_cache_memsize(void) { int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t)); #ifndef NO_CLIENT_CACHE sz += (int)(sizeof(ClientCache)); #endif return sz; } /* Persist session cache to memory */ int CyaSSL_memsave_session_cache(void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); #ifndef NO_CLIENT_CACHE ClientRow* clRow; #endif CYASSL_ENTER("CyaSSL_memsave_session_cache"); if (sz < CyaSSL_get_session_cache_memsize()) { CYASSL_MSG("Memory buffer too small"); return BUFFER_E; } cache_header.version = CYASSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(CYASSL_SESSION); XMEMCPY(mem, &cache_header, sizeof(cache_header)); if (LockMutex(&session_mutex) != 0) { CYASSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } for (i = 0; i < cache_header.rows; ++i) XMEMCPY(row++, SessionCache + i, sizeof(SessionRow)); #ifndef NO_CLIENT_CACHE clRow = (ClientRow*)row; for (i = 0; i < cache_header.rows; ++i) XMEMCPY(clRow++, ClientCache + i, sizeof(ClientRow)); #endif UnLockMutex(&session_mutex); CYASSL_LEAVE("CyaSSL_memsave_session_cache", SSL_SUCCESS); return SSL_SUCCESS; } /* Restore the persistant session cache from memory */ int CyaSSL_memrestore_session_cache(const void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); #ifndef NO_CLIENT_CACHE ClientRow* clRow; #endif CYASSL_ENTER("CyaSSL_memrestore_session_cache"); if (sz < CyaSSL_get_session_cache_memsize()) { CYASSL_MSG("Memory buffer too small"); return BUFFER_E; } XMEMCPY(&cache_header, mem, sizeof(cache_header)); if (cache_header.version != CYASSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(CYASSL_SESSION)) { CYASSL_MSG("Session cache header match failed"); return CACHE_MATCH_ERROR; } if (LockMutex(&session_mutex) != 0) { CYASSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } for (i = 0; i < cache_header.rows; ++i) XMEMCPY(SessionCache + i, row++, sizeof(SessionRow)); #ifndef NO_CLIENT_CACHE clRow = (ClientRow*)row; for (i = 0; i < cache_header.rows; ++i) XMEMCPY(ClientCache + i, clRow++, sizeof(ClientRow)); #endif UnLockMutex(&session_mutex); CYASSL_LEAVE("CyaSSL_memrestore_session_cache", SSL_SUCCESS); return SSL_SUCCESS; } #if !defined(NO_FILESYSTEM) /* Persist session cache to file */ /* doesn't use memsave because of additional memory use */ int CyaSSL_save_session_cache(const char *fname) { XFILE file; int ret; int rc = SSL_SUCCESS; int i; cache_header_t cache_header; CYASSL_ENTER("CyaSSL_save_session_cache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { CYASSL_MSG("Couldn't open session cache save file"); return SSL_BAD_FILE; } cache_header.version = CYASSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(CYASSL_SESSION); /* cache header */ ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file); if (ret != 1) { CYASSL_MSG("Session cache header file write failed"); XFCLOSE(file); return FWRITE_ERROR; } if (LockMutex(&session_mutex) != 0) { CYASSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } /* session cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFWRITE(SessionCache + i, sizeof(SessionRow), 1, file); if (ret != 1) { CYASSL_MSG("Session cache member file write failed"); rc = FWRITE_ERROR; break; } } #ifndef NO_CLIENT_CACHE /* client cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFWRITE(ClientCache + i, sizeof(ClientRow), 1, file); if (ret != 1) { CYASSL_MSG("Client cache member file write failed"); rc = FWRITE_ERROR; break; } } #endif /* NO_CLIENT_CACHE */ UnLockMutex(&session_mutex); XFCLOSE(file); CYASSL_LEAVE("CyaSSL_save_session_cache", rc); return rc; } /* Restore the persistant session cache from file */ /* doesn't use memstore because of additional memory use */ int CyaSSL_restore_session_cache(const char *fname) { XFILE file; int rc = SSL_SUCCESS; int ret; int i; cache_header_t cache_header; CYASSL_ENTER("CyaSSL_restore_session_cache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { CYASSL_MSG("Couldn't open session cache save file"); return SSL_BAD_FILE; } /* cache header */ ret = (int)XFREAD(&cache_header, sizeof cache_header, 1, file); if (ret != 1) { CYASSL_MSG("Session cache header file read failed"); XFCLOSE(file); return FREAD_ERROR; } if (cache_header.version != CYASSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(CYASSL_SESSION)) { CYASSL_MSG("Session cache header match failed"); XFCLOSE(file); return CACHE_MATCH_ERROR; } if (LockMutex(&session_mutex) != 0) { CYASSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } /* session cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFREAD(SessionCache + i, sizeof(SessionRow), 1, file); if (ret != 1) { CYASSL_MSG("Session cache member file read failed"); XMEMSET(SessionCache, 0, sizeof SessionCache); rc = FREAD_ERROR; break; } } #ifndef NO_CLIENT_CACHE /* client cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFREAD(ClientCache + i, sizeof(ClientRow), 1, file); if (ret != 1) { CYASSL_MSG("Client cache member file read failed"); XMEMSET(ClientCache, 0, sizeof ClientCache); rc = FREAD_ERROR; break; } } #endif /* NO_CLIENT_CACHE */ UnLockMutex(&session_mutex); XFCLOSE(file); CYASSL_LEAVE("CyaSSL_restore_session_cache", rc); return rc; } #endif /* !NO_FILESYSTEM */ #endif /* PERSIST_SESSION_CACHE */ #endif /* NO_SESSION_CACHE */ void CyaSSL_load_error_strings(void) /* compatibility only */ {} int CyaSSL_library_init(void) { CYASSL_ENTER("SSL_library_init"); if (CyaSSL_Init() == SSL_SUCCESS) return SSL_SUCCESS; else return SSL_FATAL_ERROR; } #ifndef NO_SESSION_CACHE /* on by default if built in but allow user to turn off */ long CyaSSL_CTX_set_session_cache_mode(CYASSL_CTX* ctx, long mode) { CYASSL_ENTER("SSL_CTX_set_session_cache_mode"); if (mode == SSL_SESS_CACHE_OFF) ctx->sessionCacheOff = 1; if (mode == SSL_SESS_CACHE_NO_AUTO_CLEAR) ctx->sessionCacheFlushOff = 1; return SSL_SUCCESS; } #endif /* NO_SESSION_CACHE */ #if !defined(NO_CERTS) #if defined(PERSIST_CERT_CACHE) #define CYASSL_CACHE_CERT_VERSION 1 typedef struct { int version; /* cache cert layout version id */ int rows; /* hash table rows, CA_TABLE_SIZE */ int columns[CA_TABLE_SIZE]; /* columns per row on list */ int signerSz; /* sizeof Signer object */ } CertCacheHeader; /* current cert persistance layout is: 1) CertCacheHeader 2) caTable update CYASSL_CERT_CACHE_VERSION if change layout for the following PERSIST_CERT_CACHE functions */ /* Return memory needed to persist this signer, have lock */ static INLINE int GetSignerMemory(Signer* signer) { int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #if !defined(NO_SKID) sz += (int)sizeof(signer->subjectKeyIdHash); #endif /* add dynamic bytes needed */ sz += signer->pubKeySize; sz += signer->nameLen; return sz; } /* Return memory needed to persist this row, have lock */ static INLINE int GetCertCacheRowMemory(Signer* row) { int sz = 0; while (row) { sz += GetSignerMemory(row); row = row->next; } return sz; } /* get the size of persist cert cache, have lock */ static INLINE int GetCertCacheMemSize(CYASSL_CERT_MANAGER* cm) { int sz; int i; sz = sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; i++) sz += GetCertCacheRowMemory(cm->caTable[i]); return sz; } /* Store cert cache header columns with number of items per list, have lock */ static INLINE void SetCertHeaderColumns(CYASSL_CERT_MANAGER* cm, int* columns) { int i; Signer* row; for (i = 0; i < CA_TABLE_SIZE; i++) { int count = 0; row = cm->caTable[i]; while (row) { ++count; row = row->next; } columns[i] = count; } } /* Restore whole cert row from memory, have lock, return bytes consumed, < 0 on error, have lock */ static INLINE int RestoreCertRow(CYASSL_CERT_MANAGER* cm, byte* current, int row, int listSz, const byte* end) { int idx = 0; if (listSz < 0) { CYASSL_MSG("Row header corrupted, negative value"); return PARSE_ERROR; } while (listSz) { Signer* signer; byte* start = current + idx; /* for end checks on this signer */ int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #ifndef NO_SKID minSz += (int)sizeof(signer->subjectKeyIdHash); #endif if (start + minSz > end) { CYASSL_MSG("Would overread restore buffer"); return BUFFER_E; } signer = MakeSigner(cm->heap); if (signer == NULL) return MEMORY_E; /* pubKeySize */ XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize)); idx += (int)sizeof(signer->pubKeySize); /* keyOID */ XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID)); idx += (int)sizeof(signer->keyOID); /* pulicKey */ if (start + minSz + signer->pubKeySize > end) { CYASSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } signer->publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap, DYNAMIC_TYPE_KEY); if (signer->publicKey == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(signer->publicKey, current + idx, signer->pubKeySize); idx += signer->pubKeySize; /* nameLen */ XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen)); idx += (int)sizeof(signer->nameLen); /* name */ if (start + minSz + signer->pubKeySize + signer->nameLen > end) { CYASSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } signer->name = (char*)XMALLOC(signer->nameLen, cm->heap, DYNAMIC_TYPE_SUBJECT_CN); if (signer->name == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(signer->name, current + idx, signer->nameLen); idx += signer->nameLen; /* subjectNameHash */ XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #ifndef NO_SKID /* subjectKeyIdHash */ XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #endif signer->next = cm->caTable[row]; cm->caTable[row] = signer; --listSz; } return idx; } /* Store whole cert row into memory, have lock, return bytes added */ static INLINE int StoreCertRow(CYASSL_CERT_MANAGER* cm, byte* current, int row) { int added = 0; Signer* list = cm->caTable[row]; while (list) { XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize)); added += (int)sizeof(list->pubKeySize); XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID)); added += (int)sizeof(list->keyOID); XMEMCPY(current + added, list->publicKey, list->pubKeySize); added += list->pubKeySize; XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen)); added += (int)sizeof(list->nameLen); XMEMCPY(current + added, list->name, list->nameLen); added += list->nameLen; XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #ifndef NO_SKID XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #endif list = list->next; } return added; } /* Persist cert cache to memory, have lock */ static INLINE int DoMemSaveCertCache(CYASSL_CERT_MANAGER* cm, void* mem, int sz) { int realSz; int ret = SSL_SUCCESS; int i; CYASSL_ENTER("DoMemSaveCertCache"); realSz = GetCertCacheMemSize(cm); if (realSz > sz) { CYASSL_MSG("Mem output buffer too small"); ret = BUFFER_E; } else { byte* current; CertCacheHeader hdr; hdr.version = CYASSL_CACHE_CERT_VERSION; hdr.rows = CA_TABLE_SIZE; SetCertHeaderColumns(cm, hdr.columns); hdr.signerSz = (int)sizeof(Signer); XMEMCPY(mem, &hdr, sizeof(CertCacheHeader)); current = (byte*)mem + sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; ++i) current += StoreCertRow(cm, current, i); } return ret; } #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int CM_SaveCertCache(CYASSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = SSL_SUCCESS; int memSz; byte* mem; CYASSL_ENTER("CM_SaveCertCache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { CYASSL_MSG("Couldn't open cert cache save file"); return SSL_BAD_FILE; } if (LockMutex(&cm->caLock) != 0) { CYASSL_MSG("LockMutex on caLock failed"); XFCLOSE(file); return BAD_MUTEX_E; } memSz = GetCertCacheMemSize(cm); mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { CYASSL_MSG("Alloc for tmp buffer failed"); rc = MEMORY_E; } else { rc = DoMemSaveCertCache(cm, mem, memSz); if (rc == SSL_SUCCESS) { int ret = (int)XFWRITE(mem, memSz, 1, file); if (ret != 1) { CYASSL_MSG("Cert cache file write failed"); rc = FWRITE_ERROR; } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); } UnLockMutex(&cm->caLock); XFCLOSE(file); return rc; } /* Restore cert cache from file */ int CM_RestoreCertCache(CYASSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = SSL_SUCCESS; int ret; int memSz; byte* mem; CYASSL_ENTER("CM_RestoreCertCache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { CYASSL_MSG("Couldn't open cert cache save file"); return SSL_BAD_FILE; } XFSEEK(file, 0, XSEEK_END); memSz = (int)XFTELL(file); XREWIND(file); if (memSz <= 0) { CYASSL_MSG("Bad file size"); XFCLOSE(file); return SSL_BAD_FILE; } mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { CYASSL_MSG("Alloc for tmp buffer failed"); XFCLOSE(file); return MEMORY_E; } ret = (int)XFREAD(mem, memSz, 1, file); if (ret != 1) { CYASSL_MSG("Cert file read error"); rc = FREAD_ERROR; } else { rc = CM_MemRestoreCertCache(cm, mem, memSz); if (rc != SSL_SUCCESS) { CYASSL_MSG("Mem restore cert cache failed"); } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); XFCLOSE(file); return rc; } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int CM_MemSaveCertCache(CYASSL_CERT_MANAGER* cm, void* mem, int sz, int* used) { int ret = SSL_SUCCESS; CYASSL_ENTER("CM_MemSaveCertCache"); if (LockMutex(&cm->caLock) != 0) { CYASSL_MSG("LockMutex on caLock failed"); return BAD_MUTEX_E; } ret = DoMemSaveCertCache(cm, mem, sz); if (ret == SSL_SUCCESS) *used = GetCertCacheMemSize(cm); UnLockMutex(&cm->caLock); return ret; } /* Restore cert cache from memory */ int CM_MemRestoreCertCache(CYASSL_CERT_MANAGER* cm, const void* mem, int sz) { int ret = SSL_SUCCESS; int i; CertCacheHeader* hdr = (CertCacheHeader*)mem; byte* current = (byte*)mem + sizeof(CertCacheHeader); byte* end = (byte*)mem + sz; /* don't go over */ CYASSL_ENTER("CM_MemRestoreCertCache"); if (current > end) { CYASSL_MSG("Cert Cache Memory buffer too small"); return BUFFER_E; } if (hdr->version != CYASSL_CACHE_CERT_VERSION || hdr->rows != CA_TABLE_SIZE || hdr->signerSz != (int)sizeof(Signer)) { CYASSL_MSG("Cert Cache Memory header mismatch"); return CACHE_MATCH_ERROR; } if (LockMutex(&cm->caLock) != 0) { CYASSL_MSG("LockMutex on caLock failed"); return BAD_MUTEX_E; } FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); for (i = 0; i < CA_TABLE_SIZE; ++i) { int added = RestoreCertRow(cm, current, i, hdr->columns[i], end); if (added < 0) { CYASSL_MSG("RestoreCertRow error"); ret = added; break; } current += added; } UnLockMutex(&cm->caLock); return ret; } /* get how big the the cert cache save buffer needs to be */ int CM_GetCertCacheMemSize(CYASSL_CERT_MANAGER* cm) { int sz; CYASSL_ENTER("CM_GetCertCacheMemSize"); if (LockMutex(&cm->caLock) != 0) { CYASSL_MSG("LockMutex on caLock failed"); return BAD_MUTEX_E; } sz = GetCertCacheMemSize(cm); UnLockMutex(&cm->caLock); return sz; } #endif /* PERSIST_CERT_CACHE */ #endif /* NO_CERTS */ int CyaSSL_CTX_set_cipher_list(CYASSL_CTX* ctx, const char* list) { CYASSL_ENTER("CyaSSL_CTX_set_cipher_list"); if (SetCipherList(&ctx->suites, list)) return SSL_SUCCESS; else return SSL_FAILURE; } int CyaSSL_set_cipher_list(CYASSL* ssl, const char* list) { CYASSL_ENTER("CyaSSL_set_cipher_list"); if (SetCipherList(ssl->suites, list)) { byte haveRSA = 1; byte havePSK = 0; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); return SSL_SUCCESS; } else return SSL_FAILURE; } #ifndef CYASSL_LEANPSK #ifdef CYASSL_DTLS int CyaSSL_dtls_get_current_timeout(CYASSL* ssl) { (void)ssl; return ssl->dtls_timeout; } /* user may need to alter init dtls recv timeout, SSL_SUCCESS on ok */ int CyaSSL_dtls_set_timeout_init(CYASSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout > ssl->dtls_timeout_max) { CYASSL_MSG("Can't set dtls timeout init greater than dtls timeout max"); return BAD_FUNC_ARG; } ssl->dtls_timeout_init = timeout; ssl->dtls_timeout = timeout; return SSL_SUCCESS; } /* user may need to alter max dtls recv timeout, SSL_SUCCESS on ok */ int CyaSSL_dtls_set_timeout_max(CYASSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout < ssl->dtls_timeout_init) { CYASSL_MSG("Can't set dtls timeout max less than dtls timeout init"); return BAD_FUNC_ARG; } ssl->dtls_timeout_max = timeout; return SSL_SUCCESS; } int CyaSSL_dtls_got_timeout(CYASSL* ssl) { int result = SSL_SUCCESS; DtlsMsgListDelete(ssl->dtls_msg_list, ssl->heap); ssl->dtls_msg_list = NULL; if (DtlsPoolTimeout(ssl) < 0 || DtlsPoolSend(ssl) < 0) { result = SSL_FATAL_ERROR; } return result; } #endif /* DTLS */ #endif /* LEANPSK */ /* client only parts */ #ifndef NO_CYASSL_CLIENT #ifndef NO_OLD_TLS CYASSL_METHOD* CyaSSLv3_client_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("SSLv3_client_method"); if (method) InitSSL_Method(method, MakeSSLv3()); return method; } #endif #ifdef CYASSL_DTLS CYASSL_METHOD* CyaDTLSv1_client_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("DTLSv1_client_method"); if (method) InitSSL_Method(method, MakeDTLSv1()); return method; } CYASSL_METHOD* CyaDTLSv1_2_client_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("DTLSv1_2_client_method"); if (method) InitSSL_Method(method, MakeDTLSv1_2()); return method; } #endif /* please see note at top of README if you get an error from connect */ int CyaSSL_connect(CYASSL* ssl) { int neededState; CYASSL_ENTER("SSL_connect()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl->options.side != CYASSL_CLIENT_END) { CYASSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } #ifdef CYASSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; if (DtlsPoolInit(ssl) != 0) { ssl->error = MEMORY_ERROR; CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { ssl->options.connectState++; CYASSL_MSG("connect state: Advanced from buffered send"); } else { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.connectState) { case CONNECT_BEGIN : /* always send client hello first */ if ( (ssl->error = SendClientHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; CYASSL_MSG("connect state: CLIENT_HELLO_SENT"); case CLIENT_HELLO_SENT : neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; #ifdef CYASSL_DTLS /* In DTLS, when resuming, we can go straight to FINISHED, * or do a cookie exchange and then skip to FINISHED, assume * we need the cookie exchange first. */ if (ssl->options.dtls) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; #endif /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) { if (!ssl->options.dtls) neededState = SERVER_HELLODONE_COMPLETE; else neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; } } ssl->options.connectState = HELLO_AGAIN; CYASSL_MSG("connect state: HELLO_AGAIN"); case HELLO_AGAIN : if (ssl->options.certOnly) return SSL_SUCCESS; #ifdef CYASSL_DTLS if (ssl->options.dtls) { /* re-init hashes, exclude first hello and verify request */ #ifndef NO_OLD_TLS InitMd5(&ssl->hashMd5); if ( (ssl->error = InitSha(&ssl->hashSha)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif if (IsAtLeastTLSv1_2(ssl)) { #ifndef NO_SHA256 if ( (ssl->error = InitSha256(&ssl->hashSha256)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif #ifdef CYASSL_SHA384 if ( (ssl->error = InitSha384(&ssl->hashSha384)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif } if ( (ssl->error = SendClientHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.connectState = HELLO_AGAIN_REPLY; CYASSL_MSG("connect state: HELLO_AGAIN_REPLY"); case HELLO_AGAIN_REPLY : #ifdef CYASSL_DTLS if (ssl->options.dtls) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } #endif ssl->options.connectState = FIRST_REPLY_DONE; CYASSL_MSG("connect state: FIRST_REPLY_DONE"); case FIRST_REPLY_DONE : #ifndef NO_CERTS if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificate(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } CYASSL_MSG("sent: certificate"); } #endif ssl->options.connectState = FIRST_REPLY_FIRST; CYASSL_MSG("connect state: FIRST_REPLY_FIRST"); case FIRST_REPLY_FIRST : if (!ssl->options.resuming) { if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } CYASSL_MSG("sent: client key exchange"); } ssl->options.connectState = FIRST_REPLY_SECOND; CYASSL_MSG("connect state: FIRST_REPLY_SECOND"); case FIRST_REPLY_SECOND : #ifndef NO_CERTS if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificateVerify(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } CYASSL_MSG("sent: certificate verify"); } #endif ssl->options.connectState = FIRST_REPLY_THIRD; CYASSL_MSG("connect state: FIRST_REPLY_THIRD"); case FIRST_REPLY_THIRD : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } CYASSL_MSG("sent: change cipher spec"); ssl->options.connectState = FIRST_REPLY_FOURTH; CYASSL_MSG("connect state: FIRST_REPLY_FOURTH"); case FIRST_REPLY_FOURTH : if ( (ssl->error = SendFinished(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } CYASSL_MSG("sent: finished"); ssl->options.connectState = FINISHED_DONE; CYASSL_MSG("connect state: FINISHED_DONE"); case FINISHED_DONE : /* get response */ while (ssl->options.serverState < SERVER_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = SECOND_REPLY_DONE; CYASSL_MSG("connect state: SECOND_REPLY_DONE"); case SECOND_REPLY_DONE: FreeHandshakeResources(ssl); CYASSL_LEAVE("SSL_connect()", SSL_SUCCESS); return SSL_SUCCESS; default: CYASSL_MSG("Unknown connect state ERROR"); return SSL_FATAL_ERROR; /* unknown connect state */ } } #endif /* NO_CYASSL_CLIENT */ /* server only parts */ #ifndef NO_CYASSL_SERVER #ifndef NO_OLD_TLS CYASSL_METHOD* CyaSSLv3_server_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("SSLv3_server_method"); if (method) { InitSSL_Method(method, MakeSSLv3()); method->side = CYASSL_SERVER_END; } return method; } #endif #ifdef CYASSL_DTLS CYASSL_METHOD* CyaDTLSv1_server_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("DTLSv1_server_method"); if (method) { InitSSL_Method(method, MakeDTLSv1()); method->side = CYASSL_SERVER_END; } return method; } CYASSL_METHOD* CyaDTLSv1_2_server_method(void) { CYASSL_METHOD* method = (CYASSL_METHOD*) XMALLOC(sizeof(CYASSL_METHOD), 0, DYNAMIC_TYPE_METHOD); CYASSL_ENTER("DTLSv1_2_server_method"); if (method) { InitSSL_Method(method, MakeDTLSv1_2()); method->side = CYASSL_SERVER_END; } return method; } #endif int CyaSSL_accept(CYASSL* ssl) { byte havePSK = 0; CYASSL_ENTER("SSL_accept()"); #ifdef HAVE_ERRNO_H errno = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif (void)havePSK; if (ssl->options.side != CYASSL_SERVER_END) { CYASSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } #ifndef NO_CERTS /* in case used set_accept_state after init */ if (!havePSK && (ssl->buffers.certificate.buffer == NULL || ssl->buffers.key.buffer == NULL)) { CYASSL_MSG("accept error: don't have server cert and key"); ssl->error = NO_PRIVATE_KEY; CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif #ifdef HAVE_ECC /* in case used set_accept_state after init */ if (ssl->eccTempKeyPresent == 0) { if (ecc_make_key(ssl->rng, ssl->eccTempKeySz, ssl->eccTempKey) != 0) { ssl->error = ECC_MAKEKEY_ERROR; CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->eccTempKeyPresent = 1; } #endif #ifdef CYASSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; if (DtlsPoolInit(ssl) != 0) { ssl->error = MEMORY_ERROR; CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { ssl->options.acceptState++; CYASSL_MSG("accept state: Advanced from buffered send"); } else { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; CYASSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); case ACCEPT_CLIENT_HELLO_DONE : #ifdef CYASSL_DTLS if (ssl->options.dtls) if ( (ssl->error = SendHelloVerifyRequest(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif ssl->options.acceptState = HELLO_VERIFY_SENT; CYASSL_MSG("accept state HELLO_VERIFY_SENT"); case HELLO_VERIFY_SENT: #ifdef CYASSL_DTLS if (ssl->options.dtls) { ssl->options.clientState = NULL_STATE; /* get again */ /* re-init hashes, exclude first hello and verify request */ #ifndef NO_OLD_TLS InitMd5(&ssl->hashMd5); if ( (ssl->error = InitSha(&ssl->hashSha)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif if (IsAtLeastTLSv1_2(ssl)) { #ifndef NO_SHA256 if ( (ssl->error = InitSha256(&ssl->hashSha256)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif #ifdef CYASSL_SHA384 if ( (ssl->error = InitSha384(&ssl->hashSha384)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif } while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); case ACCEPT_FIRST_REPLY_DONE : if ( (ssl->error = SendServerHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; CYASSL_MSG("accept state SERVER_HELLO_SENT"); case SERVER_HELLO_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificate(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_SENT; CYASSL_MSG("accept state CERT_SENT"); case CERT_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = KEY_EXCHANGE_SENT; CYASSL_MSG("accept state KEY_EXCHANGE_SENT"); case KEY_EXCHANGE_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if (ssl->options.verifyPeer) if ( (ssl->error = SendCertificateRequest(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_REQ_SENT; CYASSL_MSG("accept state CERT_REQ_SENT"); case CERT_REQ_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerHelloDone(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_DONE; CYASSL_MSG("accept state SERVER_HELLO_DONE"); case SERVER_HELLO_DONE : if (!ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); case ACCEPT_SECOND_REPLY_DONE : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = CHANGE_CIPHER_SENT; CYASSL_MSG("accept state CHANGE_CIPHER_SENT"); case CHANGE_CIPHER_SENT : if ( (ssl->error = SendFinished(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; CYASSL_MSG("accept state ACCEPT_FINISHED_DONE"); case ACCEPT_FINISHED_DONE : if (ssl->options.resuming) while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); case ACCEPT_THIRD_REPLY_DONE : FreeHandshakeResources(ssl); CYASSL_LEAVE("SSL_accept()", SSL_SUCCESS); return SSL_SUCCESS; default : CYASSL_MSG("Unknown accept state ERROR"); return SSL_FATAL_ERROR; } } #endif /* NO_CYASSL_SERVER */ int CyaSSL_Cleanup(void) { int ret = SSL_SUCCESS; int release = 0; CYASSL_ENTER("CyaSSL_Cleanup"); if (initRefCount == 0) return ret; /* possibly no init yet, but not failure either way */ if (LockMutex(&count_mutex) != 0) { CYASSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } release = initRefCount-- == 1; if (initRefCount < 0) initRefCount = 0; UnLockMutex(&count_mutex); if (!release) return ret; #ifndef NO_SESSION_CACHE if (FreeMutex(&session_mutex) != 0) ret = BAD_MUTEX_E; #endif if (FreeMutex(&count_mutex) != 0) ret = BAD_MUTEX_E; #if defined(HAVE_ECC) && defined(FP_ECC) ecc_fp_free(); #endif return ret; } #ifndef NO_SESSION_CACHE #ifndef NO_MD5 /* some session IDs aren't random afterall, let's make them random */ static INLINE word32 HashSession(const byte* sessionID, word32 len, int* error) { byte digest[MD5_DIGEST_SIZE]; Md5 md5; (void)error; InitMd5(&md5); Md5Update(&md5, sessionID, len); Md5Final(&md5, digest); return MakeWordFromHash(digest); } #elif !defined(NO_SHA) /* 0 on failure */ static INLINE word32 HashSession(const byte* sessionID, word32 len, int* error) { byte digest[SHA_DIGEST_SIZE]; Sha sha; int ret = 0; ret = InitSha(&sha); if (ret != 0) { *error = ret; return 0; } ShaUpdate(&sha, sessionID, len); ShaFinal(&sha, digest); return MakeWordFromHash(digest); } #elif !defined(NO_SHA256) static INLINE word32 HashSession(const byte* sessionID, word32 len, int* error) { byte digest[SHA256_DIGEST_SIZE]; Sha256 sha256; int ret; ret = InitSha256(&sha256); if (ret != 0) { *error = ret; return 0; } ret = Sha256Update(&sha256, sessionID, len); if (ret != 0) { *error = ret; return 0; } ret = Sha256Final(&sha256, digest); if (ret != 0) { *error = ret; return 0; } return MakeWordFromHash(digest); } #else #error "We need a digest to hash the session IDs" #endif /* NO_MD5 */ void CyaSSL_flush_sessions(CYASSL_CTX* ctx, long tm) { /* static table now, no flusing needed */ (void)ctx; (void)tm; } /* set ssl session timeout in seconds */ int CyaSSL_set_timeout(CYASSL* ssl, unsigned int to) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->timeout = to; return SSL_SUCCESS; } /* set ctx session timeout in seconds */ int CyaSSL_CTX_set_timeout(CYASSL_CTX* ctx, unsigned int to) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->timeout = to; return SSL_SUCCESS; } #ifndef NO_CLIENT_CACHE /* Get Session from Client cache based on id/len, return NULL on failure */ CYASSL_SESSION* GetSessionClient(CYASSL* ssl, const byte* id, int len) { CYASSL_SESSION* ret = NULL; word32 row; int idx; int count; int error = 0; CYASSL_ENTER("GetSessionClient"); if (ssl->options.side == CYASSL_SERVER_END) return NULL; len = min(SERVER_ID_LEN, (word32)len); row = HashSession(id, len, &error) % SESSION_ROWS; if (error != 0) { CYASSL_MSG("Hash session failed"); return NULL; } if (LockMutex(&session_mutex) != 0) { CYASSL_MSG("Lock session mutex failed"); return NULL; } /* start from most recently used */ count = min((word32)ClientCache[row].totalCount, SESSIONS_PER_ROW); idx = ClientCache[row].nextIdx - 1; if (idx < 0) idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) { CYASSL_SESSION* current; ClientSession clSess; if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */ CYASSL_MSG("Bad idx"); break; } clSess = ClientCache[row].Clients[idx]; current = &SessionCache[clSess.serverRow].Sessions[clSess.serverIdx]; if (XMEMCMP(current->serverID, id, len) == 0) { CYASSL_MSG("Found a serverid match for client"); if (LowResTimer() < (current->bornOn + current->timeout)) { CYASSL_MSG("Session valid"); ret = current; break; } else { CYASSL_MSG("Session timed out"); /* could have more for id */ } } else { CYASSL_MSG("ServerID not a match from client table"); } } UnLockMutex(&session_mutex); return ret; } #endif /* NO_CLIENT_CACHE */ CYASSL_SESSION* GetSession(CYASSL* ssl, byte* masterSecret) { CYASSL_SESSION* ret = 0; const byte* id = NULL; word32 row; int idx; int count; int error = 0; if (ssl->options.sessionCacheOff) return NULL; if (ssl->options.haveSessionId == 0) return NULL; if (ssl->arrays) id = ssl->arrays->sessionID; else id = ssl->session.sessionID; row = HashSession(id, ID_LEN, &error) % SESSION_ROWS; if (error != 0) { CYASSL_MSG("Hash session failed"); return NULL; } if (LockMutex(&session_mutex) != 0) return 0; /* start from most recently used */ count = min((word32)SessionCache[row].totalCount, SESSIONS_PER_ROW); idx = SessionCache[row].nextIdx - 1; if (idx < 0) idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) { CYASSL_SESSION* current; if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */ CYASSL_MSG("Bad idx"); break; } current = &SessionCache[row].Sessions[idx]; if (XMEMCMP(current->sessionID, id, ID_LEN) == 0) { CYASSL_MSG("Found a session match"); if (LowResTimer() < (current->bornOn + current->timeout)) { CYASSL_MSG("Session valid"); ret = current; if (masterSecret) XMEMCPY(masterSecret, current->masterSecret, SECRET_LEN); } else { CYASSL_MSG("Session timed out"); } break; /* no more sessionIDs whether valid or not that match */ } else { CYASSL_MSG("SessionID not a match at this idx"); } } UnLockMutex(&session_mutex); return ret; } int SetSession(CYASSL* ssl, CYASSL_SESSION* session) { if (ssl->options.sessionCacheOff) return SSL_FAILURE; if (LowResTimer() < (session->bornOn + session->timeout)) { ssl->session = *session; ssl->options.resuming = 1; #ifdef SESSION_CERTS ssl->version = session->version; ssl->options.cipherSuite0 = session->cipherSuite0; ssl->options.cipherSuite = session->cipherSuite; #endif return SSL_SUCCESS; } return SSL_FAILURE; /* session timed out */ } int AddSession(CYASSL* ssl) { word32 row, idx; int error = 0; if (ssl->options.sessionCacheOff) return 0; if (ssl->options.haveSessionId == 0) return 0; row = HashSession(ssl->arrays->sessionID, ID_LEN, &error) % SESSION_ROWS; if (error != 0) { CYASSL_MSG("Hash session failed"); return error; } if (LockMutex(&session_mutex) != 0) return BAD_MUTEX_E; idx = SessionCache[row].nextIdx++; #ifdef SESSION_INDEX ssl->sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx; #endif XMEMCPY(SessionCache[row].Sessions[idx].masterSecret, ssl->arrays->masterSecret, SECRET_LEN); XMEMCPY(SessionCache[row].Sessions[idx].sessionID, ssl->arrays->sessionID, ID_LEN); SessionCache[row].Sessions[idx].timeout = ssl->timeout; SessionCache[row].Sessions[idx].bornOn = LowResTimer(); #ifdef SESSION_CERTS SessionCache[row].Sessions[idx].chain.count = ssl->session.chain.count; XMEMCPY(SessionCache[row].Sessions[idx].chain.certs, ssl->session.chain.certs, sizeof(x509_buffer) * MAX_CHAIN_DEPTH); SessionCache[row].Sessions[idx].version = ssl->version; SessionCache[row].Sessions[idx].cipherSuite0 = ssl->options.cipherSuite0; SessionCache[row].Sessions[idx].cipherSuite = ssl->options.cipherSuite; #endif /* SESSION_CERTS */ SessionCache[row].totalCount++; if (SessionCache[row].nextIdx == SESSIONS_PER_ROW) SessionCache[row].nextIdx = 0; #ifndef NO_CLIENT_CACHE if (ssl->options.side == CYASSL_CLIENT_END && ssl->session.idLen) { word32 clientRow, clientIdx; CYASSL_MSG("Adding client cache entry"); SessionCache[row].Sessions[idx].idLen = ssl->session.idLen; XMEMCPY(SessionCache[row].Sessions[idx].serverID, ssl->session.serverID, ssl->session.idLen); clientRow = HashSession(ssl->session.serverID, ssl->session.idLen, &error) % SESSION_ROWS; if (error != 0) { CYASSL_MSG("Hash session failed"); return error; } clientIdx = ClientCache[clientRow].nextIdx++; ClientCache[clientRow].Clients[clientIdx].serverRow = (word16)row; ClientCache[clientRow].Clients[clientIdx].serverIdx = (word16)idx; ClientCache[clientRow].totalCount++; if (ClientCache[clientRow].nextIdx == SESSIONS_PER_ROW) ClientCache[clientRow].nextIdx = 0; } else SessionCache[row].Sessions[idx].idLen = 0; #endif /* NO_CLIENT_CACHE */ if (UnLockMutex(&session_mutex) != 0) return BAD_MUTEX_E; return 0; } #ifdef SESSION_INDEX int CyaSSL_GetSessionIndex(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_GetSessionIndex"); CYASSL_LEAVE("CyaSSL_GetSessionIndex", ssl->sessionIndex); return ssl->sessionIndex; } int CyaSSL_GetSessionAtIndex(int idx, CYASSL_SESSION* session) { int row, col, result = SSL_FAILURE; CYASSL_ENTER("CyaSSL_GetSessionAtIndex"); row = idx >> SESSIDX_ROW_SHIFT; col = idx & SESSIDX_IDX_MASK; if (LockMutex(&session_mutex) != 0) { return BAD_MUTEX_E; } if (row < SESSION_ROWS && col < (int)min(SessionCache[row].totalCount, SESSIONS_PER_ROW)) { XMEMCPY(session, &SessionCache[row].Sessions[col], sizeof(CYASSL_SESSION)); result = SSL_SUCCESS; } if (UnLockMutex(&session_mutex) != 0) result = BAD_MUTEX_E; CYASSL_LEAVE("CyaSSL_GetSessionAtIndex", result); return result; } #endif /* SESSION_INDEX */ #if defined(SESSION_INDEX) && defined(SESSION_CERTS) CYASSL_X509_CHAIN* CyaSSL_SESSION_get_peer_chain(CYASSL_SESSION* session) { CYASSL_X509_CHAIN* chain = NULL; CYASSL_ENTER("CyaSSL_SESSION_get_peer_chain"); if (session) chain = &session->chain; CYASSL_LEAVE("CyaSSL_SESSION_get_peer_chain", chain ? 1 : 0); return chain; } #endif /* SESSION_INDEX && SESSION_CERTS */ #ifdef SESSION_STATS CYASSL_API void PrintSessionStats(void) { word32 totalSessionsSeen = 0; word32 totalSessionsNow = 0; word32 rowNow; int i; double E; /* expected freq */ double chiSquare = 0; for (i = 0; i < SESSION_ROWS; i++) { totalSessionsSeen += SessionCache[i].totalCount; if (SessionCache[i].totalCount >= SESSIONS_PER_ROW) rowNow = SESSIONS_PER_ROW; else if (SessionCache[i].nextIdx == 0) rowNow = 0; else rowNow = SessionCache[i].nextIdx; totalSessionsNow += rowNow; } printf("Total Sessions Seen = %d\n", totalSessionsSeen); printf("Total Sessions Now = %d\n", totalSessionsNow); E = (double)totalSessionsSeen / SESSION_ROWS; for (i = 0; i < SESSION_ROWS; i++) { double diff = SessionCache[i].totalCount - E; diff *= diff; /* square */ diff /= E; /* normalize */ chiSquare += diff; } printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare, SESSION_ROWS - 1); if (SESSION_ROWS == 11) printf(" .05 p value = 18.3, chi-square should be less\n"); else if (SESSION_ROWS == 211) printf(".05 p value = 244.8, chi-square should be less\n"); else if (SESSION_ROWS == 5981) printf(".05 p value = 6161.0, chi-square should be less\n"); else if (SESSION_ROWS == 3) printf(".05 p value = 6.0, chi-square should be less\n"); else if (SESSION_ROWS == 2861) printf(".05 p value = 2985.5, chi-square should be less\n"); printf("\n"); } #endif /* SESSION_STATS */ #else /* NO_SESSION_CACHE */ /* No session cache version */ CYASSL_SESSION* GetSession(CYASSL* ssl, byte* masterSecret) { (void)ssl; (void)masterSecret; return NULL; } #endif /* NO_SESSION_CACHE */ /* call before SSL_connect, if verifying will add name check to date check and signature check */ int CyaSSL_check_domain_name(CYASSL* ssl, const char* dn) { CYASSL_ENTER("CyaSSL_check_domain_name"); if (ssl->buffers.domainName.buffer) XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN); ssl->buffers.domainName.length = (word32)XSTRLEN(dn) + 1; ssl->buffers.domainName.buffer = (byte*) XMALLOC( ssl->buffers.domainName.length, ssl->heap, DYNAMIC_TYPE_DOMAIN); if (ssl->buffers.domainName.buffer) { XSTRNCPY((char*)ssl->buffers.domainName.buffer, dn, ssl->buffers.domainName.length); return SSL_SUCCESS; } else { ssl->error = MEMORY_ERROR; return SSL_FAILURE; } } /* turn on CyaSSL zlib compression returns SSL_SUCCESS for success, else error (not built in) */ int CyaSSL_set_compression(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_set_compression"); (void)ssl; #ifdef HAVE_LIBZ ssl->options.usingCompression = 1; return SSL_SUCCESS; #else return NOT_COMPILED_IN; #endif } #ifndef USE_WINDOWS_API #ifndef NO_WRITEV /* simulate writev semantics, doesn't actually do block at a time though because of SSL_write behavior and because front adds may be small */ int CyaSSL_writev(CYASSL* ssl, const struct iovec* iov, int iovcnt) { byte tmp[FILE_BUFFER_SIZE]; byte* myBuffer = tmp; int sending = 0; int newBuffer = 0; int idx = 0; int i; int ret; CYASSL_ENTER("CyaSSL_writev"); for (i = 0; i < iovcnt; i++) sending += (int)iov[i].iov_len; if (sending > (int)sizeof(tmp)) { byte* tmp2 = (byte*) XMALLOC(sending, ssl->heap, DYNAMIC_TYPE_WRITEV); if (!tmp2) return MEMORY_ERROR; myBuffer = tmp2; newBuffer = 1; } for (i = 0; i < iovcnt; i++) { XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len); idx += (int)iov[i].iov_len; } ret = CyaSSL_write(ssl, myBuffer, sending); if (newBuffer) XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV); return ret; } #endif #endif #ifdef CYASSL_CALLBACKS typedef struct itimerval Itimerval; /* don't keep calling simple functions while setting up timer and singals if no inlining these are the next best */ #define AddTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec + b.tv_sec; \ c.tv_usec = a.tv_usec + b.tv_usec; \ if (c.tv_usec >= 1000000) { \ c.tv_sec++; \ c.tv_usec -= 1000000; \ } \ } while (0) #define SubtractTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec - b.tv_sec; \ c.tv_usec = a.tv_usec - b.tv_usec; \ if (c.tv_usec < 0) { \ c.tv_sec--; \ c.tv_usec += 1000000; \ } \ } while (0) #define CmpTimes(a, b, cmp) \ ((a.tv_sec == b.tv_sec) ? \ (a.tv_usec cmp b.tv_usec) : \ (a.tv_sec cmp b.tv_sec)) \ /* do nothing handler */ static void myHandler(int signo) { (void)signo; return; } static int CyaSSL_ex_wrapper(CYASSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { int ret = SSL_FATAL_ERROR; int oldTimerOn = 0; /* was timer already on */ Timeval startTime; Timeval endTime; Timeval totalTime; Itimerval myTimeout; Itimerval oldTimeout; /* if old timer adjust from total time to reset */ struct sigaction act, oact; #define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; } if (hsCb) { ssl->hsInfoOn = 1; InitHandShakeInfo(&ssl->handShakeInfo); } if (toCb) { ssl->toInfoOn = 1; InitTimeoutInfo(&ssl->timeoutInfo); if (gettimeofday(&startTime, 0) < 0) ERR_OUT(GETTIME_ERROR); /* use setitimer to simulate getitimer, init 0 myTimeout */ myTimeout.it_interval.tv_sec = 0; myTimeout.it_interval.tv_usec = 0; myTimeout.it_value.tv_sec = 0; myTimeout.it_value.tv_usec = 0; if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0) ERR_OUT(SETITIMER_ERROR); if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) { oldTimerOn = 1; /* is old timer going to expire before ours */ if (CmpTimes(oldTimeout.it_value, timeout, <)) { timeout.tv_sec = oldTimeout.it_value.tv_sec; timeout.tv_usec = oldTimeout.it_value.tv_usec; } } myTimeout.it_value.tv_sec = timeout.tv_sec; myTimeout.it_value.tv_usec = timeout.tv_usec; /* set up signal handler, don't restart socket send/recv */ act.sa_handler = myHandler; sigemptyset(&act.sa_mask); act.sa_flags = 0; #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; #endif if (sigaction(SIGALRM, &act, &oact) < 0) ERR_OUT(SIGACT_ERROR); if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0) ERR_OUT(SETITIMER_ERROR); } /* do main work */ #ifndef NO_CYASSL_CLIENT if (ssl->options.side == CYASSL_CLIENT_END) ret = CyaSSL_connect(ssl); #endif #ifndef NO_CYASSL_SERVER if (ssl->options.side == CYASSL_SERVER_END) ret = CyaSSL_accept(ssl); #endif /* do callbacks */ if (toCb) { if (oldTimerOn) { gettimeofday(&endTime, 0); SubtractTimes(endTime, startTime, totalTime); /* adjust old timer for elapsed time */ if (CmpTimes(totalTime, oldTimeout.it_value, <)) SubtractTimes(oldTimeout.it_value, totalTime, oldTimeout.it_value); else { /* reset value to interval, may be off */ oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec; oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec; } /* keep iter the same whether there or not */ } /* restore old handler */ if (sigaction(SIGALRM, &oact, 0) < 0) ret = SIGACT_ERROR; /* more pressing error, stomp */ else /* use old settings which may turn off (expired or not there) */ if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0) ret = SETITIMER_ERROR; /* if we had a timeout call callback */ if (ssl->timeoutInfo.timeoutName[0]) { ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec; ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec; (toCb)(&ssl->timeoutInfo); } /* clean up */ FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap); ssl->toInfoOn = 0; } if (hsCb) { FinishHandShakeInfo(&ssl->handShakeInfo, ssl); (hsCb)(&ssl->handShakeInfo); ssl->hsInfoOn = 0; } return ret; } #ifndef NO_CYASSL_CLIENT int CyaSSL_connect_ex(CYASSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { CYASSL_ENTER("CyaSSL_connect_ex"); return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #ifndef NO_CYASSL_SERVER int CyaSSL_accept_ex(CYASSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb,Timeval timeout) { CYASSL_ENTER("CyaSSL_accept_ex"); return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #endif /* CYASSL_CALLBACKS */ #ifndef NO_PSK void CyaSSL_CTX_set_psk_client_callback(CYASSL_CTX* ctx, psk_client_callback cb) { CYASSL_ENTER("SSL_CTX_set_psk_client_callback"); ctx->havePSK = 1; ctx->client_psk_cb = cb; } void CyaSSL_set_psk_client_callback(CYASSL* ssl, psk_client_callback cb) { byte haveRSA = 1; CYASSL_ENTER("SSL_set_psk_client_callback"); ssl->options.havePSK = 1; ssl->options.client_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif InitSuites(ssl->suites, ssl->version, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); } void CyaSSL_CTX_set_psk_server_callback(CYASSL_CTX* ctx, psk_server_callback cb) { CYASSL_ENTER("SSL_CTX_set_psk_server_callback"); ctx->havePSK = 1; ctx->server_psk_cb = cb; } void CyaSSL_set_psk_server_callback(CYASSL* ssl, psk_server_callback cb) { byte haveRSA = 1; CYASSL_ENTER("SSL_set_psk_server_callback"); ssl->options.havePSK = 1; ssl->options.server_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif InitSuites(ssl->suites, ssl->version, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); } const char* CyaSSL_get_psk_identity_hint(const CYASSL* ssl) { CYASSL_ENTER("SSL_get_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->server_hint; } const char* CyaSSL_get_psk_identity(const CYASSL* ssl) { CYASSL_ENTER("SSL_get_psk_identity"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->client_identity; } int CyaSSL_CTX_use_psk_identity_hint(CYASSL_CTX* ctx, const char* hint) { CYASSL_ENTER("SSL_CTX_use_psk_identity_hint"); if (hint == 0) ctx->server_hint[0] = 0; else { XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN); ctx->server_hint[MAX_PSK_ID_LEN - 1] = '\0'; } return SSL_SUCCESS; } int CyaSSL_use_psk_identity_hint(CYASSL* ssl, const char* hint) { CYASSL_ENTER("SSL_use_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return SSL_FAILURE; if (hint == 0) ssl->arrays->server_hint[0] = 0; else { XSTRNCPY(ssl->arrays->server_hint, hint, MAX_PSK_ID_LEN); ssl->arrays->server_hint[MAX_PSK_ID_LEN - 1] = '\0'; } return SSL_SUCCESS; } #endif /* NO_PSK */ #ifndef NO_CERTS /* used to be defined on NO_FILESYSTEM only, but are generally useful */ /* CyaSSL extension allows DER files to be loaded from buffers as well */ int CyaSSL_CTX_load_verify_buffer(CYASSL_CTX* ctx, const unsigned char* in, long sz, int format) { CYASSL_ENTER("CyaSSL_CTX_load_verify_buffer"); if (format == SSL_FILETYPE_PEM) return ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL); else return ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL,NULL,0); } int CyaSSL_CTX_use_certificate_buffer(CYASSL_CTX* ctx, const unsigned char* in, long sz, int format) { CYASSL_ENTER("CyaSSL_CTX_use_certificate_buffer"); return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0); } int CyaSSL_CTX_use_PrivateKey_buffer(CYASSL_CTX* ctx, const unsigned char* in, long sz, int format) { CYASSL_ENTER("CyaSSL_CTX_use_PrivateKey_buffer"); return ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL,NULL,0); } int CyaSSL_CTX_use_certificate_chain_buffer(CYASSL_CTX* ctx, const unsigned char* in, long sz) { CYASSL_ENTER("CyaSSL_CTX_use_certificate_chain_buffer"); return ProcessBuffer(ctx, in, sz, SSL_FILETYPE_PEM, CERT_TYPE, NULL, NULL, 1); } int CyaSSL_use_certificate_buffer(CYASSL* ssl, const unsigned char* in, long sz, int format) { CYASSL_ENTER("CyaSSL_use_certificate_buffer"); return ProcessBuffer(ssl->ctx, in, sz, format,CERT_TYPE,ssl,NULL,0); } int CyaSSL_use_PrivateKey_buffer(CYASSL* ssl, const unsigned char* in, long sz, int format) { CYASSL_ENTER("CyaSSL_use_PrivateKey_buffer"); return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE, ssl, NULL, 0); } int CyaSSL_use_certificate_chain_buffer(CYASSL* ssl, const unsigned char* in, long sz) { CYASSL_ENTER("CyaSSL_use_certificate_chain_buffer"); return ProcessBuffer(ssl->ctx, in, sz, SSL_FILETYPE_PEM, CERT_TYPE, ssl, NULL, 1); } /* unload any certs or keys that SSL owns, leave CTX as is SSL_SUCCESS on ok */ int CyaSSL_UnloadCertsKeys(CYASSL* ssl) { if (ssl == NULL) { CYASSL_MSG("Null function arg"); return BAD_FUNC_ARG; } if (ssl->buffers.weOwnCert) { CYASSL_MSG("Unloading cert"); XFREE(ssl->buffers.certificate.buffer, ssl->heap,DYNAMIC_TYPE_CERT); ssl->buffers.weOwnCert = 0; ssl->buffers.certificate.length = 0; ssl->buffers.certificate.buffer = NULL; } if (ssl->buffers.weOwnKey) { CYASSL_MSG("Unloading key"); XFREE(ssl->buffers.key.buffer, ssl->heap, DYNAMIC_TYPE_KEY); ssl->buffers.weOwnKey = 0; ssl->buffers.key.length = 0; ssl->buffers.key.buffer = NULL; } return SSL_SUCCESS; } int CyaSSL_CTX_UnloadCAs(CYASSL_CTX* ctx) { CYASSL_ENTER("CyaSSL_CTX_UnloadCAs"); if (ctx == NULL) return BAD_FUNC_ARG; return CyaSSL_CertManagerUnloadCAs(ctx->cm); } /* old NO_FILESYSTEM end */ #endif /* !NO_CERTS */ #if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS) int CyaSSL_add_all_algorithms(void) { CYASSL_ENTER("CyaSSL_add_all_algorithms"); CyaSSL_Init(); return SSL_SUCCESS; } long CyaSSL_CTX_sess_set_cache_size(CYASSL_CTX* ctx, long sz) { /* cache size fixed at compile time in CyaSSL */ (void)ctx; (void)sz; return 0; } void CyaSSL_CTX_set_quiet_shutdown(CYASSL_CTX* ctx, int mode) { CYASSL_ENTER("CyaSSL_CTX_set_quiet_shutdown"); if (mode) ctx->quietShutdown = 1; } void CyaSSL_set_quiet_shutdown(CYASSL* ssl, int mode) { CYASSL_ENTER("CyaSSL_CTX_set_quiet_shutdown"); if (mode) ssl->options.quietShutdown = 1; } void CyaSSL_set_bio(CYASSL* ssl, CYASSL_BIO* rd, CYASSL_BIO* wr) { CYASSL_ENTER("SSL_set_bio"); CyaSSL_set_rfd(ssl, rd->fd); CyaSSL_set_wfd(ssl, wr->fd); ssl->biord = rd; ssl->biowr = wr; } void CyaSSL_CTX_set_client_CA_list(CYASSL_CTX* ctx, STACK_OF(CYASSL_X509_NAME)* names) { (void)ctx; (void)names; } STACK_OF(CYASSL_X509_NAME)* CyaSSL_load_client_CA_file(const char* fname) { (void)fname; return 0; } int CyaSSL_CTX_set_default_verify_paths(CYASSL_CTX* ctx) { /* TODO:, not needed in goahead */ (void)ctx; return SSL_NOT_IMPLEMENTED; } /* keyblock size in bytes or -1 */ int CyaSSL_get_keyblock_size(CYASSL* ssl) { if (ssl == NULL) return SSL_FATAL_ERROR; return 2 * (ssl->specs.key_size + ssl->specs.iv_size + ssl->specs.hash_size); } /* store keys returns SSL_SUCCESS or -1 on error */ int CyaSSL_get_keys(CYASSL* ssl, unsigned char** ms, unsigned int* msLen, unsigned char** sr, unsigned int* srLen, unsigned char** cr, unsigned int* crLen) { if (ssl == NULL || ssl->arrays == NULL) return SSL_FATAL_ERROR; *ms = ssl->arrays->masterSecret; *sr = ssl->arrays->serverRandom; *cr = ssl->arrays->clientRandom; *msLen = SECRET_LEN; *srLen = RAN_LEN; *crLen = RAN_LEN; return SSL_SUCCESS; } void CyaSSL_set_accept_state(CYASSL* ssl) { byte haveRSA = 1; byte havePSK = 0; CYASSL_ENTER("SSL_set_accept_state"); ssl->options.side = CYASSL_SERVER_END; /* reset suites in case user switched */ #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(ssl->suites, ssl->version, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveStaticECC, ssl->options.side); } #endif /* return true if connection established */ int CyaSSL_is_init_finished(CYASSL* ssl) { if (ssl == NULL) return 0; if (ssl->options.handShakeState == HANDSHAKE_DONE) return 1; return 0; } #if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS) void CyaSSL_CTX_set_tmp_rsa_callback(CYASSL_CTX* ctx, CYASSL_RSA*(*f)(CYASSL*, int, int)) { /* CyaSSL verifies all these internally */ (void)ctx; (void)f; } void CyaSSL_set_shutdown(CYASSL* ssl, int opt) { (void)ssl; (void)opt; } long CyaSSL_CTX_set_options(CYASSL_CTX* ctx, long opt) { /* goahead calls with 0, do nothing */ CYASSL_ENTER("SSL_CTX_set_options"); (void)ctx; return opt; } int CyaSSL_set_rfd(CYASSL* ssl, int rfd) { CYASSL_ENTER("SSL_set_rfd"); ssl->rfd = rfd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; return SSL_SUCCESS; } int CyaSSL_set_wfd(CYASSL* ssl, int wfd) { CYASSL_ENTER("SSL_set_wfd"); ssl->wfd = wfd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; return SSL_SUCCESS; } CYASSL_RSA* CyaSSL_RSA_generate_key(int len, unsigned long bits, void(*f)(int, int, void*), void* data) { /* no tmp key needed, actual generation not supported */ CYASSL_ENTER("RSA_generate_key"); (void)len; (void)bits; (void)f; (void)data; return NULL; } CYASSL_X509* CyaSSL_X509_STORE_CTX_get_current_cert( CYASSL_X509_STORE_CTX* ctx) { (void)ctx; return 0; } int CyaSSL_X509_STORE_CTX_get_error(CYASSL_X509_STORE_CTX* ctx) { if (ctx != NULL) return ctx->error; return 0; } int CyaSSL_X509_STORE_CTX_get_error_depth(CYASSL_X509_STORE_CTX* ctx) { (void)ctx; return 0; } CYASSL_BIO_METHOD* CyaSSL_BIO_f_buffer(void) { static CYASSL_BIO_METHOD meth; CYASSL_ENTER("BIO_f_buffer"); meth.type = BIO_BUFFER; return &meth; } long CyaSSL_BIO_set_write_buffer_size(CYASSL_BIO* bio, long size) { /* CyaSSL has internal buffer, compatibility only */ CYASSL_ENTER("BIO_set_write_buffer_size"); (void)bio; return size; } CYASSL_BIO_METHOD* CyaSSL_BIO_f_ssl(void) { static CYASSL_BIO_METHOD meth; CYASSL_ENTER("BIO_f_ssl"); meth.type = BIO_SSL; return &meth; } CYASSL_BIO* CyaSSL_BIO_new_socket(int sfd, int closeF) { CYASSL_BIO* bio = (CYASSL_BIO*) XMALLOC(sizeof(CYASSL_BIO), 0, DYNAMIC_TYPE_OPENSSL); CYASSL_ENTER("BIO_new_socket"); if (bio) { bio->type = BIO_SOCKET; bio->close = (byte)closeF; bio->eof = 0; bio->ssl = 0; bio->fd = sfd; bio->prev = 0; bio->next = 0; bio->mem = NULL; bio->memLen = 0; } return bio; } int CyaSSL_BIO_eof(CYASSL_BIO* b) { CYASSL_ENTER("BIO_eof"); if (b->eof) return 1; return 0; } long CyaSSL_BIO_set_ssl(CYASSL_BIO* b, CYASSL* ssl, int closeF) { CYASSL_ENTER("BIO_set_ssl"); b->ssl = ssl; b->close = (byte)closeF; /* add to ssl for bio free if SSL_free called before/instead of free_all? */ return 0; } CYASSL_BIO* CyaSSL_BIO_new(CYASSL_BIO_METHOD* method) { CYASSL_BIO* bio = (CYASSL_BIO*) XMALLOC(sizeof(CYASSL_BIO), 0, DYNAMIC_TYPE_OPENSSL); CYASSL_ENTER("BIO_new"); if (bio) { bio->type = method->type; bio->close = 0; bio->eof = 0; bio->ssl = NULL; bio->mem = NULL; bio->memLen = 0; bio->fd = 0; bio->prev = NULL; bio->next = NULL; } return bio; } int CyaSSL_BIO_get_mem_data(CYASSL_BIO* bio, const byte** p) { if (bio == NULL || p == NULL) return SSL_FATAL_ERROR; *p = bio->mem; return bio->memLen; } CYASSL_BIO* CyaSSL_BIO_new_mem_buf(void* buf, int len) { CYASSL_BIO* bio = NULL; if (buf == NULL) return bio; bio = CyaSSL_BIO_new(CyaSSL_BIO_s_mem()); if (bio == NULL) return bio; bio->memLen = len; bio->mem = (byte*)XMALLOC(len, 0, DYNAMIC_TYPE_OPENSSL); if (bio->mem == NULL) { XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL); return NULL; } XMEMCPY(bio->mem, buf, len); return bio; } #ifdef USE_WINDOWS_API #define CloseSocket(s) closesocket(s) #elif defined(CYASSL_MDK_ARM) #define CloseSocket(s) closesocket(s) extern int closesocket(int) ; #else #define CloseSocket(s) close(s) #endif int CyaSSL_BIO_free(CYASSL_BIO* bio) { /* unchain?, doesn't matter in goahead since from free all */ CYASSL_ENTER("BIO_free"); if (bio) { if (bio->close) { if (bio->ssl) CyaSSL_free(bio->ssl); if (bio->fd) CloseSocket(bio->fd); } if (bio->mem) XFREE(bio->mem, 0, DYNAMIC_TYPE_OPENSSL); XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL); } return 0; } int CyaSSL_BIO_free_all(CYASSL_BIO* bio) { CYASSL_ENTER("BIO_free_all"); while (bio) { CYASSL_BIO* next = bio->next; CyaSSL_BIO_free(bio); bio = next; } return 0; } int CyaSSL_BIO_read(CYASSL_BIO* bio, void* buf, int len) { int ret; CYASSL* ssl = 0; CYASSL_BIO* front = bio; CYASSL_ENTER("BIO_read"); /* already got eof, again is error */ if (front->eof) return SSL_FATAL_ERROR; while(bio && ((ssl = bio->ssl) == 0) ) bio = bio->next; if (ssl == 0) return BAD_FUNC_ARG; ret = CyaSSL_read(ssl, buf, len); if (ret == 0) front->eof = 1; else if (ret < 0) { int err = CyaSSL_get_error(ssl, 0); if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) ) front->eof = 1; } return ret; } int CyaSSL_BIO_write(CYASSL_BIO* bio, const void* data, int len) { int ret; CYASSL* ssl = 0; CYASSL_BIO* front = bio; CYASSL_ENTER("BIO_write"); /* already got eof, again is error */ if (front->eof) return SSL_FATAL_ERROR; while(bio && ((ssl = bio->ssl) == 0) ) bio = bio->next; if (ssl == 0) return BAD_FUNC_ARG; ret = CyaSSL_write(ssl, data, len); if (ret == 0) front->eof = 1; else if (ret < 0) { int err = CyaSSL_get_error(ssl, 0); if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) ) front->eof = 1; } return ret; } CYASSL_BIO* CyaSSL_BIO_push(CYASSL_BIO* top, CYASSL_BIO* append) { CYASSL_ENTER("BIO_push"); top->next = append; append->prev = top; return top; } int CyaSSL_BIO_flush(CYASSL_BIO* bio) { /* for CyaSSL no flushing needed */ CYASSL_ENTER("BIO_flush"); (void)bio; return 1; } #endif /* OPENSSL_EXTRA || GOAHEAD_WS */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) void CyaSSL_CTX_set_default_passwd_cb_userdata(CYASSL_CTX* ctx, void* userdata) { CYASSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata"); ctx->userdata = userdata; } void CyaSSL_CTX_set_default_passwd_cb(CYASSL_CTX* ctx, pem_password_cb cb) { CYASSL_ENTER("SSL_CTX_set_default_passwd_cb"); ctx->passwd_cb = cb; } int CyaSSL_num_locks(void) { return 0; } void CyaSSL_set_locking_callback(void (*f)(int, int, const char*, int)) { (void)f; } void CyaSSL_set_id_callback(unsigned long (*f)(void)) { (void)f; } unsigned long CyaSSL_ERR_get_error(void) { /* TODO: */ return 0; } int CyaSSL_EVP_BytesToKey(const CYASSL_EVP_CIPHER* type, const CYASSL_EVP_MD* md, const byte* salt, const byte* data, int sz, int count, byte* key, byte* iv) { int keyLen = 0; int ivLen = 0; Md5 myMD; byte digest[MD5_DIGEST_SIZE]; int j; int keyLeft; int ivLeft; int keyOutput = 0; CYASSL_ENTER("EVP_BytesToKey"); InitMd5(&myMD); /* only support MD5 for now */ if (XSTRNCMP(md, "MD5", 3) != 0) return 0; /* only support CBC DES and AES for now */ if (XSTRNCMP(type, "DES-CBC", 7) == 0) { keyLen = DES_KEY_SIZE; ivLen = DES_IV_SIZE; } else if (XSTRNCMP(type, "DES-EDE3-CBC", 12) == 0) { keyLen = DES3_KEY_SIZE; ivLen = DES_IV_SIZE; } else if (XSTRNCMP(type, "AES-128-CBC", 11) == 0) { keyLen = AES_128_KEY_SIZE; ivLen = AES_IV_SIZE; } else if (XSTRNCMP(type, "AES-192-CBC", 11) == 0) { keyLen = AES_192_KEY_SIZE; ivLen = AES_IV_SIZE; } else if (XSTRNCMP(type, "AES-256-CBC", 11) == 0) { keyLen = AES_256_KEY_SIZE; ivLen = AES_IV_SIZE; } else return 0; keyLeft = keyLen; ivLeft = ivLen; while (keyOutput < (keyLen + ivLen)) { int digestLeft = MD5_DIGEST_SIZE; /* D_(i - 1) */ if (keyOutput) /* first time D_0 is empty */ Md5Update(&myMD, digest, MD5_DIGEST_SIZE); /* data */ Md5Update(&myMD, data, sz); /* salt */ if (salt) Md5Update(&myMD, salt, EVP_SALT_SIZE); Md5Final(&myMD, digest); /* count */ for (j = 1; j < count; j++) { Md5Update(&myMD, digest, MD5_DIGEST_SIZE); Md5Final(&myMD, digest); } if (keyLeft) { int store = min(keyLeft, MD5_DIGEST_SIZE); XMEMCPY(&key[keyLen - keyLeft], digest, store); keyOutput += store; keyLeft -= store; digestLeft -= store; } if (ivLeft && digestLeft) { int store = min(ivLeft, digestLeft); XMEMCPY(&iv[ivLen - ivLeft], &digest[MD5_DIGEST_SIZE - digestLeft], store); keyOutput += store; ivLeft -= store; } } if (keyOutput != (keyLen + ivLen)) return 0; return keyOutput; } #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ #ifdef OPENSSL_EXTRA unsigned long CyaSSLeay(void) { return SSLEAY_VERSION_NUMBER; } const char* CyaSSLeay_version(int type) { static const char* version = "SSLeay CyaSSL compatibility"; (void)type; return version; } void CyaSSL_MD5_Init(CYASSL_MD5_CTX* md5) { typedef char md5_test[sizeof(MD5_CTX) >= sizeof(Md5) ? 1 : -1]; (void)sizeof(md5_test); CYASSL_ENTER("MD5_Init"); InitMd5((Md5*)md5); } void CyaSSL_MD5_Update(CYASSL_MD5_CTX* md5, const void* input, unsigned long sz) { CYASSL_ENTER("CyaSSL_MD5_Update"); Md5Update((Md5*)md5, (const byte*)input, (word32)sz); } void CyaSSL_MD5_Final(byte* input, CYASSL_MD5_CTX* md5) { CYASSL_ENTER("MD5_Final"); Md5Final((Md5*)md5, input); } void CyaSSL_SHA_Init(CYASSL_SHA_CTX* sha) { typedef char sha_test[sizeof(SHA_CTX) >= sizeof(Sha) ? 1 : -1]; (void)sizeof(sha_test); CYASSL_ENTER("SHA_Init"); InitSha((Sha*)sha); /* OpenSSL compat, no ret */ } void CyaSSL_SHA_Update(CYASSL_SHA_CTX* sha, const void* input, unsigned long sz) { CYASSL_ENTER("SHA_Update"); ShaUpdate((Sha*)sha, (const byte*)input, (word32)sz); } void CyaSSL_SHA_Final(byte* input, CYASSL_SHA_CTX* sha) { CYASSL_ENTER("SHA_Final"); ShaFinal((Sha*)sha, input); } void CyaSSL_SHA1_Init(CYASSL_SHA_CTX* sha) { CYASSL_ENTER("SHA1_Init"); SHA_Init(sha); } void CyaSSL_SHA1_Update(CYASSL_SHA_CTX* sha, const void* input, unsigned long sz) { CYASSL_ENTER("SHA1_Update"); SHA_Update(sha, input, sz); } void CyaSSL_SHA1_Final(byte* input, CYASSL_SHA_CTX* sha) { CYASSL_ENTER("SHA1_Final"); SHA_Final(input, sha); } void CyaSSL_SHA256_Init(CYASSL_SHA256_CTX* sha256) { typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(Sha256) ? 1 : -1]; (void)sizeof(sha_test); CYASSL_ENTER("SHA256_Init"); InitSha256((Sha256*)sha256); /* OpenSSL compat, no error */ } void CyaSSL_SHA256_Update(CYASSL_SHA256_CTX* sha, const void* input, unsigned long sz) { CYASSL_ENTER("SHA256_Update"); Sha256Update((Sha256*)sha, (const byte*)input, (word32)sz); /* OpenSSL compat, no error */ } void CyaSSL_SHA256_Final(byte* input, CYASSL_SHA256_CTX* sha) { CYASSL_ENTER("SHA256_Final"); Sha256Final((Sha256*)sha, input); /* OpenSSL compat, no error */ } #ifdef CYASSL_SHA384 void CyaSSL_SHA384_Init(CYASSL_SHA384_CTX* sha) { typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(Sha384) ? 1 : -1]; (void)sizeof(sha_test); CYASSL_ENTER("SHA384_Init"); InitSha384((Sha384*)sha); /* OpenSSL compat, no error */ } void CyaSSL_SHA384_Update(CYASSL_SHA384_CTX* sha, const void* input, unsigned long sz) { CYASSL_ENTER("SHA384_Update"); Sha384Update((Sha384*)sha, (const byte*)input, (word32)sz); /* OpenSSL compat, no error */ } void CyaSSL_SHA384_Final(byte* input, CYASSL_SHA384_CTX* sha) { CYASSL_ENTER("SHA384_Final"); Sha384Final((Sha384*)sha, input); /* OpenSSL compat, no error */ } #endif /* CYASSL_SHA384 */ #ifdef CYASSL_SHA512 void CyaSSL_SHA512_Init(CYASSL_SHA512_CTX* sha) { typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(Sha512) ? 1 : -1]; (void)sizeof(sha_test); CYASSL_ENTER("SHA512_Init"); InitSha512((Sha512*)sha); /* OpenSSL compat, no error */ } void CyaSSL_SHA512_Update(CYASSL_SHA512_CTX* sha, const void* input, unsigned long sz) { CYASSL_ENTER("SHA512_Update"); Sha512Update((Sha512*)sha, (const byte*)input, (word32)sz); /* OpenSSL compat, no error */ } void CyaSSL_SHA512_Final(byte* input, CYASSL_SHA512_CTX* sha) { CYASSL_ENTER("SHA512_Final"); Sha512Final((Sha512*)sha, input); /* OpenSSL compat, no error */ } #endif /* CYASSL_SHA512 */ const CYASSL_EVP_MD* CyaSSL_EVP_md5(void) { static const char* type = "MD5"; CYASSL_ENTER("EVP_md5"); return type; } const CYASSL_EVP_MD* CyaSSL_EVP_sha1(void) { static const char* type = "SHA"; CYASSL_ENTER("EVP_sha1"); return type; } const CYASSL_EVP_MD* CyaSSL_EVP_sha256(void) { static const char* type = "SHA256"; CYASSL_ENTER("EVP_sha256"); return type; } #ifdef CYASSL_SHA384 const CYASSL_EVP_MD* CyaSSL_EVP_sha384(void) { static const char* type = "SHA384"; CYASSL_ENTER("EVP_sha384"); return type; } #endif /* CYASSL_SHA384 */ #ifdef CYASSL_SHA512 const CYASSL_EVP_MD* CyaSSL_EVP_sha512(void) { static const char* type = "SHA512"; CYASSL_ENTER("EVP_sha512"); return type; } #endif /* CYASSL_SHA512 */ void CyaSSL_EVP_MD_CTX_init(CYASSL_EVP_MD_CTX* ctx) { CYASSL_ENTER("EVP_CIPHER_MD_CTX_init"); (void)ctx; /* do nothing */ } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_128_cbc(void) { static const char* type = "AES128-CBC"; CYASSL_ENTER("CyaSSL_EVP_aes_128_cbc"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_192_cbc(void) { static const char* type = "AES192-CBC"; CYASSL_ENTER("CyaSSL_EVP_aes_192_cbc"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_256_cbc(void) { static const char* type = "AES256-CBC"; CYASSL_ENTER("CyaSSL_EVP_aes_256_cbc"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_128_ctr(void) { static const char* type = "AES128-CTR"; CYASSL_ENTER("CyaSSL_EVP_aes_128_ctr"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_192_ctr(void) { static const char* type = "AES192-CTR"; CYASSL_ENTER("CyaSSL_EVP_aes_192_ctr"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_aes_256_ctr(void) { static const char* type = "AES256-CTR"; CYASSL_ENTER("CyaSSL_EVP_aes_256_ctr"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_des_cbc(void) { static const char* type = "DES-CBC"; CYASSL_ENTER("CyaSSL_EVP_des_cbc"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_des_ede3_cbc(void) { static const char* type = "DES-EDE3-CBC"; CYASSL_ENTER("CyaSSL_EVP_des_ede3_cbc"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_rc4(void) { static const char* type = "ARC4"; CYASSL_ENTER("CyaSSL_EVP_rc4"); return type; } const CYASSL_EVP_CIPHER* CyaSSL_EVP_enc_null(void) { static const char* type = "NULL"; CYASSL_ENTER("CyaSSL_EVP_enc_null"); return type; } int CyaSSL_EVP_MD_CTX_cleanup(CYASSL_EVP_MD_CTX* ctx) { CYASSL_ENTER("EVP_MD_CTX_cleanup"); (void)ctx; return 0; } void CyaSSL_EVP_CIPHER_CTX_init(CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_ENTER("EVP_CIPHER_CTX_init"); if (ctx) { ctx->cipherType = 0xff; /* no init */ ctx->keyLen = 0; ctx->enc = 1; /* start in encrypt mode */ } } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_CIPHER_CTX_cleanup(CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_ENTER("EVP_CIPHER_CTX_cleanup"); if (ctx) { ctx->cipherType = 0xff; /* no more init */ ctx->keyLen = 0; } return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_CipherInit(CYASSL_EVP_CIPHER_CTX* ctx, const CYASSL_EVP_CIPHER* type, byte* key, byte* iv, int enc) { int ret = 0; CYASSL_ENTER("CyaSSL_EVP_CipherInit"); if (ctx == NULL) { CYASSL_MSG("no ctx"); return 0; /* failure */ } if (type == NULL && ctx->cipherType == 0xff) { CYASSL_MSG("no type set"); return 0; /* failure */ } if (ctx->cipherType == AES_128_CBC_TYPE || (type && XSTRNCMP(type, "AES128-CBC", 10) == 0)) { CYASSL_MSG("AES-128-CBC"); ctx->cipherType = AES_128_CBC_TYPE; ctx->keyLen = 16; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == AES_192_CBC_TYPE || (type && XSTRNCMP(type, "AES192-CBC", 10) == 0)) { CYASSL_MSG("AES-192-CBC"); ctx->cipherType = AES_192_CBC_TYPE; ctx->keyLen = 24; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == AES_256_CBC_TYPE || (type && XSTRNCMP(type, "AES256-CBC", 10) == 0)) { CYASSL_MSG("AES-256-CBC"); ctx->cipherType = AES_256_CBC_TYPE; ctx->keyLen = 32; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #ifdef CYASSL_AES_COUNTER else if (ctx->cipherType == AES_128_CTR_TYPE || (type && XSTRNCMP(type, "AES128-CTR", 10) == 0)) { CYASSL_MSG("AES-128-CTR"); ctx->cipherType = AES_128_CTR_TYPE; ctx->keyLen = 16; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == AES_192_CTR_TYPE || (type && XSTRNCMP(type, "AES192-CTR", 10) == 0)) { CYASSL_MSG("AES-192-CTR"); ctx->cipherType = AES_192_CTR_TYPE; ctx->keyLen = 24; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == AES_256_CTR_TYPE || (type && XSTRNCMP(type, "AES256-CTR", 10) == 0)) { CYASSL_MSG("AES-256-CTR"); ctx->cipherType = AES_256_CTR_TYPE; ctx->keyLen = 32; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* CYASSL_AES_CTR */ else if (ctx->cipherType == DES_CBC_TYPE || (type && XSTRNCMP(type, "DES-CBC", 7) == 0)) { CYASSL_MSG("DES-CBC"); ctx->cipherType = DES_CBC_TYPE; ctx->keyLen = 8; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = Des_SetKey(&ctx->cipher.des, key, iv, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) Des_SetIV(&ctx->cipher.des, iv); } else if (ctx->cipherType == DES_EDE3_CBC_TYPE || (type && XSTRNCMP(type, "DES-EDE3-CBC", 11) == 0)) { CYASSL_MSG("DES-EDE3-CBC"); ctx->cipherType = DES_EDE3_CBC_TYPE; ctx->keyLen = 24; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = Des3_SetKey(&ctx->cipher.des3, key, iv, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = Des3_SetIV(&ctx->cipher.des3, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == ARC4_TYPE || (type && XSTRNCMP(type, "ARC4", 4) == 0)) { CYASSL_MSG("ARC4"); ctx->cipherType = ARC4_TYPE; if (ctx->keyLen == 0) /* user may have already set */ ctx->keyLen = 16; /* default to 128 */ if (key) Arc4SetKey(&ctx->cipher.arc4, key, ctx->keyLen); } else if (ctx->cipherType == NULL_CIPHER_TYPE || (type && XSTRNCMP(type, "NULL", 4) == 0)) { CYASSL_MSG("NULL cipher"); ctx->cipherType = NULL_CIPHER_TYPE; ctx->keyLen = 0; } else return 0; /* failure */ return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_CIPHER_CTX_key_length(CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_ENTER("CyaSSL_EVP_CIPHER_CTX_key_length"); if (ctx) return ctx->keyLen; return 0; /* failure */ } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_CIPHER_CTX_set_key_length(CYASSL_EVP_CIPHER_CTX* ctx, int keylen) { CYASSL_ENTER("CyaSSL_EVP_CIPHER_CTX_set_key_length"); if (ctx) ctx->keyLen = keylen; else return 0; /* failure */ return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_Cipher(CYASSL_EVP_CIPHER_CTX* ctx, byte* dst, byte* src, word32 len) { int ret = 0; CYASSL_ENTER("CyaSSL_EVP_Cipher"); if (ctx == NULL || dst == NULL || src == NULL) { CYASSL_MSG("Bad function argument"); return 0; /* failure */ } if (ctx->cipherType == 0xff) { CYASSL_MSG("no init"); return 0; /* failure */ } switch (ctx->cipherType) { case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : CYASSL_MSG("AES CBC"); if (ctx->enc) ret = AesCbcEncrypt(&ctx->cipher.aes, dst, src, len); else ret = AesCbcDecrypt(&ctx->cipher.aes, dst, src, len); break; #ifdef CYASSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : CYASSL_MSG("AES CTR"); AesCtrEncrypt(&ctx->cipher.aes, dst, src, len); break; #endif case DES_CBC_TYPE : if (ctx->enc) Des_CbcEncrypt(&ctx->cipher.des, dst, src, len); else Des_CbcDecrypt(&ctx->cipher.des, dst, src, len); break; case DES_EDE3_CBC_TYPE : if (ctx->enc) ret = Des3_CbcEncrypt(&ctx->cipher.des3, dst, src, len); else ret = Des3_CbcDecrypt(&ctx->cipher.des3, dst, src, len); break; case ARC4_TYPE : Arc4Process(&ctx->cipher.arc4, dst, src, len); break; case NULL_CIPHER_TYPE : XMEMCPY(dst, src, len); break; default: { CYASSL_MSG("bad type"); return 0; /* failure */ } } if (ret != 0) { CYASSL_MSG("CyaSSL_EVP_Cipher failure"); return 0; /* failuer */ } CYASSL_MSG("CyaSSL_EVP_Cipher success"); return SSL_SUCCESS; /* success */ } /* store for external read of iv, SSL_SUCCESS on success */ int CyaSSL_StoreExternalIV(CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_ENTER("CyaSSL_StoreExternalIV"); if (ctx == NULL) { CYASSL_MSG("Bad function argument"); return SSL_FATAL_ERROR; } switch (ctx->cipherType) { case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : CYASSL_MSG("AES CBC"); memcpy(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); break; #ifdef CYASSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : CYASSL_MSG("AES CTR"); memcpy(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); break; #endif case DES_CBC_TYPE : CYASSL_MSG("DES CBC"); memcpy(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : CYASSL_MSG("DES EDE3 CBC"); memcpy(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE); break; case ARC4_TYPE : CYASSL_MSG("ARC4"); break; case NULL_CIPHER_TYPE : CYASSL_MSG("NULL"); break; default: { CYASSL_MSG("bad type"); return SSL_FATAL_ERROR; } } return SSL_SUCCESS; } /* set internal IV from external, SSL_SUCCESS on success */ int CyaSSL_SetInternalIV(CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_ENTER("CyaSSL_SetInternalIV"); if (ctx == NULL) { CYASSL_MSG("Bad function argument"); return SSL_FATAL_ERROR; } switch (ctx->cipherType) { case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : CYASSL_MSG("AES CBC"); memcpy(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #ifdef CYASSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : CYASSL_MSG("AES CTR"); memcpy(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #endif case DES_CBC_TYPE : CYASSL_MSG("DES CBC"); memcpy(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : CYASSL_MSG("DES EDE3 CBC"); memcpy(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE); break; case ARC4_TYPE : CYASSL_MSG("ARC4"); break; case NULL_CIPHER_TYPE : CYASSL_MSG("NULL"); break; default: { CYASSL_MSG("bad type"); return SSL_FATAL_ERROR; } } return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_DigestInit(CYASSL_EVP_MD_CTX* ctx, const CYASSL_EVP_MD* type) { CYASSL_ENTER("EVP_DigestInit"); if (XSTRNCMP(type, "MD5", 3) == 0) { ctx->macType = MD5; CyaSSL_MD5_Init((MD5_CTX*)&ctx->hash); } else if (XSTRNCMP(type, "SHA256", 6) == 0) { ctx->macType = SHA256; CyaSSL_SHA256_Init((SHA256_CTX*)&ctx->hash); } #ifdef CYASSL_SHA384 else if (XSTRNCMP(type, "SHA384", 6) == 0) { ctx->macType = SHA384; CyaSSL_SHA384_Init((SHA384_CTX*)&ctx->hash); } #endif #ifdef CYASSL_SHA512 else if (XSTRNCMP(type, "SHA512", 6) == 0) { ctx->macType = SHA512; CyaSSL_SHA512_Init((SHA512_CTX*)&ctx->hash); } #endif /* has to be last since would pick or 256, 384, or 512 too */ else if (XSTRNCMP(type, "SHA", 3) == 0) { ctx->macType = SHA; CyaSSL_SHA_Init((SHA_CTX*)&ctx->hash); } else return BAD_FUNC_ARG; return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_DigestUpdate(CYASSL_EVP_MD_CTX* ctx, const void* data, unsigned long sz) { CYASSL_ENTER("EVP_DigestUpdate"); if (ctx->macType == MD5) CyaSSL_MD5_Update((MD5_CTX*)&ctx->hash, data, (unsigned long)sz); else if (ctx->macType == SHA) CyaSSL_SHA_Update((SHA_CTX*)&ctx->hash, data, (unsigned long)sz); else if (ctx->macType == SHA256) CyaSSL_SHA256_Update((SHA256_CTX*)&ctx->hash, data, (unsigned long)sz); #ifdef CYASSL_SHA384 else if (ctx->macType == SHA384) CyaSSL_SHA384_Update((SHA384_CTX*)&ctx->hash, data, (unsigned long)sz); #endif #ifdef CYASSL_SHA512 else if (ctx->macType == SHA512) CyaSSL_SHA512_Update((SHA512_CTX*)&ctx->hash, data, (unsigned long)sz); #endif else return BAD_FUNC_ARG; return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_DigestFinal(CYASSL_EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { CYASSL_ENTER("EVP_DigestFinal"); if (ctx->macType == MD5) { CyaSSL_MD5_Final(md, (MD5_CTX*)&ctx->hash); if (s) *s = MD5_DIGEST_SIZE; } else if (ctx->macType == SHA) { CyaSSL_SHA_Final(md, (SHA_CTX*)&ctx->hash); if (s) *s = SHA_DIGEST_SIZE; } else if (ctx->macType == SHA256) { CyaSSL_SHA256_Final(md, (SHA256_CTX*)&ctx->hash); if (s) *s = SHA256_DIGEST_SIZE; } #ifdef CYASSL_SHA384 else if (ctx->macType == SHA384) { CyaSSL_SHA384_Final(md, (SHA384_CTX*)&ctx->hash); if (s) *s = SHA384_DIGEST_SIZE; } #endif #ifdef CYASSL_SHA512 else if (ctx->macType == SHA512) { CyaSSL_SHA512_Final(md, (SHA512_CTX*)&ctx->hash); if (s) *s = SHA512_DIGEST_SIZE; } #endif else return BAD_FUNC_ARG; return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_EVP_DigestFinal_ex(CYASSL_EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { CYASSL_ENTER("EVP_DigestFinal_ex"); return EVP_DigestFinal(ctx, md, s); } unsigned char* CyaSSL_HMAC(const CYASSL_EVP_MD* evp_md, const void* key, int key_len, const unsigned char* d, int n, unsigned char* md, unsigned int* md_len) { Hmac hmac; CYASSL_ENTER("HMAC"); if (!md) return NULL; /* no static buffer support */ if (XSTRNCMP(evp_md, "MD5", 3) == 0) { if (HmacSetKey(&hmac, MD5, (const byte*)key, key_len) != 0) return NULL; if (md_len) *md_len = MD5_DIGEST_SIZE; } else if (XSTRNCMP(evp_md, "SHA", 3) == 0) { if (HmacSetKey(&hmac, SHA, (const byte*)key, key_len) != 0) return NULL; if (md_len) *md_len = SHA_DIGEST_SIZE; } else return NULL; if (HmacUpdate(&hmac, d, n) != 0) return NULL; if (HmacFinal(&hmac, md) != 0) return NULL; return md; } void CyaSSL_ERR_clear_error(void) { /* TODO: */ } int CyaSSL_RAND_status(void) { return SSL_SUCCESS; /* CTaoCrypt provides enough seed internally */ } void CyaSSL_RAND_add(const void* add, int len, double entropy) { (void)add; (void)len; (void)entropy; /* CyaSSL seeds/adds internally, use explicit RNG if you want to take control */ } /* SSL_SUCCESS on ok */ int CyaSSL_DES_key_sched(CYASSL_const_DES_cblock* key, CYASSL_DES_key_schedule* schedule) { CYASSL_ENTER("DES_key_sched"); XMEMCPY(schedule, key, sizeof(const_DES_cblock)); return SSL_SUCCESS; } void CyaSSL_DES_cbc_encrypt(const unsigned char* input, unsigned char* output, long length, CYASSL_DES_key_schedule* schedule, CYASSL_DES_cblock* ivec, int enc) { Des myDes; CYASSL_ENTER("DES_cbc_encrypt"); /* OpenSSL compat, no ret */ Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc); if (enc) Des_CbcEncrypt(&myDes, output, input, (word32)length); else Des_CbcDecrypt(&myDes, output, input, (word32)length); } /* correctly sets ivec for next call */ void CyaSSL_DES_ncbc_encrypt(const unsigned char* input, unsigned char* output, long length, CYASSL_DES_key_schedule* schedule, CYASSL_DES_cblock* ivec, int enc) { Des myDes; CYASSL_ENTER("DES_ncbc_encrypt"); /* OpenSSL compat, no ret */ Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc); if (enc) Des_CbcEncrypt(&myDes, output, input, (word32)length); else Des_CbcDecrypt(&myDes, output, input, (word32)length); XMEMCPY(ivec, output + length - sizeof(DES_cblock), sizeof(DES_cblock)); } void CyaSSL_ERR_free_strings(void) { /* handled internally */ } void CyaSSL_ERR_remove_state(unsigned long state) { /* TODO: GetErrors().Remove(); */ (void)state; } void CyaSSL_EVP_cleanup(void) { /* nothing to do here */ } void CyaSSL_cleanup_all_ex_data(void) { /* nothing to do here */ } long CyaSSL_CTX_set_mode(CYASSL_CTX* ctx, long mode) { /* SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is CyaSSL default mode */ CYASSL_ENTER("SSL_CTX_set_mode"); if (mode == SSL_MODE_ENABLE_PARTIAL_WRITE) ctx->partialWrite = 1; return mode; } long CyaSSL_CTX_get_mode(CYASSL_CTX* ctx) { /* TODO: */ (void)ctx; return 0; } void CyaSSL_CTX_set_default_read_ahead(CYASSL_CTX* ctx, int m) { /* TODO: maybe? */ (void)ctx; (void)m; } int CyaSSL_CTX_set_session_id_context(CYASSL_CTX* ctx, const unsigned char* sid_ctx, unsigned int sid_ctx_len) { /* No application specific context needed for cyaSSL */ (void)ctx; (void)sid_ctx; (void)sid_ctx_len; return SSL_SUCCESS; } long CyaSSL_CTX_sess_get_cache_size(CYASSL_CTX* ctx) { /* TODO: maybe? */ (void)ctx; return (~0); } unsigned long CyaSSL_ERR_get_error_line_data(const char** file, int* line, const char** data, int *flags) { /* Not implemented */ (void)file; (void)line; (void)data; (void)flags; return 0; } #endif /* OPENSSL_EXTRA */ #if defined(KEEP_PEER_CERT) CYASSL_X509* CyaSSL_get_peer_certificate(CYASSL* ssl) { CYASSL_ENTER("SSL_get_peer_certificate"); if (ssl->peerCert.issuer.sz) return &ssl->peerCert; else return 0; } #endif /* KEEP_PEER_CERT */ #if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) void CyaSSL_FreeX509(CYASSL_X509* x509) { CYASSL_ENTER("CyaSSL_FreeX509"); FreeX509(x509); } /* return the next, if any, altname from the peer cert */ char* CyaSSL_X509_get_next_altname(CYASSL_X509* cert) { char* ret = NULL; CYASSL_ENTER("CyaSSL_X509_get_next_altname"); /* don't have any to work with */ if (cert == NULL || cert->altNames == NULL) return NULL; /* already went through them */ if (cert->altNamesNext == NULL) return NULL; ret = cert->altNamesNext->name; cert->altNamesNext = cert->altNamesNext->next; return ret; } CYASSL_X509_NAME* CyaSSL_X509_get_issuer_name(CYASSL_X509* cert) { CYASSL_ENTER("X509_get_issuer_name"); return &cert->issuer; } CYASSL_X509_NAME* CyaSSL_X509_get_subject_name(CYASSL_X509* cert) { CYASSL_ENTER("X509_get_subject_name"); return &cert->subject; } int CyaSSL_X509_get_isCA(CYASSL_X509* x509) { int isCA = 0; CYASSL_ENTER("CyaSSL_X509_get_isCA"); if (x509 != NULL) isCA = x509->isCa; CYASSL_LEAVE("CyaSSL_X509_get_isCA", isCA); return isCA; } #ifdef OPENSSL_EXTRA int CyaSSL_X509_ext_isSet_by_NID(CYASSL_X509* x509, int nid) { int isSet = 0; CYASSL_ENTER("CyaSSL_X509_ext_isSet_by_NID"); if (x509 != NULL) { switch (nid) { case BASIC_CA_OID: isSet = x509->basicConstSet; break; case ALT_NAMES_OID: isSet = x509->subjAltNameSet; break; case AUTH_KEY_OID: isSet = x509->authKeyIdSet; break; case SUBJ_KEY_OID: isSet = x509->subjKeyIdSet; break; case KEY_USAGE_OID: isSet = x509->keyUsageSet; break; #ifdef CYASSL_SEP case CERT_POLICY_OID: isSet = x509->certPolicySet; break; #endif /* CYASSL_SEP */ } } CYASSL_LEAVE("CyaSSL_X509_ext_isSet_by_NID", isSet); return isSet; } int CyaSSL_X509_ext_get_critical_by_NID(CYASSL_X509* x509, int nid) { int crit = 0; CYASSL_ENTER("CyaSSL_X509_ext_get_critical_by_NID"); if (x509 != NULL) { switch (nid) { case BASIC_CA_OID: crit = x509->basicConstCrit; break; case ALT_NAMES_OID: crit = x509->subjAltNameCrit; break; case AUTH_KEY_OID: crit = x509->authKeyIdCrit; break; case SUBJ_KEY_OID: crit = x509->subjKeyIdCrit; break; case KEY_USAGE_OID: crit = x509->keyUsageCrit; break; #ifdef CYASSL_SEP case CERT_POLICY_OID: crit = x509->certPolicyCrit; break; #endif /* CYASSL_SEP */ } } CYASSL_LEAVE("CyaSSL_X509_ext_get_critical_by_NID", crit); return crit; } int CyaSSL_X509_get_isSet_pathLength(CYASSL_X509* x509) { int isSet = 0; CYASSL_ENTER("CyaSSL_X509_get_isSet_pathLength"); if (x509 != NULL) isSet = x509->basicConstPlSet; CYASSL_LEAVE("CyaSSL_X509_get_isSet_pathLength", isSet); return isSet; } word32 CyaSSL_X509_get_pathLength(CYASSL_X509* x509) { word32 pathLength = 0; CYASSL_ENTER("CyaSSL_X509_get_pathLength"); if (x509 != NULL) pathLength = x509->pathLength; CYASSL_LEAVE("CyaSSL_X509_get_pathLength", pathLength); return pathLength; } unsigned int CyaSSL_X509_get_keyUsage(CYASSL_X509* x509) { word16 usage = 0; CYASSL_ENTER("CyaSSL_X509_get_keyUsage"); if (x509 != NULL) usage = x509->keyUsage; CYASSL_LEAVE("CyaSSL_X509_get_keyUsage", usage); return usage; } byte* CyaSSL_X509_get_authorityKeyID( CYASSL_X509* x509, byte* dst, int* dstLen) { byte *id = NULL; int copySz = 0; CYASSL_ENTER("CyaSSL_X509_get_authorityKeyID"); if (x509 != NULL) { if (x509->authKeyIdSet) { copySz = min(dstLen != NULL ? *dstLen : 0, (int)x509->authKeyIdSz); id = x509->authKeyId; } if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) { XMEMCPY(dst, id, copySz); id = dst; *dstLen = copySz; } } CYASSL_LEAVE("CyaSSL_X509_get_authorityKeyID", copySz); return id; } byte* CyaSSL_X509_get_subjectKeyID( CYASSL_X509* x509, byte* dst, int* dstLen) { byte *id = NULL; int copySz = 0; CYASSL_ENTER("CyaSSL_X509_get_subjectKeyID"); if (x509 != NULL) { if (x509->subjKeyIdSet) { copySz = min(dstLen != NULL ? *dstLen : 0, (int)x509->subjKeyIdSz); id = x509->subjKeyId; } if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) { XMEMCPY(dst, id, copySz); id = dst; *dstLen = copySz; } } CYASSL_LEAVE("CyaSSL_X509_get_subjectKeyID", copySz); return id; } int CyaSSL_X509_NAME_entry_count(CYASSL_X509_NAME* name) { int count = 0; CYASSL_ENTER("CyaSSL_X509_NAME_entry_count"); if (name != NULL) count = name->fullName.entryCount; CYASSL_LEAVE("CyaSSL_X509_NAME_entry_count", count); return count; } int CyaSSL_X509_NAME_get_text_by_NID(CYASSL_X509_NAME* name, int nid, char* buf, int len) { char *text = NULL; int textSz = 0; CYASSL_ENTER("CyaSSL_X509_NAME_get_text_by_NID"); switch (nid) { case ASN_COMMON_NAME: text = name->fullName.fullName + name->fullName.cnIdx; textSz = name->fullName.cnLen; break; case ASN_SUR_NAME: text = name->fullName.fullName + name->fullName.snIdx; textSz = name->fullName.snLen; break; case ASN_SERIAL_NUMBER: text = name->fullName.fullName + name->fullName.serialIdx; textSz = name->fullName.serialLen; break; case ASN_COUNTRY_NAME: text = name->fullName.fullName + name->fullName.cIdx; textSz = name->fullName.cLen; break; case ASN_LOCALITY_NAME: text = name->fullName.fullName + name->fullName.lIdx; textSz = name->fullName.lLen; break; case ASN_STATE_NAME: text = name->fullName.fullName + name->fullName.stIdx; textSz = name->fullName.stLen; break; case ASN_ORG_NAME: text = name->fullName.fullName + name->fullName.oIdx; textSz = name->fullName.oLen; break; case ASN_ORGUNIT_NAME: text = name->fullName.fullName + name->fullName.ouIdx; textSz = name->fullName.ouLen; break; default: break; } if (buf != NULL && text != NULL) { textSz = min(textSz, len); XMEMCPY(buf, text, textSz); buf[textSz] = '\0'; } CYASSL_LEAVE("CyaSSL_X509_NAME_get_text_by_NID", textSz); return textSz; } #endif /* copy name into in buffer, at most sz bytes, if buffer is null will malloc buffer, call responsible for freeing */ char* CyaSSL_X509_NAME_oneline(CYASSL_X509_NAME* name, char* in, int sz) { int copySz = min(sz, name->sz); CYASSL_ENTER("CyaSSL_X509_NAME_oneline"); if (!name->sz) return in; if (!in) { in = (char*)XMALLOC(name->sz, 0, DYNAMIC_TYPE_OPENSSL); if (!in ) return in; copySz = name->sz; } if (copySz == 0) return in; XMEMCPY(in, name->name, copySz - 1); in[copySz - 1] = 0; return in; } int CyaSSL_X509_get_signature_type(CYASSL_X509* x509) { int type = 0; CYASSL_ENTER("CyaSSL_X509_get_signature_type"); if (x509 != NULL) type = x509->sigOID; return type; } int CyaSSL_X509_get_signature(CYASSL_X509* x509, unsigned char* buf, int* bufSz) { CYASSL_ENTER("CyaSSL_X509_get_signature"); if (x509 == NULL || bufSz == NULL || *bufSz < (int)x509->sig.length) return SSL_FATAL_ERROR; if (buf != NULL) XMEMCPY(buf, x509->sig.buffer, x509->sig.length); *bufSz = x509->sig.length; return SSL_SUCCESS; } /* write X509 serial number in unsigned binary to buffer buffer needs to be at least EXTERNAL_SERIAL_SIZE (32) for all cases return SSL_SUCCESS on success */ int CyaSSL_X509_get_serial_number(CYASSL_X509* x509, byte* in, int* inOutSz) { CYASSL_ENTER("CyaSSL_X509_get_serial_number"); if (x509 == NULL || in == NULL || inOutSz == NULL || *inOutSz < x509->serialSz) return BAD_FUNC_ARG; XMEMCPY(in, x509->serial, x509->serialSz); *inOutSz = x509->serialSz; return SSL_SUCCESS; } const byte* CyaSSL_X509_get_der(CYASSL_X509* x509, int* outSz) { CYASSL_ENTER("CyaSSL_X509_get_der"); if (x509 == NULL || outSz == NULL) return NULL; *outSz = (int)x509->derCert.length; return x509->derCert.buffer; } int CyaSSL_X509_version(CYASSL_X509* x509) { CYASSL_ENTER("CyaSSL_X509_version"); if (x509 == NULL) return 0; return x509->version; } const byte* CyaSSL_X509_notBefore(CYASSL_X509* x509) { CYASSL_ENTER("CyaSSL_X509_notBefore"); if (x509 == NULL) return NULL; return x509->notBefore; } const byte* CyaSSL_X509_notAfter(CYASSL_X509* x509) { CYASSL_ENTER("CyaSSL_X509_notAfter"); if (x509 == NULL) return NULL; return x509->notAfter; } #ifdef CYASSL_SEP /* copy oid into in buffer, at most *inOutSz bytes, if buffer is null will malloc buffer, call responsible for freeing. Actual size returned in *inOutSz. Requires inOutSz be non-null */ byte* CyaSSL_X509_get_device_type(CYASSL_X509* x509, byte* in, int *inOutSz) { int copySz; CYASSL_ENTER("CyaSSL_X509_get_dev_type"); if (inOutSz == NULL) return NULL; if (!x509->deviceTypeSz) return in; copySz = min(*inOutSz, x509->deviceTypeSz); if (!in) { in = (byte*)XMALLOC(x509->deviceTypeSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->deviceTypeSz; } XMEMCPY(in, x509->deviceType, copySz); *inOutSz = copySz; return in; } byte* CyaSSL_X509_get_hw_type(CYASSL_X509* x509, byte* in, int* inOutSz) { int copySz; CYASSL_ENTER("CyaSSL_X509_get_hw_type"); if (inOutSz == NULL) return NULL; if (!x509->hwTypeSz) return in; copySz = min(*inOutSz, x509->hwTypeSz); if (!in) { in = (byte*)XMALLOC(x509->hwTypeSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->hwTypeSz; } XMEMCPY(in, x509->hwType, copySz); *inOutSz = copySz; return in; } byte* CyaSSL_X509_get_hw_serial_number(CYASSL_X509* x509,byte* in,int* inOutSz) { int copySz; CYASSL_ENTER("CyaSSL_X509_get_hw_serial_number"); if (inOutSz == NULL) return NULL; if (!x509->hwTypeSz) return in; copySz = min(*inOutSz, x509->hwSerialNumSz); if (!in) { in = (byte*)XMALLOC(x509->hwSerialNumSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->hwSerialNumSz; } XMEMCPY(in, x509->hwSerialNum, copySz); *inOutSz = copySz; return in; } #endif /* CYASSL_SEP */ CYASSL_X509* CyaSSL_X509_d2i(CYASSL_X509** x509, const byte* in, int len) { CYASSL_X509 *newX509 = NULL; CYASSL_ENTER("CyaSSL_X509_d2i"); if (in != NULL && len != 0) { DecodedCert cert; InitDecodedCert(&cert, (byte*)in, len, NULL); if (ParseCertRelative(&cert, CERT_TYPE, 0, NULL) == 0) { newX509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509), NULL, DYNAMIC_TYPE_X509); if (newX509 != NULL) { InitX509(newX509, 1); if (CopyDecodedToX509(newX509, &cert) != 0) { XFREE(newX509, NULL, DYNAMIC_TYPE_X509); newX509 = NULL; } } } FreeDecodedCert(&cert); } if (x509 != NULL) *x509 = newX509; return newX509; } #ifndef NO_FILESYSTEM #ifndef NO_STDIO_FILESYSTEM CYASSL_X509* CyaSSL_X509_d2i_fp(CYASSL_X509** x509, XFILE file) { CYASSL_X509* newX509 = NULL; CYASSL_ENTER("CyaSSL_X509_d2i_fp"); if (file != XBADFILE) { byte* fileBuffer = NULL; long sz = 0; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE); if (fileBuffer != NULL) { if ((int)XFREAD(fileBuffer, sz, 1, file) > 0) { newX509 = CyaSSL_X509_d2i(NULL, fileBuffer, (int)sz); } XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); } } if (x509 != NULL) *x509 = newX509; return newX509; } #endif /* NO_STDIO_FILESYSTEM */ CYASSL_X509* CyaSSL_X509_load_certificate_file(const char* fname, int format) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* fileBuffer = staticBuffer; int dynamic = 0; long sz = 0; XFILE file; CYASSL_X509* x509 = NULL; buffer der; CYASSL_ENTER("CyaSSL_X509_load_certificate"); /* Check the inputs */ if ((fname == NULL) || (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM)) return NULL; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return NULL; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE); if (fileBuffer == NULL) { XFCLOSE(file); return NULL; } dynamic = 1; } if ((int)XFREAD(fileBuffer, sz, 1, file) < 0) { XFCLOSE(file); if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); return NULL; } XFCLOSE(file); der.buffer = NULL; der.length = 0; if (format == SSL_FILETYPE_PEM) { EncryptedInfo info; int ecc = 0; info.set = 0; info.ctx = NULL; info.consumed = 0; if (PemToDer(fileBuffer, sz, CERT_TYPE, &der, NULL, &info, &ecc) != 0) { /* Only time this should fail, and leave `der` with a buffer is when the Base64 Decode fails. Release `der.buffer` in that case. */ if (der.buffer != NULL) { XFREE(der.buffer, NULL, DYNAMIC_TYPE_CERT); der.buffer = NULL; } } } else { der.buffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_CERT); if (der.buffer != NULL) { XMEMCPY(der.buffer, fileBuffer, sz); der.length = (word32)sz; } } if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); /* At this point we want `der` to have the certificate in DER format */ /* ready to be decoded. */ if (der.buffer != NULL) { DecodedCert cert; InitDecodedCert(&cert, der.buffer, der.length, NULL); if (ParseCertRelative(&cert, CERT_TYPE, 0, NULL) == 0) { x509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 != NULL) { InitX509(x509, 1); if (CopyDecodedToX509(x509, &cert) != 0) { XFREE(x509, NULL, DYNAMIC_TYPE_X509); x509 = NULL; } } } FreeDecodedCert(&cert); XFREE(der.buffer, NULL, DYNAMIC_TYPE_CERT); } return x509; } #endif /* NO_FILESYSTEM */ #endif /* KEEP_PEER_CERT || SESSION_CERTS */ #ifdef OPENSSL_EXTRA int CyaSSL_set_ex_data(CYASSL* ssl, int idx, void* data) { #ifdef FORTRESS if (ssl != NULL && idx < MAX_EX_DATA) { ssl->ex_data[idx] = data; return SSL_SUCCESS; } #else (void)ssl; (void)idx; (void)data; #endif return SSL_FAILURE; } int CyaSSL_set_session_id_context(CYASSL* ssl, const unsigned char* id, unsigned int len) { (void)ssl; (void)id; (void)len; return 0; } void CyaSSL_set_connect_state(CYASSL* ssl) { (void)ssl; /* client by default */ } #endif int CyaSSL_get_shutdown(const CYASSL* ssl) { return (ssl->options.isClosed || ssl->options.connReset || ssl->options.sentNotify); } int CyaSSL_session_reused(CYASSL* ssl) { return ssl->options.resuming; } #ifdef OPENSSL_EXTRA void CyaSSL_SESSION_free(CYASSL_SESSION* session) { (void)session; } #endif const char* CyaSSL_get_version(CYASSL* ssl) { CYASSL_ENTER("SSL_get_version"); if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return "SSLv3"; case TLSv1_MINOR : return "TLSv1"; case TLSv1_1_MINOR : return "TLSv1.1"; case TLSv1_2_MINOR : return "TLSv1.2"; default: return "unknown"; } } else if (ssl->version.major == DTLS_MAJOR) { switch (ssl->version.minor) { case DTLS_MINOR : return "DTLS"; case DTLSv1_2_MINOR : return "DTLSv1.2"; default: return "unknown"; } } return "unknown"; } int CyaSSL_get_current_cipher_suite(CYASSL* ssl) { CYASSL_ENTER("SSL_get_current_cipher_suite"); if (ssl) return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite; return 0; } CYASSL_CIPHER* CyaSSL_get_current_cipher(CYASSL* ssl) { CYASSL_ENTER("SSL_get_current_cipher"); if (ssl) return &ssl->cipher; else return NULL; } const char* CyaSSL_CIPHER_get_name(const CYASSL_CIPHER* cipher) { (void)cipher; CYASSL_ENTER("SSL_CIPHER_get_name"); #ifndef NO_ERROR_STRINGS if (cipher) { #ifdef HAVE_ECC if (cipher->ssl->options.cipherSuite0 == ECC_BYTE) { /* ECC suites */ switch (cipher->ssl->options.cipherSuite) { #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 : return "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256"; #endif case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 : return "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"; #ifndef NO_RSA case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 : return "TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256"; #endif case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 : return "TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256"; #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 : return "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"; #endif case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 : return "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384"; #ifndef NO_RSA case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 : return "TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384"; #endif case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 : return "TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384"; #ifndef NO_SHA #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA : return "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA"; case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA : return "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA"; #endif case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA : return "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA"; case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA : return "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA"; #ifndef NO_RC4 #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_RC4_128_SHA : return "TLS_ECDHE_RSA_WITH_RC4_128_SHA"; #endif case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA : return "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA"; #endif #ifndef NO_DES3 #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA : return "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA"; #endif case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA : return "TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA"; #endif #ifndef NO_RSA case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA : return "TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"; case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA : return "TLS_ECDH_RSA_WITH_AES_256_CBC_SHA"; #endif case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA : return "TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA"; case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA : return "TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA"; #ifndef NO_RC4 #ifndef NO_RSA case TLS_ECDH_RSA_WITH_RC4_128_SHA : return "TLS_ECDH_RSA_WITH_RC4_128_SHA"; #endif case TLS_ECDH_ECDSA_WITH_RC4_128_SHA : return "TLS_ECDH_ECDSA_WITH_RC4_128_SHA"; #endif #ifndef NO_DES3 #ifndef NO_RSA case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA : return "TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA"; #endif case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA : return "TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA"; #endif #endif /* NO_SHA */ #ifdef HAVE_AESGCM #ifndef NO_RSA case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 : return "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"; case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 : return "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"; #endif case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 : return "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"; case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 : return "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384"; #ifndef NO_RSA case TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 : return "TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256"; case TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 : return "TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384"; #endif case TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 : return "TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256"; case TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 : return "TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384"; #endif #ifdef HAVE_AESCCM #ifndef NO_RSA case TLS_RSA_WITH_AES_128_CCM_8 : return "TLS_RSA_WITH_AES_128_CCM_8"; case TLS_RSA_WITH_AES_256_CCM_8 : return "TLS_RSA_WITH_AES_256_CCM_8"; #endif case TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8: return "TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8"; case TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 : return "TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8"; #endif default: return "NONE"; } } #endif /* ECC */ if (cipher->ssl->options.cipherSuite0 != ECC_BYTE) { /* normal suites */ switch (cipher->ssl->options.cipherSuite) { #ifndef NO_RSA #ifndef NO_RC4 #ifndef NO_SHA case SSL_RSA_WITH_RC4_128_SHA : return "SSL_RSA_WITH_RC4_128_SHA"; #endif #ifndef NO_MD5 case SSL_RSA_WITH_RC4_128_MD5 : return "SSL_RSA_WITH_RC4_128_MD5"; #endif #endif #ifndef NO_SHA #ifndef NO_DES3 case SSL_RSA_WITH_3DES_EDE_CBC_SHA : return "SSL_RSA_WITH_3DES_EDE_CBC_SHA"; #endif case TLS_RSA_WITH_AES_128_CBC_SHA : return "TLS_RSA_WITH_AES_128_CBC_SHA"; case TLS_RSA_WITH_AES_256_CBC_SHA : return "TLS_RSA_WITH_AES_256_CBC_SHA"; #endif case TLS_RSA_WITH_AES_128_CBC_SHA256 : return "TLS_RSA_WITH_AES_128_CBC_SHA256"; case TLS_RSA_WITH_AES_256_CBC_SHA256 : return "TLS_RSA_WITH_AES_256_CBC_SHA256"; #ifdef HAVE_BLAKE2 case TLS_RSA_WITH_AES_128_CBC_B2B256: return "TLS_RSA_WITH_AES_128_CBC_B2B256"; case TLS_RSA_WITH_AES_256_CBC_B2B256: return "TLS_RSA_WITH_AES_256_CBC_B2B256"; #endif #ifndef NO_SHA case TLS_RSA_WITH_NULL_SHA : return "TLS_RSA_WITH_NULL_SHA"; #endif case TLS_RSA_WITH_NULL_SHA256 : return "TLS_RSA_WITH_NULL_SHA256"; #endif /* NO_RSA */ #ifndef NO_PSK case TLS_PSK_WITH_AES_128_CBC_SHA256 : return "TLS_PSK_WITH_AES_128_CBC_SHA256"; #ifndef NO_SHA case TLS_PSK_WITH_AES_128_CBC_SHA : return "TLS_PSK_WITH_AES_128_CBC_SHA"; case TLS_PSK_WITH_AES_256_CBC_SHA : return "TLS_PSK_WITH_AES_256_CBC_SHA"; #endif #ifndef NO_SHA256 #ifdef HAVE_AESCCM case TLS_PSK_WITH_AES_128_CCM_8 : return "TLS_PSK_WITH_AES_128_CCM_8"; case TLS_PSK_WITH_AES_256_CCM_8 : return "TLS_PSK_WITH_AES_256_CCM_8"; #endif case TLS_PSK_WITH_NULL_SHA256 : return "TLS_PSK_WITH_NULL_SHA256"; #endif #ifndef NO_SHA case TLS_PSK_WITH_NULL_SHA : return "TLS_PSK_WITH_NULL_SHA"; #endif #endif /* NO_PSK */ #ifndef NO_RSA case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 : return "TLS_DHE_RSA_WITH_AES_128_CBC_SHA256"; case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 : return "TLS_DHE_RSA_WITH_AES_256_CBC_SHA256"; #ifndef NO_SHA case TLS_DHE_RSA_WITH_AES_128_CBC_SHA : return "TLS_DHE_RSA_WITH_AES_128_CBC_SHA"; case TLS_DHE_RSA_WITH_AES_256_CBC_SHA : return "TLS_DHE_RSA_WITH_AES_256_CBC_SHA"; #endif #ifndef NO_HC128 #ifndef NO_MD5 case TLS_RSA_WITH_HC_128_MD5 : return "TLS_RSA_WITH_HC_128_MD5"; #endif #ifndef NO_SHA case TLS_RSA_WITH_HC_128_SHA : return "TLS_RSA_WITH_HC_128_SHA"; #endif #ifdef HAVE_BLAKE2 case TLS_RSA_WITH_HC_128_B2B256: return "TLS_RSA_WITH_HC_128_B2B256"; #endif #endif /* NO_HC128 */ #ifndef NO_SHA #ifndef NO_RABBIT case TLS_RSA_WITH_RABBIT_SHA : return "TLS_RSA_WITH_RABBIT_SHA"; #endif #ifdef HAVE_NTRU #ifndef NO_RC4 case TLS_NTRU_RSA_WITH_RC4_128_SHA : return "TLS_NTRU_RSA_WITH_RC4_128_SHA"; #endif #ifndef NO_DES3 case TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA : return "TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA"; #endif case TLS_NTRU_RSA_WITH_AES_128_CBC_SHA : return "TLS_NTRU_RSA_WITH_AES_128_CBC_SHA"; case TLS_NTRU_RSA_WITH_AES_256_CBC_SHA : return "TLS_NTRU_RSA_WITH_AES_256_CBC_SHA"; #endif /* HAVE_NTRU */ #endif /* NO_SHA */ case TLS_RSA_WITH_AES_128_GCM_SHA256 : return "TLS_RSA_WITH_AES_128_GCM_SHA256"; case TLS_RSA_WITH_AES_256_GCM_SHA384 : return "TLS_RSA_WITH_AES_256_GCM_SHA384"; case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 : return "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256"; case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 : return "TLS_DHE_RSA_WITH_AES_256_GCM_SHA384"; #ifndef NO_SHA case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA : return "TLS_RSA_WITH_CAMELLIA_128_CBC_SHA"; case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA : return "TLS_RSA_WITH_CAMELLIA_256_CBC_SHA"; #endif case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 : return "TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256"; case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 : return "TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256"; #ifndef NO_SHA case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA : return "TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA"; case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA : return "TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA"; #endif case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 : return "TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256"; case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 : return "TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256"; #endif /* NO_RSA */ default: return "NONE"; } /* switch */ } /* normal / ECC */ } #endif /* NO_ERROR_STRINGS */ return "NONE"; } const char* CyaSSL_get_cipher(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_get_cipher"); return CyaSSL_CIPHER_get_name(CyaSSL_get_current_cipher(ssl)); } #ifdef OPENSSL_EXTRA /* XXX shuld be NO_DH */ #ifndef NO_CERTS /* server ctx Diffie-Hellman parameters, SSL_SUCCESS on ok */ int CyaSSL_CTX_SetTmpDH(CYASSL_CTX* ctx, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { CYASSL_ENTER("CyaSSL_CTX_SetTmpDH"); if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_DH); XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_DH); ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap,DYNAMIC_TYPE_DH); if (ctx->serverDH_P.buffer == NULL) return MEMORY_E; ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap,DYNAMIC_TYPE_DH); if (ctx->serverDH_G.buffer == NULL) { XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_DH); return MEMORY_E; } ctx->serverDH_P.length = pSz; ctx->serverDH_G.length = gSz; XMEMCPY(ctx->serverDH_P.buffer, p, pSz); XMEMCPY(ctx->serverDH_G.buffer, g, gSz); ctx->haveDH = 1; CYASSL_LEAVE("CyaSSL_CTX_SetTmpDH", 0); return SSL_SUCCESS; } #endif /* !NO_CERTS */ char* CyaSSL_CIPHER_description(CYASSL_CIPHER* cipher, char* in, int len) { (void)cipher; (void)in; (void)len; return 0; } CYASSL_SESSION* CyaSSL_get1_session(CYASSL* ssl) /* what's ref count */ { (void)ssl; return 0; } void CyaSSL_X509_free(CYASSL_X509* buf) { (void)buf; } /* was do nothing */ /* void OPENSSL_free(void* buf) { (void)buf; } */ int CyaSSL_OCSP_parse_url(char* url, char** host, char** port, char** path, int* ssl) { (void)url; (void)host; (void)port; (void)path; (void)ssl; return 0; } CYASSL_METHOD* CyaSSLv2_client_method(void) { return 0; } CYASSL_METHOD* CyaSSLv2_server_method(void) { return 0; } #ifndef NO_MD4 void CyaSSL_MD4_Init(CYASSL_MD4_CTX* md4) { /* make sure we have a big enough buffer */ typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1]; (void) sizeof(ok); CYASSL_ENTER("MD4_Init"); InitMd4((Md4*)md4); } void CyaSSL_MD4_Update(CYASSL_MD4_CTX* md4, const void* data, unsigned long len) { CYASSL_ENTER("MD4_Update"); Md4Update((Md4*)md4, (const byte*)data, (word32)len); } void CyaSSL_MD4_Final(unsigned char* digest, CYASSL_MD4_CTX* md4) { CYASSL_ENTER("MD4_Final"); Md4Final((Md4*)md4, digest); } #endif /* NO_MD4 */ CYASSL_BIO* CyaSSL_BIO_pop(CYASSL_BIO* top) { (void)top; return 0; } int CyaSSL_BIO_pending(CYASSL_BIO* bio) { (void)bio; return 0; } CYASSL_BIO_METHOD* CyaSSL_BIO_s_mem(void) { static CYASSL_BIO_METHOD meth; CYASSL_ENTER("BIO_s_mem"); meth.type = BIO_MEMORY; return &meth; } CYASSL_BIO_METHOD* CyaSSL_BIO_f_base64(void) { return 0; } void CyaSSL_BIO_set_flags(CYASSL_BIO* bio, int flags) { (void)bio; (void)flags; } void CyaSSL_RAND_screen(void) { } const char* CyaSSL_RAND_file_name(char* fname, unsigned long len) { (void)fname; (void)len; return 0; } int CyaSSL_RAND_write_file(const char* fname) { (void)fname; return 0; } int CyaSSL_RAND_load_file(const char* fname, long len) { (void)fname; /* CTaoCrypt provides enough entropy internally or will report error */ if (len == -1) return 1024; else return (int)len; } int CyaSSL_RAND_egd(const char* path) { (void)path; return 0; } CYASSL_COMP_METHOD* CyaSSL_COMP_zlib(void) { return 0; } CYASSL_COMP_METHOD* CyaSSL_COMP_rle(void) { return 0; } int CyaSSL_COMP_add_compression_method(int method, void* data) { (void)method; (void)data; return 0; } int CyaSSL_get_ex_new_index(long idx, void* data, void* cb1, void* cb2, void* cb3) { (void)idx; (void)data; (void)cb1; (void)cb2; (void)cb3; return 0; } void CyaSSL_set_dynlock_create_callback(CYASSL_dynlock_value* (*f)( const char*, int)) { (void)f; } void CyaSSL_set_dynlock_lock_callback( void (*f)(int, CYASSL_dynlock_value*, const char*, int)) { (void)f; } void CyaSSL_set_dynlock_destroy_callback( void (*f)(CYASSL_dynlock_value*, const char*, int)) { (void)f; } const char* CyaSSL_X509_verify_cert_error_string(long err) { (void)err; return 0; } int CyaSSL_X509_LOOKUP_add_dir(CYASSL_X509_LOOKUP* lookup, const char* dir, long len) { (void)lookup; (void)dir; (void)len; return 0; } int CyaSSL_X509_LOOKUP_load_file(CYASSL_X509_LOOKUP* lookup, const char* file, long len) { (void)lookup; (void)file; (void)len; return 0; } CYASSL_X509_LOOKUP_METHOD* CyaSSL_X509_LOOKUP_hash_dir(void) { return 0; } CYASSL_X509_LOOKUP_METHOD* CyaSSL_X509_LOOKUP_file(void) { return 0; } CYASSL_X509_LOOKUP* CyaSSL_X509_STORE_add_lookup(CYASSL_X509_STORE* store, CYASSL_X509_LOOKUP_METHOD* m) { (void)store; (void)m; return 0; } int CyaSSL_X509_STORE_add_cert(CYASSL_X509_STORE* store, CYASSL_X509* x509) { int result = SSL_FATAL_ERROR; CYASSL_ENTER("CyaSSL_X509_STORE_add_cert"); if (store != NULL && store->cm != NULL && x509 != NULL) { buffer derCert; derCert.buffer = (byte*)XMALLOC(x509->derCert.length, NULL, DYNAMIC_TYPE_CERT); if (derCert.buffer != NULL) { derCert.length = x509->derCert.length; // AddCA() frees the buffer. XMEMCPY(derCert.buffer, x509->derCert.buffer, x509->derCert.length); result = AddCA(store->cm, derCert, CYASSL_USER_CA, 1); if (result != SSL_SUCCESS) result = SSL_FATAL_ERROR; } } CYASSL_LEAVE("CyaSSL_X509_STORE_add_cert", result); return result; } CYASSL_X509_STORE* CyaSSL_X509_STORE_new(void) { CYASSL_X509_STORE* store = NULL; store = (CYASSL_X509_STORE*)XMALLOC(sizeof(CYASSL_X509_STORE), NULL, 0); if (store != NULL) { store->cm = CyaSSL_CertManagerNew(); if (store->cm == NULL) { XFREE(store, NULL, 0); store = NULL; } } return store; } void CyaSSL_X509_STORE_free(CYASSL_X509_STORE* store) { if (store != NULL) { if (store->cm != NULL) CyaSSL_CertManagerFree(store->cm); XFREE(store, NULL, 0); } } int CyaSSL_X509_STORE_set_default_paths(CYASSL_X509_STORE* store) { (void)store; return SSL_SUCCESS; } int CyaSSL_X509_STORE_get_by_subject(CYASSL_X509_STORE_CTX* ctx, int idx, CYASSL_X509_NAME* name, CYASSL_X509_OBJECT* obj) { (void)ctx; (void)idx; (void)name; (void)obj; return 0; } CYASSL_X509_STORE_CTX* CyaSSL_X509_STORE_CTX_new(void) { CYASSL_X509_STORE_CTX* ctx = (CYASSL_X509_STORE_CTX*)XMALLOC( sizeof(CYASSL_X509_STORE_CTX), NULL, 0); if (ctx != NULL) CyaSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL); return ctx; } int CyaSSL_X509_STORE_CTX_init(CYASSL_X509_STORE_CTX* ctx, CYASSL_X509_STORE* store, CYASSL_X509* x509, STACK_OF(CYASSL_X509)* sk) { (void)sk; if (ctx != NULL) { ctx->store = store; ctx->current_cert = x509; ctx->domain = NULL; ctx->ex_data = NULL; ctx->userCtx = NULL; ctx->error = 0; ctx->error_depth = 0; ctx->discardSessionCerts = 0; return SSL_SUCCESS; } return SSL_FATAL_ERROR; } void CyaSSL_X509_STORE_CTX_free(CYASSL_X509_STORE_CTX* ctx) { if (ctx != NULL) { if (ctx->store != NULL) CyaSSL_X509_STORE_free(ctx->store); if (ctx->current_cert != NULL) CyaSSL_FreeX509(ctx->current_cert); XFREE(ctx, NULL, 0); } } void CyaSSL_X509_STORE_CTX_cleanup(CYASSL_X509_STORE_CTX* ctx) { (void)ctx; } int CyaSSL_X509_verify_cert(CYASSL_X509_STORE_CTX* ctx) { if (ctx != NULL && ctx->store != NULL && ctx->store->cm != NULL && ctx->current_cert != NULL) { return CyaSSL_CertManagerVerifyBuffer(ctx->store->cm, ctx->current_cert->derCert.buffer, ctx->current_cert->derCert.length, SSL_FILETYPE_ASN1); } return SSL_FATAL_ERROR; } CYASSL_ASN1_TIME* CyaSSL_X509_CRL_get_lastUpdate(CYASSL_X509_CRL* crl) { (void)crl; return 0; } CYASSL_ASN1_TIME* CyaSSL_X509_CRL_get_nextUpdate(CYASSL_X509_CRL* crl) { (void)crl; return 0; } CYASSL_EVP_PKEY* CyaSSL_X509_get_pubkey(CYASSL_X509* x509) { CYASSL_EVP_PKEY* key = NULL; if (x509 != NULL) { key = (CYASSL_EVP_PKEY*)XMALLOC( sizeof(CYASSL_EVP_PKEY), NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (key != NULL) { key->type = x509->pubKeyOID; key->save_type = 0; key->pkey.ptr = (char*)XMALLOC( x509->pubKey.length, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (key->pkey.ptr == NULL) { XFREE(key, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return NULL; } XMEMCPY(key->pkey.ptr, x509->pubKey.buffer, x509->pubKey.length); key->pkey_sz = x509->pubKey.length; #ifdef HAVE_ECC key->pkey_curve = (int)x509->pkCurveOID; #endif /* HAVE_ECC */ } } return key; } int CyaSSL_X509_CRL_verify(CYASSL_X509_CRL* crl, CYASSL_EVP_PKEY* key) { (void)crl; (void)key; return 0; } void CyaSSL_X509_STORE_CTX_set_error(CYASSL_X509_STORE_CTX* ctx, int err) { (void)ctx; (void)err; } void CyaSSL_X509_OBJECT_free_contents(CYASSL_X509_OBJECT* obj) { (void)obj; } void CyaSSL_EVP_PKEY_free(CYASSL_EVP_PKEY* key) { if (key != NULL) { if (key->pkey.ptr != NULL) XFREE(key->pkey.ptr, NULL, 0); XFREE(key, NULL, 0); } } int CyaSSL_X509_cmp_current_time(const CYASSL_ASN1_TIME* asnTime) { (void)asnTime; return 0; } int CyaSSL_sk_X509_REVOKED_num(CYASSL_X509_REVOKED* revoked) { (void)revoked; return 0; } CYASSL_X509_REVOKED* CyaSSL_X509_CRL_get_REVOKED(CYASSL_X509_CRL* crl) { (void)crl; return 0; } CYASSL_X509_REVOKED* CyaSSL_sk_X509_REVOKED_value( CYASSL_X509_REVOKED* revoked, int value) { (void)revoked; (void)value; return 0; } CYASSL_ASN1_INTEGER* CyaSSL_X509_get_serialNumber(CYASSL_X509* x509) { (void)x509; return 0; } int CyaSSL_ASN1_TIME_print(CYASSL_BIO* bio, const CYASSL_ASN1_TIME* asnTime) { (void)bio; (void)asnTime; return 0; } int CyaSSL_ASN1_INTEGER_cmp(const CYASSL_ASN1_INTEGER* a, const CYASSL_ASN1_INTEGER* b) { (void)a; (void)b; return 0; } long CyaSSL_ASN1_INTEGER_get(const CYASSL_ASN1_INTEGER* i) { (void)i; return 0; } void* CyaSSL_X509_STORE_CTX_get_ex_data(CYASSL_X509_STORE_CTX* ctx, int idx) { #ifdef FORTRESS if (ctx != NULL && idx == 0) return ctx->ex_data; #else (void)ctx; (void)idx; #endif return 0; } int CyaSSL_get_ex_data_X509_STORE_CTX_idx(void) { return 0; } void* CyaSSL_get_ex_data(const CYASSL* ssl, int idx) { #ifdef FORTRESS if (ssl != NULL && idx < MAX_EX_DATA) return ssl->ex_data[idx]; #else (void)ssl; (void)idx; #endif return 0; } void CyaSSL_CTX_set_info_callback(CYASSL_CTX* ctx, void (*f)(void)) { (void)ctx; (void)f; } unsigned long CyaSSL_ERR_peek_error(void) { return 0; } int CyaSSL_ERR_GET_REASON(int err) { (void)err; return 0; } char* CyaSSL_alert_type_string_long(int alertID) { (void)alertID; return 0; } char* CyaSSL_alert_desc_string_long(int alertID) { (void)alertID; return 0; } char* CyaSSL_state_string_long(CYASSL* ssl) { (void)ssl; return 0; } int CyaSSL_PEM_def_callback(char* name, int num, int w, void* key) { (void)name; (void)num; (void)w; (void)key; return 0; } long CyaSSL_CTX_sess_accept(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_connect(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_accept_good(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_connect_good(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_accept_renegotiate(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_connect_renegotiate(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_hits(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_cb_hits(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_cache_full(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_misses(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_timeouts(CYASSL_CTX* ctx) { (void)ctx; return 0; } long CyaSSL_CTX_sess_number(CYASSL_CTX* ctx) { (void)ctx; return 0; } void CyaSSL_DES_set_key_unchecked(CYASSL_const_DES_cblock* myDes, CYASSL_DES_key_schedule* key) { (void)myDes; (void)key; } void CyaSSL_DES_set_odd_parity(CYASSL_DES_cblock* myDes) { (void)myDes; } void CyaSSL_DES_ecb_encrypt(CYASSL_DES_cblock* desa, CYASSL_DES_cblock* desb, CYASSL_DES_key_schedule* key, int len) { (void)desa; (void)desb; (void)key; (void)len; } int CyaSSL_BIO_printf(CYASSL_BIO* bio, const char* format, ...) { (void)bio; (void)format; return 0; } int CyaSSL_ASN1_UTCTIME_print(CYASSL_BIO* bio, const CYASSL_ASN1_UTCTIME* a) { (void)bio; (void)a; return 0; } int CyaSSL_sk_num(CYASSL_X509_REVOKED* rev) { (void)rev; return 0; } void* CyaSSL_sk_value(CYASSL_X509_REVOKED* rev, int i) { (void)rev; (void)i; return 0; } /* stunnel 4.28 needs */ void* CyaSSL_CTX_get_ex_data(const CYASSL_CTX* ctx, int d) { (void)ctx; (void)d; return 0; } int CyaSSL_CTX_set_ex_data(CYASSL_CTX* ctx, int d, void* p) { (void)ctx; (void)d; (void)p; return SSL_SUCCESS; } void CyaSSL_CTX_sess_set_get_cb(CYASSL_CTX* ctx, CYASSL_SESSION*(*f)(CYASSL*, unsigned char*, int, int*)) { (void)ctx; (void)f; } void CyaSSL_CTX_sess_set_new_cb(CYASSL_CTX* ctx, int (*f)(CYASSL*, CYASSL_SESSION*)) { (void)ctx; (void)f; } void CyaSSL_CTX_sess_set_remove_cb(CYASSL_CTX* ctx, void (*f)(CYASSL_CTX*, CYASSL_SESSION*)) { (void)ctx; (void)f; } int CyaSSL_i2d_SSL_SESSION(CYASSL_SESSION* sess, unsigned char** p) { (void)sess; (void)p; return sizeof(CYASSL_SESSION); } CYASSL_SESSION* CyaSSL_d2i_SSL_SESSION(CYASSL_SESSION** sess, const unsigned char** p, long i) { (void)p; (void)i; if (sess) return *sess; return NULL; } long CyaSSL_SESSION_get_timeout(const CYASSL_SESSION* sess) { CYASSL_ENTER("CyaSSL_SESSION_get_timeout"); return sess->timeout; } long CyaSSL_SESSION_get_time(const CYASSL_SESSION* sess) { CYASSL_ENTER("CyaSSL_SESSION_get_time"); return sess->bornOn; } int CyaSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b, void* c) { (void)idx; (void)arg; (void)a; (void)b; (void)c; return 0; } #endif /* OPENSSL_EXTRA */ #ifdef KEEP_PEER_CERT char* CyaSSL_X509_get_subjectCN(CYASSL_X509* x509) { if (x509 == NULL) return NULL; return x509->subjectCN; } #endif /* KEEP_PEER_CERT */ #ifdef OPENSSL_EXTRA #ifdef FORTRESS int CyaSSL_cmp_peer_cert_to_file(CYASSL* ssl, const char *fname) { int ret = SSL_FATAL_ERROR; CYASSL_ENTER("CyaSSL_cmp_peer_cert_to_file"); if (ssl != NULL && fname != NULL) { XFILE file = XBADFILE; long sz = 0; byte staticBuffer[FILE_BUFFER_SIZE]; byte* myBuffer = staticBuffer; CYASSL_CTX* ctx = ssl->ctx; EncryptedInfo info; buffer fileDer; int eccKey = 0; CYASSL_X509* peer_cert = &ssl->peerCert; info.set = 0; info.ctx = ctx; info.consumed = 0; fileDer.buffer = 0; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { CYASSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); } if ((myBuffer != NULL) && (sz > 0) && (XFREAD(myBuffer, sz, 1, file) > 0) && (PemToDer(myBuffer, sz, CERT_TYPE, &fileDer, ctx->heap, &info, &eccKey) == 0) && (fileDer.length != 0) && (fileDer.length == peer_cert->derCert.length) && (XMEMCMP(peer_cert->derCert.buffer, fileDer.buffer, fileDer.length) == 0)) { ret = 0; } XFCLOSE(file); if (fileDer.buffer) XFREE(fileDer.buffer, ctx->heap, DYNAMIC_TYPE_CERT); if (myBuffer && (myBuffer != staticBuffer)) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); } return ret; } #endif static RNG globalRNG; static int initGlobalRNG = 0; /* SSL_SUCCESS on ok */ int CyaSSL_RAND_seed(const void* seed, int len) { CYASSL_MSG("CyaSSL_RAND_seed"); (void)seed; (void)len; if (initGlobalRNG == 0) { if (InitRng(&globalRNG) < 0) { CYASSL_MSG("CyaSSL Init Global RNG failed"); return 0; } initGlobalRNG = 1; } return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int CyaSSL_RAND_bytes(unsigned char* buf, int num) { RNG tmpRNG; RNG* rng = &tmpRNG; CYASSL_ENTER("RAND_bytes"); if (InitRng(&tmpRNG) != 0) { CYASSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { CYASSL_MSG("Global RNG no Init"); return 0; } rng = &globalRNG; } if (RNG_GenerateBlock(rng, buf, num) != 0) { CYASSL_MSG("Bad RNG_GenerateBlock"); return 0; } return SSL_SUCCESS; } CYASSL_BN_CTX* CyaSSL_BN_CTX_new(void) { static int ctx; /* ctaocrypt doesn't now need ctx */ CYASSL_MSG("CyaSSL_BN_CTX_new"); return (CYASSL_BN_CTX*)&ctx; } void CyaSSL_BN_CTX_init(CYASSL_BN_CTX* ctx) { (void)ctx; CYASSL_MSG("CyaSSL_BN_CTX_init"); } void CyaSSL_BN_CTX_free(CYASSL_BN_CTX* ctx) { (void)ctx; CYASSL_MSG("CyaSSL_BN_CTX_free"); /* do free since static ctx that does nothing */ } static void InitCyaSSL_BigNum(CYASSL_BIGNUM* bn) { CYASSL_MSG("InitCyaSSL_BigNum"); if (bn) { bn->neg = 0; bn->internal = NULL; } } CYASSL_BIGNUM* CyaSSL_BN_new(void) { CYASSL_BIGNUM* external; mp_int* mpi; CYASSL_MSG("CyaSSL_BN_new"); mpi = (mp_int*) XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (mpi == NULL) { CYASSL_MSG("CyaSSL_BN_new malloc mpi failure"); return NULL; } external = (CYASSL_BIGNUM*) XMALLOC(sizeof(CYASSL_BIGNUM), NULL, DYNAMIC_TYPE_BIGINT); if (external == NULL) { CYASSL_MSG("CyaSSL_BN_new malloc CYASSL_BIGNUM failure"); XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); return NULL; } InitCyaSSL_BigNum(external); external->internal = mpi; if (mp_init(mpi) != MP_OKAY) { CyaSSL_BN_free(external); return NULL; } return external; } void CyaSSL_BN_free(CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_free"); if (bn) { if (bn->internal) { mp_clear((mp_int*)bn->internal); XFREE(bn->internal, NULL, DYNAMIC_TYPE_BIGINT); bn->internal = NULL; } XFREE(bn, NULL, DYNAMIC_TYPE_BIGINT); } } void CyaSSL_BN_clear_free(CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_clear_free"); CyaSSL_BN_free(bn); } /* SSL_SUCCESS on ok */ int CyaSSL_BN_sub(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* a, const CYASSL_BIGNUM* b) { CYASSL_MSG("CyaSSL_BN_sub"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return SSL_SUCCESS; CYASSL_MSG("CyaSSL_BN_sub mp_sub failed"); return 0; } /* SSL_SUCCESS on ok */ int CyaSSL_BN_mod(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* a, const CYASSL_BIGNUM* b, const CYASSL_BN_CTX* c) { (void)c; CYASSL_MSG("CyaSSL_BN_mod"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return SSL_SUCCESS; CYASSL_MSG("CyaSSL_BN_mod mp_mod failed"); return 0; } const CYASSL_BIGNUM* CyaSSL_BN_value_one(void) { static CYASSL_BIGNUM* bn_one = NULL; CYASSL_MSG("CyaSSL_BN_value_one"); if (bn_one == NULL) { bn_one = CyaSSL_BN_new(); if (bn_one) mp_set_int((mp_int*)bn_one->internal, 1); } return bn_one; } int CyaSSL_BN_num_bytes(const CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_num_bytes"); if (bn == NULL || bn->internal == NULL) return 0; return mp_unsigned_bin_size((mp_int*)bn->internal); } int CyaSSL_BN_num_bits(const CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_num_bits"); if (bn == NULL || bn->internal == NULL) return 0; return mp_count_bits((mp_int*)bn->internal); } int CyaSSL_BN_is_zero(const CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_is_zero"); if (bn == NULL || bn->internal == NULL) return 0; return mp_iszero((mp_int*)bn->internal); } int CyaSSL_BN_is_one(const CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_is_one"); if (bn == NULL || bn->internal == NULL) return 0; if (mp_cmp_d((mp_int*)bn->internal, 1) == 0) return 1; return 0; } int CyaSSL_BN_is_odd(const CYASSL_BIGNUM* bn) { CYASSL_MSG("CyaSSL_BN_is_odd"); if (bn == NULL || bn->internal == NULL) return 0; return mp_isodd((mp_int*)bn->internal); } int CyaSSL_BN_cmp(const CYASSL_BIGNUM* a, const CYASSL_BIGNUM* b) { CYASSL_MSG("CyaSSL_BN_cmp"); if (a == NULL || a->internal == NULL || b == NULL || b->internal ==NULL) return 0; return mp_cmp((mp_int*)a->internal, (mp_int*)b->internal); } int CyaSSL_BN_bn2bin(const CYASSL_BIGNUM* bn, unsigned char* r) { CYASSL_MSG("CyaSSL_BN_bn2bin"); if (bn == NULL || bn->internal == NULL) { CYASSL_MSG("NULL bn error"); return SSL_FATAL_ERROR; } if (r == NULL) return mp_unsigned_bin_size((mp_int*)bn->internal); if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) { CYASSL_MSG("mp_to_unsigned_bin error"); return SSL_FATAL_ERROR; } return mp_unsigned_bin_size((mp_int*)bn->internal); } CYASSL_BIGNUM* CyaSSL_BN_bin2bn(const unsigned char* str, int len, CYASSL_BIGNUM* ret) { CYASSL_MSG("CyaSSL_BN_bin2bn"); if (ret && ret->internal) { if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) { CYASSL_MSG("mp_read_unsigned_bin failure"); return NULL; } } else { CYASSL_MSG("CyaSSL_BN_bin2bn wants return bignum"); } return ret; } int CyaSSL_mask_bits(CYASSL_BIGNUM* bn, int n) { (void)bn; (void)n; CYASSL_MSG("CyaSSL_BN_mask_bits"); return SSL_FATAL_ERROR; } /* SSL_SUCCESS on ok */ int CyaSSL_BN_rand(CYASSL_BIGNUM* bn, int bits, int top, int bottom) { byte buff[1024]; RNG tmpRNG; RNG* rng = &tmpRNG; int len = bits/8; (void)top; (void)bottom; CYASSL_MSG("CyaSSL_BN_rand"); if (bn == NULL || bn->internal == NULL) { CYASSL_MSG("Bad function arguments"); return 0; } if (bits % 8) len++; if ( (InitRng(&tmpRNG)) != 0) { CYASSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { CYASSL_MSG("Global RNG no Init"); return 0; } rng = &globalRNG; } if (RNG_GenerateBlock(rng, buff, len) != 0) { CYASSL_MSG("Bad RNG_GenerateBlock"); return 0; } buff[0] |= 0x80 | 0x40; buff[len-1] |= 0x01; if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) { CYASSL_MSG("mp read bin failed"); return 0; } return SSL_SUCCESS; } int CyaSSL_BN_is_bit_set(const CYASSL_BIGNUM* bn, int n) { (void)bn; (void)n; CYASSL_MSG("CyaSSL_BN_is_bit_set"); return 0; } /* SSL_SUCCESS on ok */ int CyaSSL_BN_hex2bn(CYASSL_BIGNUM** bn, const char* str) { byte decoded[1024]; word32 decSz = sizeof(decoded); CYASSL_MSG("CyaSSL_BN_hex2bn"); if (str == NULL) { CYASSL_MSG("Bad function argument"); return 0; } if (Base16_Decode((byte*)str, (int)XSTRLEN(str), decoded, &decSz) < 0) { CYASSL_MSG("Bad Base16_Decode error"); return 0; } if (bn == NULL) return decSz; if (*bn == NULL) { *bn = CyaSSL_BN_new(); if (*bn == NULL) { CYASSL_MSG("BN new failed"); return 0; } } if (CyaSSL_BN_bin2bn(decoded, decSz, *bn) == NULL) { CYASSL_MSG("Bad bin2bn error"); return 0; } return SSL_SUCCESS; } CYASSL_BIGNUM* CyaSSL_BN_dup(const CYASSL_BIGNUM* bn) { CYASSL_BIGNUM* ret; CYASSL_MSG("CyaSSL_BN_dup"); if (bn == NULL || bn->internal == NULL) { CYASSL_MSG("bn NULL error"); return NULL; } ret = CyaSSL_BN_new(); if (ret == NULL) { CYASSL_MSG("bn new error"); return NULL; } if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) { CYASSL_MSG("mp_copy error"); CyaSSL_BN_free(ret); return NULL; } return ret; } CYASSL_BIGNUM* CyaSSL_BN_copy(CYASSL_BIGNUM* r, const CYASSL_BIGNUM* bn) { (void)r; (void)bn; CYASSL_MSG("CyaSSL_BN_copy"); return NULL; } int CyaSSL_BN_set_word(CYASSL_BIGNUM* bn, unsigned long w) { (void)bn; (void)w; CYASSL_MSG("CyaSSL_BN_set_word"); return SSL_FATAL_ERROR; } int CyaSSL_BN_dec2bn(CYASSL_BIGNUM** bn, const char* str) { (void)bn; (void)str; CYASSL_MSG("CyaSSL_BN_dec2bn"); return SSL_FATAL_ERROR; } char* CyaSSL_BN_bn2dec(const CYASSL_BIGNUM* bn) { (void)bn; CYASSL_MSG("CyaSSL_BN_bn2dec"); return NULL; } static void InitCyaSSL_DH(CYASSL_DH* dh) { if (dh) { dh->p = NULL; dh->g = NULL; dh->pub_key = NULL; dh->priv_key = NULL; dh->internal = NULL; dh->inSet = 0; dh->exSet = 0; } } CYASSL_DH* CyaSSL_DH_new(void) { CYASSL_DH* external; DhKey* key; CYASSL_MSG("CyaSSL_DH_new"); key = (DhKey*) XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (key == NULL) { CYASSL_MSG("CyaSSL_DH_new malloc DhKey failure"); return NULL; } external = (CYASSL_DH*) XMALLOC(sizeof(CYASSL_DH), NULL, DYNAMIC_TYPE_DH); if (external == NULL) { CYASSL_MSG("CyaSSL_DH_new malloc CYASSL_DH failure"); XFREE(key, NULL, DYNAMIC_TYPE_DH); return NULL; } InitCyaSSL_DH(external); InitDhKey(key); external->internal = key; return external; } void CyaSSL_DH_free(CYASSL_DH* dh) { CYASSL_MSG("CyaSSL_DH_free"); if (dh) { if (dh->internal) { FreeDhKey((DhKey*)dh->internal); XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH); dh->internal = NULL; } CyaSSL_BN_free(dh->priv_key); CyaSSL_BN_free(dh->pub_key); CyaSSL_BN_free(dh->g); CyaSSL_BN_free(dh->p); InitCyaSSL_DH(dh); /* set back to NULLs for safety */ XFREE(dh, NULL, DYNAMIC_TYPE_DH); } } static int SetDhInternal(CYASSL_DH* dh) { unsigned char p[1024]; unsigned char g[1024]; int pSz = sizeof(p); int gSz = sizeof(g); CYASSL_ENTER("SetDhInternal"); if (dh == NULL || dh->p == NULL || dh->g == NULL) { CYASSL_MSG("Bad function arguments"); return SSL_FATAL_ERROR; } if (CyaSSL_BN_bn2bin(dh->p, NULL) > pSz) { CYASSL_MSG("Bad p internal size"); return SSL_FATAL_ERROR; } if (CyaSSL_BN_bn2bin(dh->g, NULL) > gSz) { CYASSL_MSG("Bad g internal size"); return SSL_FATAL_ERROR; } pSz = CyaSSL_BN_bn2bin(dh->p, p); gSz = CyaSSL_BN_bn2bin(dh->g, g); if (pSz <= 0 || gSz <= 0) { CYASSL_MSG("Bad BN2bin set"); return SSL_FATAL_ERROR; } if (DhSetKey((DhKey*)dh->internal, p, pSz, g, gSz) < 0) { CYASSL_MSG("Bad DH SetKey"); return SSL_FATAL_ERROR; } dh->inSet = 1; return 0; } int CyaSSL_DH_size(CYASSL_DH* dh) { CYASSL_MSG("CyaSSL_DH_size"); if (dh == NULL) return 0; return CyaSSL_BN_num_bytes(dh->p); } /* return SSL_SUCCESS on ok, else 0 */ int CyaSSL_DH_generate_key(CYASSL_DH* dh) { unsigned char pub [768]; unsigned char priv[768]; word32 pubSz = sizeof(pub); word32 privSz = sizeof(priv); RNG tmpRNG; RNG* rng = &tmpRNG; CYASSL_MSG("CyaSSL_DH_generate_key"); if (dh == NULL || dh->p == NULL || dh->g == NULL) { CYASSL_MSG("Bad function arguments"); return 0; } if (dh->inSet == 0) { if (SetDhInternal(dh) < 0) { CYASSL_MSG("Bad DH set internal"); return 0; } } if ( (InitRng(&tmpRNG)) != 0) { CYASSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { CYASSL_MSG("Global RNG no Init"); return 0; } rng = &globalRNG; } if (DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz, pub, &pubSz) < 0) { CYASSL_MSG("Bad DhGenerateKeyPair"); return 0; } if (dh->pub_key) CyaSSL_BN_free(dh->pub_key); dh->pub_key = CyaSSL_BN_new(); if (dh->pub_key == NULL) { CYASSL_MSG("Bad DH new pub"); return 0; } if (dh->priv_key) CyaSSL_BN_free(dh->priv_key); dh->priv_key = CyaSSL_BN_new(); if (dh->priv_key == NULL) { CYASSL_MSG("Bad DH new priv"); return 0; } if (CyaSSL_BN_bin2bn(pub, pubSz, dh->pub_key) == NULL) { CYASSL_MSG("Bad DH bn2bin error pub"); return 0; } if (CyaSSL_BN_bin2bn(priv, privSz, dh->priv_key) == NULL) { CYASSL_MSG("Bad DH bn2bin error priv"); return 0; } CYASSL_MSG("CyaSSL_generate_key success"); return SSL_SUCCESS; } /* return key size on ok, 0 otherwise */ int CyaSSL_DH_compute_key(unsigned char* key, CYASSL_BIGNUM* otherPub, CYASSL_DH* dh) { unsigned char pub [1024]; unsigned char priv[1024]; word32 pubSz = sizeof(pub); word32 privSz = sizeof(priv); word32 keySz; CYASSL_MSG("CyaSSL_DH_compute_key"); if (dh == NULL || dh->priv_key == NULL || otherPub == NULL) { CYASSL_MSG("Bad function arguments"); return 0; } keySz = (word32)DH_size(dh); if (keySz == 0) { CYASSL_MSG("Bad DH_size"); return 0; } if (CyaSSL_BN_bn2bin(dh->priv_key, NULL) > (int)privSz) { CYASSL_MSG("Bad priv internal size"); return 0; } if (CyaSSL_BN_bn2bin(otherPub, NULL) > (int)pubSz) { CYASSL_MSG("Bad otherPub size"); return 0; } privSz = CyaSSL_BN_bn2bin(dh->priv_key, priv); pubSz = CyaSSL_BN_bn2bin(otherPub, pub); if (privSz <= 0 || pubSz <= 0) { CYASSL_MSG("Bad BN2bin set"); return 0; } if (DhAgree((DhKey*)dh->internal, key, &keySz, priv, privSz, pub, pubSz) < 0) { CYASSL_MSG("DhAgree failed"); return 0; } CYASSL_MSG("CyaSSL_compute_key success"); return (int)keySz; } #ifndef NO_DSA static void InitCyaSSL_DSA(CYASSL_DSA* dsa) { if (dsa) { dsa->p = NULL; dsa->q = NULL; dsa->g = NULL; dsa->pub_key = NULL; dsa->priv_key = NULL; dsa->internal = NULL; dsa->inSet = 0; dsa->exSet = 0; } } CYASSL_DSA* CyaSSL_DSA_new(void) { CYASSL_DSA* external; DsaKey* key; CYASSL_MSG("CyaSSL_DSA_new"); key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA); if (key == NULL) { CYASSL_MSG("CyaSSL_DSA_new malloc DsaKey failure"); return NULL; } external = (CYASSL_DSA*) XMALLOC(sizeof(CYASSL_DSA), NULL, DYNAMIC_TYPE_DSA); if (external == NULL) { CYASSL_MSG("CyaSSL_DSA_new malloc CYASSL_DSA failure"); XFREE(key, NULL, DYNAMIC_TYPE_DSA); return NULL; } InitCyaSSL_DSA(external); InitDsaKey(key); external->internal = key; return external; } void CyaSSL_DSA_free(CYASSL_DSA* dsa) { CYASSL_MSG("CyaSSL_DSA_free"); if (dsa) { if (dsa->internal) { FreeDsaKey((DsaKey*)dsa->internal); XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA); dsa->internal = NULL; } CyaSSL_BN_free(dsa->priv_key); CyaSSL_BN_free(dsa->pub_key); CyaSSL_BN_free(dsa->g); CyaSSL_BN_free(dsa->q); CyaSSL_BN_free(dsa->p); InitCyaSSL_DSA(dsa); /* set back to NULLs for safety */ XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); } } int CyaSSL_DSA_generate_key(CYASSL_DSA* dsa) { (void)dsa; CYASSL_MSG("CyaSSL_DSA_generate_key"); return 0; /* key gen not needed by server */ } int CyaSSL_DSA_generate_parameters_ex(CYASSL_DSA* dsa, int bits, unsigned char* seed, int seedLen, int* counterRet, unsigned long* hRet, void* cb) { (void)dsa; (void)bits; (void)seed; (void)seedLen; (void)counterRet; (void)hRet; (void)cb; CYASSL_MSG("CyaSSL_DSA_generate_parameters_ex"); return 0; /* key gen not needed by server */ } #endif /* NO_DSA */ static void InitCyaSSL_Rsa(CYASSL_RSA* rsa) { if (rsa) { rsa->n = NULL; rsa->e = NULL; rsa->d = NULL; rsa->p = NULL; rsa->q = NULL; rsa->dmp1 = NULL; rsa->dmq1 = NULL; rsa->iqmp = NULL; rsa->internal = NULL; rsa->inSet = 0; rsa->exSet = 0; } } CYASSL_RSA* CyaSSL_RSA_new(void) { CYASSL_RSA* external; RsaKey* key; CYASSL_MSG("CyaSSL_RSA_new"); key = (RsaKey*) XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA); if (key == NULL) { CYASSL_MSG("CyaSSL_RSA_new malloc RsaKey failure"); return NULL; } external = (CYASSL_RSA*) XMALLOC(sizeof(CYASSL_RSA), NULL, DYNAMIC_TYPE_RSA); if (external == NULL) { CYASSL_MSG("CyaSSL_RSA_new malloc CYASSL_RSA failure"); XFREE(key, NULL, DYNAMIC_TYPE_RSA); return NULL; } InitCyaSSL_Rsa(external); if (InitRsaKey(key, NULL) != 0) { CYASSL_MSG("InitRsaKey CYASSL_RSA failure"); XFREE(external, NULL, DYNAMIC_TYPE_RSA); XFREE(key, NULL, DYNAMIC_TYPE_RSA); return NULL; } external->internal = key; return external; } void CyaSSL_RSA_free(CYASSL_RSA* rsa) { CYASSL_MSG("CyaSSL_RSA_free"); if (rsa) { if (rsa->internal) { FreeRsaKey((RsaKey*)rsa->internal); XFREE(rsa->internal, NULL, DYNAMIC_TYPE_RSA); rsa->internal = NULL; } CyaSSL_BN_free(rsa->iqmp); CyaSSL_BN_free(rsa->dmq1); CyaSSL_BN_free(rsa->dmp1); CyaSSL_BN_free(rsa->q); CyaSSL_BN_free(rsa->p); CyaSSL_BN_free(rsa->d); CyaSSL_BN_free(rsa->e); CyaSSL_BN_free(rsa->n); InitCyaSSL_Rsa(rsa); /* set back to NULLs for safety */ XFREE(rsa, NULL, DYNAMIC_TYPE_RSA); } } static int SetIndividualExternal(CYASSL_BIGNUM** bn, mp_int* mpi) { CYASSL_MSG("Entering SetIndividualExternal"); if (mpi == NULL) { CYASSL_MSG("mpi NULL error"); return SSL_FATAL_ERROR; } if (*bn == NULL) { *bn = CyaSSL_BN_new(); if (*bn == NULL) { CYASSL_MSG("SetIndividualExternal alloc failed"); return SSL_FATAL_ERROR; } } if (mp_copy(mpi, (mp_int*)((*bn)->internal)) != MP_OKAY) { CYASSL_MSG("mp_copy error"); return SSL_FATAL_ERROR; } return 0; } #ifndef NO_DSA static int SetDsaExternal(CYASSL_DSA* dsa) { DsaKey* key; CYASSL_MSG("Entering SetDsaExternal"); if (dsa == NULL || dsa->internal == NULL) { CYASSL_MSG("dsa key NULL error"); return SSL_FATAL_ERROR; } key = (DsaKey*)dsa->internal; if (SetIndividualExternal(&dsa->p, &key->p) < 0) { CYASSL_MSG("dsa p key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->q, &key->q) < 0) { CYASSL_MSG("dsa q key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->g, &key->g) < 0) { CYASSL_MSG("dsa g key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->pub_key, &key->y) < 0) { CYASSL_MSG("dsa y key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->priv_key, &key->x) < 0) { CYASSL_MSG("dsa x key error"); return SSL_FATAL_ERROR; } dsa->exSet = 1; return 0; } #endif /* NO_DSA */ static int SetRsaExternal(CYASSL_RSA* rsa) { RsaKey* key; CYASSL_MSG("Entering SetRsaExternal"); if (rsa == NULL || rsa->internal == NULL) { CYASSL_MSG("rsa key NULL error"); return SSL_FATAL_ERROR; } key = (RsaKey*)rsa->internal; if (SetIndividualExternal(&rsa->n, &key->n) < 0) { CYASSL_MSG("rsa n key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->e, &key->e) < 0) { CYASSL_MSG("rsa e key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->d, &key->d) < 0) { CYASSL_MSG("rsa d key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->p, &key->p) < 0) { CYASSL_MSG("rsa p key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->q, &key->q) < 0) { CYASSL_MSG("rsa q key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->dmp1, &key->dP) < 0) { CYASSL_MSG("rsa dP key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->dmq1, &key->dQ) < 0) { CYASSL_MSG("rsa dQ key error"); return SSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->iqmp, &key->u) < 0) { CYASSL_MSG("rsa u key error"); return SSL_FATAL_ERROR; } rsa->exSet = 1; return 0; } /* SSL_SUCCESS on ok */ int CyaSSL_RSA_generate_key_ex(CYASSL_RSA* rsa, int bits, CYASSL_BIGNUM* bn, void* cb) { RNG rng; CYASSL_MSG("CyaSSL_RSA_generate_key_ex"); (void)rsa; (void)bits; (void)cb; (void)bn; if (InitRng(&rng) < 0) { CYASSL_MSG("RNG init failed"); return SSL_FATAL_ERROR; } #ifdef CYASSL_KEY_GEN if (MakeRsaKey((RsaKey*)rsa->internal, bits, 65537, &rng) < 0) { CYASSL_MSG("MakeRsaKey failed"); return SSL_FATAL_ERROR; } if (SetRsaExternal(rsa) < 0) { CYASSL_MSG("SetRsaExternal failed"); return SSL_FATAL_ERROR; } rsa->inSet = 1; return SSL_SUCCESS; #else CYASSL_MSG("No Key Gen built in"); return SSL_FATAL_ERROR; #endif } /* SSL_SUCCESS on ok */ int CyaSSL_RSA_blinding_on(CYASSL_RSA* rsa, CYASSL_BN_CTX* bn) { (void)rsa; (void)bn; CYASSL_MSG("CyaSSL_RSA_blinding_on"); return SSL_SUCCESS; /* on by default */ } int CyaSSL_RSA_public_encrypt(int len, unsigned char* fr, unsigned char* to, CYASSL_RSA* rsa, int padding) { (void)len; (void)fr; (void)to; (void)rsa; (void)padding; CYASSL_MSG("CyaSSL_RSA_public_encrypt"); return SSL_FATAL_ERROR; } int CyaSSL_RSA_private_decrypt(int len, unsigned char* fr, unsigned char* to, CYASSL_RSA* rsa, int padding) { (void)len; (void)fr; (void)to; (void)rsa; (void)padding; CYASSL_MSG("CyaSSL_RSA_private_decrypt"); return SSL_FATAL_ERROR; } int CyaSSL_RSA_size(const CYASSL_RSA* rsa) { CYASSL_MSG("CyaSSL_RSA_size"); if (rsa == NULL) return 0; return CyaSSL_BN_num_bytes(rsa->n); } #ifndef NO_DSA /* return SSL_SUCCESS on success, < 0 otherwise */ int CyaSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet, CYASSL_DSA* dsa) { RNG tmpRNG; RNG* rng = &tmpRNG; CYASSL_MSG("CyaSSL_DSA_do_sign"); if (d == NULL || sigRet == NULL || dsa == NULL) { CYASSL_MSG("Bad function arguments"); return SSL_FATAL_ERROR; } if (dsa->inSet == 0) { CYASSL_MSG("No DSA internal set"); return SSL_FATAL_ERROR; } if (InitRng(&tmpRNG) != 0) { CYASSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { CYASSL_MSG("Global RNG no Init"); return SSL_FATAL_ERROR; } rng = &globalRNG; } if (DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0) { CYASSL_MSG("DsaSign failed"); return SSL_FATAL_ERROR; } return SSL_SUCCESS; } #endif /* NO_DSA */ /* return SSL_SUCCES on ok, 0 otherwise */ int CyaSSL_RSA_sign(int type, const unsigned char* m, unsigned int mLen, unsigned char* sigRet, unsigned int* sigLen, CYASSL_RSA* rsa) { byte encodedSig[MAX_ENCODED_SIG_SZ]; word32 outLen; word32 signSz; RNG tmpRNG; RNG* rng = &tmpRNG; CYASSL_MSG("CyaSSL_RSA_sign"); if (m == NULL || sigRet == NULL || sigLen == NULL || rsa == NULL) { CYASSL_MSG("Bad function arguments"); return 0; } if (rsa->inSet == 0) { CYASSL_MSG("No RSA internal set"); return 0; } outLen = (word32)CyaSSL_BN_num_bytes(rsa->n); if (outLen == 0) { CYASSL_MSG("Bad RSA size"); return 0; } if (InitRng(&tmpRNG) != 0) { CYASSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) { CYASSL_MSG("Global RNG no Init"); return 0; } rng = &globalRNG; } switch (type) { case NID_md5: type = MD5h; break; case NID_sha1: type = SHAh; break; default: CYASSL_MSG("Bad md type"); return 0; } signSz = EncodeSignature(encodedSig, m, mLen, type); if (signSz == 0) { CYASSL_MSG("Bad Encode Signature"); return 0; } *sigLen = RsaSSL_Sign(encodedSig, signSz, sigRet, outLen, (RsaKey*)rsa->internal, rng); if (*sigLen <= 0) { CYASSL_MSG("Bad Rsa Sign"); return 0; } CYASSL_MSG("CyaSSL_RSA_sign success"); return SSL_SUCCESS; } int CyaSSL_RSA_public_decrypt(int flen, unsigned char* from, unsigned char* to, CYASSL_RSA* rsa, int padding) { (void)flen; (void)from; (void)to; (void)rsa; (void)padding; CYASSL_MSG("CyaSSL_RSA_public_decrypt"); return SSL_FATAL_ERROR; } /* generate p-1 and q-1, SSL_SUCCESS on ok */ int CyaSSL_RSA_GenAdd(CYASSL_RSA* rsa) { int err; mp_int tmp; CYASSL_MSG("CyaSSL_RsaGenAdd"); if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL || rsa->dmp1 == NULL || rsa->dmq1 == NULL) { CYASSL_MSG("rsa no init error"); return SSL_FATAL_ERROR; } if (mp_init(&tmp) != MP_OKAY) { CYASSL_MSG("mp_init error"); return SSL_FATAL_ERROR; } err = mp_sub_d((mp_int*)rsa->p->internal, 1, &tmp); if (err != MP_OKAY) { CYASSL_MSG("mp_sub_d error"); } else err = mp_mod((mp_int*)rsa->d->internal, &tmp, (mp_int*)rsa->dmp1->internal); if (err != MP_OKAY) { CYASSL_MSG("mp_mod error"); } else err = mp_sub_d((mp_int*)rsa->q->internal, 1, &tmp); if (err != MP_OKAY) { CYASSL_MSG("mp_sub_d error"); } else err = mp_mod((mp_int*)rsa->d->internal, &tmp, (mp_int*)rsa->dmq1->internal); mp_clear(&tmp); if (err == MP_OKAY) return SSL_SUCCESS; else return SSL_FATAL_ERROR; } void CyaSSL_HMAC_Init(CYASSL_HMAC_CTX* ctx, const void* key, int keylen, const EVP_MD* type) { CYASSL_MSG("CyaSSL_HMAC_Init"); if (ctx == NULL) { CYASSL_MSG("no ctx on init"); return; } if (type) { CYASSL_MSG("init has type"); if (XSTRNCMP(type, "MD5", 3) == 0) { CYASSL_MSG("md5 hmac"); ctx->type = MD5; } else if (XSTRNCMP(type, "SHA256", 6) == 0) { CYASSL_MSG("sha256 hmac"); ctx->type = SHA256; } /* has to be last since would pick or 256, 384, or 512 too */ else if (XSTRNCMP(type, "SHA", 3) == 0) { CYASSL_MSG("sha hmac"); ctx->type = SHA; } else { CYASSL_MSG("bad init type"); } } if (key && keylen) { CYASSL_MSG("keying hmac"); HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key, (word32)keylen); /* OpenSSL compat, no error */ } } void CyaSSL_HMAC_Update(CYASSL_HMAC_CTX* ctx, const unsigned char* data, int len) { CYASSL_MSG("CyaSSL_HMAC_Update"); if (ctx && data) { CYASSL_MSG("updating hmac"); HmacUpdate(&ctx->hmac, data, (word32)len); /* OpenSSL compat, no error */ } } void CyaSSL_HMAC_Final(CYASSL_HMAC_CTX* ctx, unsigned char* hash, unsigned int* len) { CYASSL_MSG("CyaSSL_HMAC_Final"); if (ctx && hash) { CYASSL_MSG("final hmac"); HmacFinal(&ctx->hmac, hash); /* OpenSSL compat, no error */ if (len) { CYASSL_MSG("setting output len"); switch (ctx->type) { case MD5: *len = MD5_DIGEST_SIZE; break; case SHA: *len = SHA_DIGEST_SIZE; break; case SHA256: *len = SHA256_DIGEST_SIZE; break; default: CYASSL_MSG("bad hmac type"); } } } } void CyaSSL_HMAC_cleanup(CYASSL_HMAC_CTX* ctx) { (void)ctx; CYASSL_MSG("CyaSSL_HMAC_cleanup"); } const CYASSL_EVP_MD* CyaSSL_EVP_get_digestbynid(int id) { CYASSL_MSG("CyaSSL_get_digestbynid"); switch(id) { case NID_md5: return CyaSSL_EVP_md5(); case NID_sha1: return CyaSSL_EVP_sha1(); default: CYASSL_MSG("Bad digest id value"); } return NULL; } CYASSL_RSA* CyaSSL_EVP_PKEY_get1_RSA(CYASSL_EVP_PKEY* key) { (void)key; CYASSL_MSG("CyaSSL_EVP_PKEY_get1_RSA"); return NULL; } CYASSL_DSA* CyaSSL_EVP_PKEY_get1_DSA(CYASSL_EVP_PKEY* key) { (void)key; CYASSL_MSG("CyaSSL_EVP_PKEY_get1_DSA"); return NULL; } void* CyaSSL_EVP_X_STATE(const CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_MSG("CyaSSL_EVP_X_STATE"); if (ctx) { switch (ctx->cipherType) { case ARC4_TYPE: CYASSL_MSG("returning arc4 state"); return (void*)&ctx->cipher.arc4.x; default: CYASSL_MSG("bad x state type"); return 0; } } return NULL; } int CyaSSL_EVP_X_STATE_LEN(const CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_MSG("CyaSSL_EVP_X_STATE_LEN"); if (ctx) { switch (ctx->cipherType) { case ARC4_TYPE: CYASSL_MSG("returning arc4 state size"); return sizeof(Arc4); default: CYASSL_MSG("bad x state type"); return 0; } } return 0; } void CyaSSL_3des_iv(CYASSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; CYASSL_MSG("CyaSSL_3des_iv"); if (ctx == NULL || iv == NULL) { CYASSL_MSG("Bad function argument"); return; } if (doset) Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */ else memcpy(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE); } void CyaSSL_aes_ctr_iv(CYASSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; CYASSL_MSG("CyaSSL_aes_ctr_iv"); if (ctx == NULL || iv == NULL) { CYASSL_MSG("Bad function argument"); return; } if (doset) AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */ else memcpy(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); } const CYASSL_EVP_MD* CyaSSL_EVP_ripemd160(void) { CYASSL_MSG("CyaSSL_ripemd160"); return NULL; } int CyaSSL_EVP_MD_size(const CYASSL_EVP_MD* type) { CYASSL_MSG("CyaSSL_EVP_MD_size"); if (type == NULL) { CYASSL_MSG("No md type arg"); return BAD_FUNC_ARG; } if (XSTRNCMP(type, "MD5", 3) == 0) { return MD5_DIGEST_SIZE; } else if (XSTRNCMP(type, "SHA256", 6) == 0) { return SHA256_DIGEST_SIZE; } #ifdef CYASSL_SHA384 else if (XSTRNCMP(type, "SHA384", 6) == 0) { return SHA384_DIGEST_SIZE; } #endif #ifdef CYASSL_SHA512 else if (XSTRNCMP(type, "SHA512", 6) == 0) { return SHA512_DIGEST_SIZE; } #endif /* has to be last since would pick or 256, 384, or 512 too */ else if (XSTRNCMP(type, "SHA", 3) == 0) { return SHA_DIGEST_SIZE; } return BAD_FUNC_ARG; } int CyaSSL_EVP_CIPHER_CTX_iv_length(const CYASSL_EVP_CIPHER_CTX* ctx) { CYASSL_MSG("CyaSSL_EVP_CIPHER_CTX_iv_length"); switch (ctx->cipherType) { case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : CYASSL_MSG("AES CBC"); return AES_BLOCK_SIZE; #ifdef CYASSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : CYASSL_MSG("AES CTR"); return AES_BLOCK_SIZE; #endif case DES_CBC_TYPE : CYASSL_MSG("DES CBC"); return DES_BLOCK_SIZE; case DES_EDE3_CBC_TYPE : CYASSL_MSG("DES EDE3 CBC"); return DES_BLOCK_SIZE; case ARC4_TYPE : CYASSL_MSG("ARC4"); return 0; case NULL_CIPHER_TYPE : CYASSL_MSG("NULL"); return 0; default: { CYASSL_MSG("bad type"); } } return 0; } void CyaSSL_OPENSSL_free(void* p) { CYASSL_MSG("CyaSSL_OPENSSL_free"); XFREE(p, NULL, 0); } int CyaSSL_PEM_write_bio_RSAPrivateKey(CYASSL_BIO* bio, RSA* rsa, const EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb cb, void* arg) { (void)bio; (void)rsa; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; CYASSL_MSG("CyaSSL_PEM_write_bio_RSAPrivateKey"); return SSL_FATAL_ERROR; } int CyaSSL_PEM_write_bio_DSAPrivateKey(CYASSL_BIO* bio, DSA* rsa, const EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb cb, void* arg) { (void)bio; (void)rsa; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; CYASSL_MSG("CyaSSL_PEM_write_bio_DSAPrivateKey"); return SSL_FATAL_ERROR; } CYASSL_EVP_PKEY* CyaSSL_PEM_read_bio_PrivateKey(CYASSL_BIO* bio, CYASSL_EVP_PKEY** key, pem_password_cb cb, void* arg) { (void)bio; (void)key; (void)cb; (void)arg; CYASSL_MSG("CyaSSL_PEM_read_bio_PrivateKey"); return NULL; } /* Load RSA from Der, SSL_SUCCESS on success < 0 on error */ int CyaSSL_RSA_LoadDer(CYASSL_RSA* rsa, const unsigned char* der, int derSz) { word32 idx = 0; int ret; CYASSL_ENTER("CyaSSL_RSA_LoadDer"); if (rsa == NULL || rsa->internal == NULL || der == NULL || derSz <= 0) { CYASSL_MSG("Bad function arguments"); return BAD_FUNC_ARG; } ret = RsaPrivateKeyDecode(der, &idx, (RsaKey*)rsa->internal, derSz); if (ret < 0) { CYASSL_MSG("RsaPrivateKeyDecode failed"); return ret; } if (SetRsaExternal(rsa) < 0) { CYASSL_MSG("SetRsaExternal failed"); return SSL_FATAL_ERROR; } rsa->inSet = 1; return SSL_SUCCESS; } #ifndef NO_DSA /* Load DSA from Der, SSL_SUCCESS on success < 0 on error */ int CyaSSL_DSA_LoadDer(CYASSL_DSA* dsa, const unsigned char* der, int derSz) { word32 idx = 0; int ret; CYASSL_ENTER("CyaSSL_DSA_LoadDer"); if (dsa == NULL || dsa->internal == NULL || der == NULL || derSz <= 0) { CYASSL_MSG("Bad function arguments"); return BAD_FUNC_ARG; } ret = DsaPrivateKeyDecode(der, &idx, (DsaKey*)dsa->internal, derSz); if (ret < 0) { CYASSL_MSG("DsaPrivateKeyDecode failed"); return ret; } if (SetDsaExternal(dsa) < 0) { CYASSL_MSG("SetDsaExternal failed"); return SSL_FATAL_ERROR; } dsa->inSet = 1; return SSL_SUCCESS; } #endif /* NO_DSA */ #endif /* OPENSSL_EXTRA */ #ifdef SESSION_CERTS /* Get peer's certificate chain */ CYASSL_X509_CHAIN* CyaSSL_get_peer_chain(CYASSL* ssl) { CYASSL_ENTER("CyaSSL_get_peer_chain"); if (ssl) return &ssl->session.chain; return 0; } /* Get peer's certificate chain total count */ int CyaSSL_get_chain_count(CYASSL_X509_CHAIN* chain) { CYASSL_ENTER("CyaSSL_get_chain_count"); if (chain) return chain->count; return 0; } /* Get peer's ASN.1 DER ceritifcate at index (idx) length in bytes */ int CyaSSL_get_chain_length(CYASSL_X509_CHAIN* chain, int idx) { CYASSL_ENTER("CyaSSL_get_chain_length"); if (chain) return chain->certs[idx].length; return 0; } /* Get peer's ASN.1 DER ceritifcate at index (idx) */ byte* CyaSSL_get_chain_cert(CYASSL_X509_CHAIN* chain, int idx) { CYASSL_ENTER("CyaSSL_get_chain_cert"); if (chain) return chain->certs[idx].buffer; return 0; } /* Get peer's CyaSSL X509 ceritifcate at index (idx) */ CYASSL_X509* CyaSSL_get_chain_X509(CYASSL_X509_CHAIN* chain, int idx) { int ret; CYASSL_X509* x509; DecodedCert dCert; CYASSL_ENTER("CyaSSL_get_chain_X509"); if (chain == NULL) return NULL; InitDecodedCert(&dCert, chain->certs[idx].buffer, chain->certs[idx].length, NULL); ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL); if (ret != 0) { CYASSL_MSG("Failed to parse cert"); FreeDecodedCert(&dCert); return NULL; } x509 = (CYASSL_X509*)XMALLOC(sizeof(CYASSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 == NULL) { CYASSL_MSG("Failed alloc X509"); FreeDecodedCert(&dCert); return NULL; } InitX509(x509, 1); ret = CopyDecodedToX509(x509, &dCert); if (ret != 0) { CYASSL_MSG("Failed to copy decoded"); XFREE(x509, NULL, DYNAMIC_TYPE_X509); x509 = NULL; } FreeDecodedCert(&dCert); return x509; } /* Get peer's PEM ceritifcate at index (idx), output to buffer if inLen big enough else return error (-1), output length is in *outLen SSL_SUCCESS on ok */ int CyaSSL_get_chain_cert_pem(CYASSL_X509_CHAIN* chain, int idx, unsigned char* buf, int inLen, int* outLen) { const char header[] = "-----BEGIN CERTIFICATE-----\n"; const char footer[] = "-----END CERTIFICATE-----\n"; int headerLen = sizeof(header) - 1; int footerLen = sizeof(footer) - 1; int i; int err; CYASSL_ENTER("CyaSSL_get_chain_cert_pem"); if (!chain || !outLen || !buf) return BAD_FUNC_ARG; /* don't even try if inLen too short */ if (inLen < headerLen + footerLen + chain->certs[idx].length) return BAD_FUNC_ARG; /* header */ XMEMCPY(buf, header, headerLen); i = headerLen; /* body */ *outLen = inLen; /* input to Base64_Encode */ if ( (err = Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, buf + i, (word32*)outLen)) < 0) return err; i += *outLen; /* footer */ if ( (i + footerLen) > inLen) return BAD_FUNC_ARG; XMEMCPY(buf + i, footer, footerLen); *outLen += headerLen + footerLen; return SSL_SUCCESS; } /* get session ID */ const byte* CyaSSL_get_sessionID(const CYASSL_SESSION* session) { CYASSL_ENTER("CyaSSL_get_sessionID"); if (session) return session->sessionID; return NULL; } #endif /* SESSION_CERTS */ #ifndef NO_CERTS #ifdef HAVE_PK_CALLBACKS #ifdef HAVE_ECC void CyaSSL_CTX_SetEccSignCb(CYASSL_CTX* ctx, CallbackEccSign cb) { if (ctx) ctx->EccSignCb = cb; } void CyaSSL_SetEccSignCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->EccSignCtx = ctx; } void* CyaSSL_GetEccSignCtx(CYASSL* ssl) { if (ssl) return ssl->EccSignCtx; return NULL; } void CyaSSL_CTX_SetEccVerifyCb(CYASSL_CTX* ctx, CallbackEccVerify cb) { if (ctx) ctx->EccVerifyCb = cb; } void CyaSSL_SetEccVerifyCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->EccVerifyCtx = ctx; } void* CyaSSL_GetEccVerifyCtx(CYASSL* ssl) { if (ssl) return ssl->EccVerifyCtx; return NULL; } #endif /* HAVE_ECC */ #ifndef NO_RSA void CyaSSL_CTX_SetRsaSignCb(CYASSL_CTX* ctx, CallbackRsaSign cb) { if (ctx) ctx->RsaSignCb = cb; } void CyaSSL_SetRsaSignCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->RsaSignCtx = ctx; } void* CyaSSL_GetRsaSignCtx(CYASSL* ssl) { if (ssl) return ssl->RsaSignCtx; return NULL; } void CyaSSL_CTX_SetRsaVerifyCb(CYASSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaVerifyCb = cb; } void CyaSSL_SetRsaVerifyCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->RsaVerifyCtx = ctx; } void* CyaSSL_GetRsaVerifyCtx(CYASSL* ssl) { if (ssl) return ssl->RsaVerifyCtx; return NULL; } void CyaSSL_CTX_SetRsaEncCb(CYASSL_CTX* ctx, CallbackRsaEnc cb) { if (ctx) ctx->RsaEncCb = cb; } void CyaSSL_SetRsaEncCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->RsaEncCtx = ctx; } void* CyaSSL_GetRsaEncCtx(CYASSL* ssl) { if (ssl) return ssl->RsaEncCtx; return NULL; } void CyaSSL_CTX_SetRsaDecCb(CYASSL_CTX* ctx, CallbackRsaDec cb) { if (ctx) ctx->RsaDecCb = cb; } void CyaSSL_SetRsaDecCtx(CYASSL* ssl, void *ctx) { if (ssl) ssl->RsaDecCtx = ctx; } void* CyaSSL_GetRsaDecCtx(CYASSL* ssl) { if (ssl) return ssl->RsaDecCtx; return NULL; } #endif /* NO_RSA */ #endif /* HAVE_PK_CALLBACKS */ #endif /* NO_CERTS */ #ifdef CYASSL_HAVE_WOLFSCEP /* Used by autoconf to see if wolfSCEP is available */ void CyaSSL_wolfSCEP(void) {} #endif #ifdef CYASSL_HAVE_CERT_SERVICE /* Used by autoconf to see if cert service is available */ void CyaSSL_cert_service(void) {} #endif