Fork of CyaSSL for my specific settings
Fork of CyaSSL by
ctaocrypt/src/rsa.c
- Committer:
- wolfSSL
- Date:
- 2014-07-12
- Revision:
- 0:1239e9b70ca2
File content as of revision 0:1239e9b70ca2:
/* rsa.c * * Copyright (C) 2006-2014 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #ifndef NO_RSA #ifdef HAVE_FIPS /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */ #define FIPS_NO_WRAPPERS #endif #include <cyassl/ctaocrypt/rsa.h> #include <cyassl/ctaocrypt/random.h> #include <cyassl/ctaocrypt/error-crypt.h> #include <cyassl/ctaocrypt/logging.h> #ifdef SHOW_GEN #ifdef FREESCALE_MQX #include <fio.h> #else #include <stdio.h> #endif #endif #ifdef HAVE_CAVIUM static int InitCaviumRsaKey(RsaKey* key, void* heap); static int FreeCaviumRsaKey(RsaKey* key); static int CaviumRsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key); static int CaviumRsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key); static int CaviumRsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key); static int CaviumRsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key); #endif enum { RSA_PUBLIC_ENCRYPT = 0, RSA_PUBLIC_DECRYPT = 1, RSA_PRIVATE_ENCRYPT = 2, RSA_PRIVATE_DECRYPT = 3, RSA_BLOCK_TYPE_1 = 1, RSA_BLOCK_TYPE_2 = 2, RSA_MIN_SIZE = 512, RSA_MAX_SIZE = 4096, RSA_MIN_PAD_SZ = 11 /* seperator + 0 + pad value + 8 pads */ }; int InitRsaKey(RsaKey* key, void* heap) { #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return InitCaviumRsaKey(key, heap); #endif key->type = -1; /* haven't decided yet */ key->heap = heap; /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH key->n.dp = key->e.dp = 0; /* public alloc parts */ key->d.dp = key->p.dp = 0; /* private alloc parts */ key->q.dp = key->dP.dp = 0; key->u.dp = key->dQ.dp = 0; #endif return 0; } int FreeRsaKey(RsaKey* key) { (void)key; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return FreeCaviumRsaKey(key); #endif /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH if (key->type == RSA_PRIVATE) { mp_clear(&key->u); mp_clear(&key->dQ); mp_clear(&key->dP); mp_clear(&key->q); mp_clear(&key->p); mp_clear(&key->d); } mp_clear(&key->e); mp_clear(&key->n); #endif return 0; } static int RsaPad(const byte* input, word32 inputLen, byte* pkcsBlock, word32 pkcsBlockLen, byte padValue, RNG* rng) { if (inputLen == 0) return 0; pkcsBlock[0] = 0x0; /* set first byte to zero and advance */ pkcsBlock++; pkcsBlockLen--; pkcsBlock[0] = padValue; /* insert padValue */ if (padValue == RSA_BLOCK_TYPE_1) /* pad with 0xff bytes */ XMEMSET(&pkcsBlock[1], 0xFF, pkcsBlockLen - inputLen - 2); else { /* pad with non-zero random bytes */ word32 padLen = pkcsBlockLen - inputLen - 1, i; int ret = RNG_GenerateBlock(rng, &pkcsBlock[1], padLen); if (ret != 0) return ret; /* remove zeros */ for (i = 1; i < padLen; i++) if (pkcsBlock[i] == 0) pkcsBlock[i] = 0x01; } pkcsBlock[pkcsBlockLen-inputLen-1] = 0; /* separator */ XMEMCPY(pkcsBlock+pkcsBlockLen-inputLen, input, inputLen); return 0; } static word32 RsaUnPad(const byte *pkcsBlock, unsigned int pkcsBlockLen, byte **output, byte padValue) { word32 maxOutputLen = (pkcsBlockLen > 10) ? (pkcsBlockLen - 10) : 0, invalid = 0, i = 1, outputLen; if (pkcsBlock[0] != 0x0) /* skip past zero */ invalid = 1; pkcsBlock++; pkcsBlockLen--; /* Require block type padValue */ invalid = (pkcsBlock[0] != padValue) || invalid; /* skip past the padding until we find the separator */ while (i<pkcsBlockLen && pkcsBlock[i++]) { /* null body */ } if(!(i==pkcsBlockLen || pkcsBlock[i-1]==0)) { CYASSL_MSG("RsaUnPad error, bad formatting"); return 0; } outputLen = pkcsBlockLen - i; invalid = (outputLen > maxOutputLen) || invalid; if (invalid) { CYASSL_MSG("RsaUnPad error, bad formatting"); return 0; } *output = (byte *)(pkcsBlock + i); return outputLen; } static int RsaFunction(const byte* in, word32 inLen, byte* out, word32* outLen, int type, RsaKey* key) { #define ERROR_OUT(x) { ret = x; goto done;} mp_int tmp; int ret = 0; word32 keyLen, len; if (mp_init(&tmp) != MP_OKAY) return MP_INIT_E; if (mp_read_unsigned_bin(&tmp, (byte*)in, inLen) != MP_OKAY) ERROR_OUT(MP_READ_E); if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) { #ifdef RSA_LOW_MEM /* half as much memory but twice as slow */ if (mp_exptmod(&tmp, &key->d, &key->n, &tmp) != MP_OKAY) ERROR_OUT(MP_EXPTMOD_E); #else #define INNER_ERROR_OUT(x) { ret = x; goto inner_done; } mp_int tmpa, tmpb; if (mp_init(&tmpa) != MP_OKAY) ERROR_OUT(MP_INIT_E); if (mp_init(&tmpb) != MP_OKAY) { mp_clear(&tmpa); ERROR_OUT(MP_INIT_E); } /* tmpa = tmp^dP mod p */ if (mp_exptmod(&tmp, &key->dP, &key->p, &tmpa) != MP_OKAY) INNER_ERROR_OUT(MP_EXPTMOD_E); /* tmpb = tmp^dQ mod q */ if (mp_exptmod(&tmp, &key->dQ, &key->q, &tmpb) != MP_OKAY) INNER_ERROR_OUT(MP_EXPTMOD_E); /* tmp = (tmpa - tmpb) * qInv (mod p) */ if (mp_sub(&tmpa, &tmpb, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_SUB_E); if (mp_mulmod(&tmp, &key->u, &key->p, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_MULMOD_E); /* tmp = tmpb + q * tmp */ if (mp_mul(&tmp, &key->q, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_MUL_E); if (mp_add(&tmp, &tmpb, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_ADD_E); inner_done: mp_clear(&tmpa); mp_clear(&tmpb); if (ret != 0) return ret; #endif /* RSA_LOW_MEM */ } else if (type == RSA_PUBLIC_ENCRYPT || type == RSA_PUBLIC_DECRYPT) { if (mp_exptmod(&tmp, &key->e, &key->n, &tmp) != MP_OKAY) ERROR_OUT(MP_EXPTMOD_E); } else ERROR_OUT(RSA_WRONG_TYPE_E); keyLen = mp_unsigned_bin_size(&key->n); if (keyLen > *outLen) ERROR_OUT(RSA_BUFFER_E); len = mp_unsigned_bin_size(&tmp); /* pad front w/ zeros to match key length */ while (len < keyLen) { *out++ = 0x00; len++; } *outLen = keyLen; /* convert */ if (mp_to_unsigned_bin(&tmp, out) != MP_OKAY) ERROR_OUT(MP_TO_E); done: mp_clear(&tmp); return ret; } int RsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key, RNG* rng) { int sz, ret; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return CaviumRsaPublicEncrypt(in, inLen, out, outLen, key); #endif sz = mp_unsigned_bin_size(&key->n); if (sz > (int)outLen) return RSA_BUFFER_E; if (inLen > (word32)(sz - RSA_MIN_PAD_SZ)) return RSA_BUFFER_E; ret = RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_2, rng); if (ret != 0) return ret; if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PUBLIC_ENCRYPT, key)) < 0) sz = ret; return sz; } int RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out, RsaKey* key) { int plainLen, ret; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) { ret = CaviumRsaPrivateDecrypt(in, inLen, in, inLen, key); if (ret > 0) *out = in; return ret; } #endif if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PRIVATE_DECRYPT, key)) < 0) { return ret; } plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_2); return plainLen; } int RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { int plainLen, ret; byte* tmp; byte* pad = 0; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return CaviumRsaPrivateDecrypt(in, inLen, out, outLen, key); #endif tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA); if (tmp == NULL) { return MEMORY_E; } XMEMCPY(tmp, in, inLen); if ((ret = plainLen = RsaPrivateDecryptInline(tmp, inLen, &pad, key)) < 0) { XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return ret; } if (plainLen > (int)outLen) plainLen = BAD_FUNC_ARG; else XMEMCPY(out, pad, plainLen); XMEMSET(tmp, 0x00, inLen); XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return plainLen; } /* for Rsa Verify */ int RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key) { int plainLen, ret; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) { ret = CaviumRsaSSL_Verify(in, inLen, in, inLen, key); if (ret > 0) *out = in; return ret; } #endif if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PUBLIC_DECRYPT, key)) < 0) { return ret; } plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_1); return plainLen; } int RsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { int plainLen, ret; byte* tmp; byte* pad = 0; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return CaviumRsaSSL_Verify(in, inLen, out, outLen, key); #endif tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA); if (tmp == NULL) { return MEMORY_E; } XMEMCPY(tmp, in, inLen); if ((ret = plainLen = RsaSSL_VerifyInline(tmp, inLen, &pad, key)) < 0) { XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return ret; } if (plainLen > (int)outLen) plainLen = BAD_FUNC_ARG; else XMEMCPY(out, pad, plainLen); XMEMSET(tmp, 0x00, inLen); XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return plainLen; } /* for Rsa Sign */ int RsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key, RNG* rng) { int sz, ret; #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return CaviumRsaSSL_Sign(in, inLen, out, outLen, key); #endif sz = mp_unsigned_bin_size(&key->n); if (sz > (int)outLen) return RSA_BUFFER_E; if (inLen > (word32)(sz - RSA_MIN_PAD_SZ)) return RSA_BUFFER_E; ret = RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_1, rng); if (ret != 0) return ret; if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PRIVATE_ENCRYPT,key)) < 0) sz = ret; return sz; } int RsaEncryptSize(RsaKey* key) { #ifdef HAVE_CAVIUM if (key->magic == CYASSL_RSA_CAVIUM_MAGIC) return key->c_nSz; #endif return mp_unsigned_bin_size(&key->n); } #ifdef CYASSL_KEY_GEN static const int USE_BBS = 1; static int rand_prime(mp_int* N, int len, RNG* rng, void* heap) { int err, res, type; byte* buf; (void)heap; if (N == NULL || rng == NULL) return BAD_FUNC_ARG; /* get type */ if (len < 0) { type = USE_BBS; len = -len; } else { type = 0; } /* allow sizes between 2 and 512 bytes for a prime size */ if (len < 2 || len > 512) { return BAD_FUNC_ARG; } /* allocate buffer to work with */ buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_RSA); if (buf == NULL) { return MEMORY_E; } XMEMSET(buf, 0, len); do { #ifdef SHOW_GEN printf("."); fflush(stdout); #endif /* generate value */ err = RNG_GenerateBlock(rng, buf, len); if (err != 0) { XFREE(buf, heap, DYNAMIC_TYPE_RSA); return err; } /* munge bits */ buf[0] |= 0x80 | 0x40; buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); /* load value */ if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) { XFREE(buf, heap, DYNAMIC_TYPE_RSA); return err; } /* test */ if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) { XFREE(buf, heap, DYNAMIC_TYPE_RSA); return err; } } while (res == MP_NO); #ifdef LTC_CLEAN_STACK XMEMSET(buf, 0, len); #endif XFREE(buf, heap, DYNAMIC_TYPE_RSA); return 0; } /* Make an RSA key for size bits, with e specified, 65537 is a good e */ int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng) { mp_int p, q, tmp1, tmp2, tmp3; int err; if (key == NULL || rng == NULL) return BAD_FUNC_ARG; if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE) return BAD_FUNC_ARG; if (e < 3 || (e & 1) == 0) return BAD_FUNC_ARG; if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY) return err; err = mp_set_int(&tmp3, e); /* make p */ if (err == MP_OKAY) { do { err = rand_prime(&p, size/16, rng, key->heap); /* size in bytes/2 */ if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp1); /* tmp1 = p-1 */ if (err == MP_OKAY) err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(p-1, e) */ } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes p-1 */ } /* make q */ if (err == MP_OKAY) { do { err = rand_prime(&q, size/16, rng, key->heap); /* size in bytes/2 */ if (err == MP_OKAY) err = mp_sub_d(&q, 1, &tmp1); /* tmp1 = q-1 */ if (err == MP_OKAY) err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(q-1, e) */ } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes q-1 */ } if (err == MP_OKAY) err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL); if (err == MP_OKAY) err = mp_init_multi(&key->dP, &key->dQ, &key->u, NULL, NULL, NULL); if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp2); /* tmp2 = p-1 */ if (err == MP_OKAY) err = mp_lcm(&tmp1, &tmp2, &tmp1); /* tmp1 = lcm(p-1, q-1),last loop */ /* make key */ if (err == MP_OKAY) err = mp_set_int(&key->e, e); /* key->e = e */ if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */ err = mp_invmod(&key->e, &tmp1, &key->d); if (err == MP_OKAY) err = mp_mul(&p, &q, &key->n); /* key->n = pq */ if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp1); if (err == MP_OKAY) err = mp_sub_d(&q, 1, &tmp2); if (err == MP_OKAY) err = mp_mod(&key->d, &tmp1, &key->dP); if (err == MP_OKAY) err = mp_mod(&key->d, &tmp2, &key->dQ); if (err == MP_OKAY) err = mp_invmod(&q, &p, &key->u); if (err == MP_OKAY) err = mp_copy(&p, &key->p); if (err == MP_OKAY) err = mp_copy(&q, &key->q); if (err == MP_OKAY) key->type = RSA_PRIVATE; mp_clear(&tmp3); mp_clear(&tmp2); mp_clear(&tmp1); mp_clear(&q); mp_clear(&p); if (err != MP_OKAY) { FreeRsaKey(key); return err; } return 0; } #endif /* CYASSL_KEY_GEN */ #ifdef HAVE_CAVIUM #include <cyassl/ctaocrypt/logging.h> #include "cavium_common.h" /* Initiliaze RSA for use with Nitrox device */ int RsaInitCavium(RsaKey* rsa, int devId) { if (rsa == NULL) return -1; if (CspAllocContext(CONTEXT_SSL, &rsa->contextHandle, devId) != 0) return -1; rsa->devId = devId; rsa->magic = CYASSL_RSA_CAVIUM_MAGIC; return 0; } /* Free RSA from use with Nitrox device */ void RsaFreeCavium(RsaKey* rsa) { if (rsa == NULL) return; CspFreeContext(CONTEXT_SSL, rsa->contextHandle, rsa->devId); rsa->magic = 0; } /* Initialize cavium RSA key */ static int InitCaviumRsaKey(RsaKey* key, void* heap) { if (key == NULL) return BAD_FUNC_ARG; key->heap = heap; key->type = -1; /* don't know yet */ key->c_n = NULL; key->c_e = NULL; key->c_d = NULL; key->c_p = NULL; key->c_q = NULL; key->c_dP = NULL; key->c_dQ = NULL; key->c_u = NULL; key->c_nSz = 0; key->c_eSz = 0; key->c_dSz = 0; key->c_pSz = 0; key->c_qSz = 0; key->c_dP_Sz = 0; key->c_dQ_Sz = 0; key->c_uSz = 0; return 0; } /* Free cavium RSA key */ static int FreeCaviumRsaKey(RsaKey* key) { if (key == NULL) return BAD_FUNC_ARG; XFREE(key->c_n, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_e, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_d, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_p, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_q, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_dP, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_dQ, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); XFREE(key->c_u, key->heap, DYNAMIC_TYPE_CAVIUM_TMP); return InitCaviumRsaKey(key, key->heap); /* reset pointers */ } static int CaviumRsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { word32 requestId; word32 ret; if (key == NULL || in == NULL || out == NULL || outLen < (word32)key->c_nSz) return -1; ret = CspPkcs1v15Enc(CAVIUM_BLOCKING, BT2, key->c_nSz, key->c_eSz, (word16)inLen, key->c_n, key->c_e, (byte*)in, out, &requestId, key->devId); if (ret != 0) { CYASSL_MSG("Cavium Enc BT2 failed"); return -1; } return key->c_nSz; } static INLINE void ato16(const byte* c, word16* u16) { *u16 = (c[0] << 8) | (c[1]); } static int CaviumRsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { word32 requestId; word32 ret; word16 outSz = (word16)outLen; if (key == NULL || in == NULL || out == NULL || inLen != (word32)key->c_nSz) return -1; ret = CspPkcs1v15CrtDec(CAVIUM_BLOCKING, BT2, key->c_nSz, key->c_q, key->c_dQ, key->c_p, key->c_dP, key->c_u, (byte*)in, &outSz, out, &requestId, key->devId); if (ret != 0) { CYASSL_MSG("Cavium CRT Dec BT2 failed"); return -1; } ato16((const byte*)&outSz, &outSz); return outSz; } static int CaviumRsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { word32 requestId; word32 ret; if (key == NULL || in == NULL || out == NULL || inLen == 0 || outLen < (word32)key->c_nSz) return -1; ret = CspPkcs1v15CrtEnc(CAVIUM_BLOCKING, BT1, key->c_nSz, (word16)inLen, key->c_q, key->c_dQ, key->c_p, key->c_dP, key->c_u, (byte*)in, out, &requestId, key->devId); if (ret != 0) { CYASSL_MSG("Cavium CRT Enc BT1 failed"); return -1; } return key->c_nSz; } static int CaviumRsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { word32 requestId; word32 ret; word16 outSz = (word16)outLen; if (key == NULL || in == NULL || out == NULL || inLen != (word32)key->c_nSz) return -1; ret = CspPkcs1v15Dec(CAVIUM_BLOCKING, BT1, key->c_nSz, key->c_eSz, key->c_n, key->c_e, (byte*)in, &outSz, out, &requestId, key->devId); if (ret != 0) { CYASSL_MSG("Cavium Dec BT1 failed"); return -1; } outSz = ntohs(outSz); return outSz; } #endif /* HAVE_CAVIUM */ #endif /* NO_RSA */