Fork of CyaSSL for my specific settings

Dependents:   CyaSSL_Example

Fork of CyaSSL by wolf SSL

Revision:
0:1239e9b70ca2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ctaocrypt/src/sha.c	Sat Jul 12 07:18:23 2014 +0000
@@ -0,0 +1,396 @@
+/* sha.c
+ *
+ * Copyright (C) 2006-2014 wolfSSL Inc.
+ *
+ * This file is part of CyaSSL.
+ *
+ * CyaSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * CyaSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
+ */
+
+
+#ifdef HAVE_CONFIG_H
+    #include <config.h>
+#endif
+
+#include <cyassl/ctaocrypt/settings.h>
+
+#if !defined(NO_SHA)
+
+#ifdef CYASSL_PIC32MZ_HASH
+#define InitSha   InitSha_sw
+#define ShaUpdate ShaUpdate_sw
+#define ShaFinal  ShaFinal_sw
+#endif
+
+#ifdef HAVE_FIPS
+    /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
+    #define FIPS_NO_WRAPPERS
+#endif
+
+#include <cyassl/ctaocrypt/sha.h>
+#ifdef NO_INLINE
+    #include <cyassl/ctaocrypt/misc.h>
+#else
+    #include <ctaocrypt/src/misc.c>
+#endif
+
+#ifdef FREESCALE_MMCAU
+    #include "cau_api.h"
+    #define XTRANSFORM(S,B)  cau_sha1_hash_n((B), 1, ((S))->digest)
+#else
+    #define XTRANSFORM(S,B)  Transform((S))
+#endif
+
+
+#ifdef STM32F2_HASH
+    /*
+     * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral
+     * library. Documentation located in STM32F2xx Standard Peripheral Library
+     * document (See note in README).
+     */
+    #include "stm32f2xx.h"
+    #include "stm32f2xx_hash.h"
+
+    int InitSha(Sha* sha)
+    {
+        /* STM32F2 struct notes:
+         * sha->buffer  = first 4 bytes used to hold partial block if needed 
+         * sha->buffLen = num bytes currently stored in sha->buffer
+         * sha->loLen   = num bytes that have been written to STM32 FIFO
+         */
+        XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
+        sha->buffLen = 0;
+        sha->loLen = 0;
+
+        /* initialize HASH peripheral */
+        HASH_DeInit();
+
+        /* configure algo used, algo mode, datatype */
+        HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
+        HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH 
+                 | HASH_DataType_8b);
+
+        /* reset HASH processor */
+        HASH->CR |= HASH_CR_INIT;
+
+        return 0;
+    }
+
+    int ShaUpdate(Sha* sha, const byte* data, word32 len)
+    {
+        word32 i = 0;
+        word32 fill = 0;
+        word32 diff = 0;
+
+        /* if saved partial block is available */
+        if (sha->buffLen) {
+            fill = 4 - sha->buffLen;
+
+            /* if enough data to fill, fill and push to FIFO */
+            if (fill <= len) {
+                XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill);
+                HASH_DataIn(*(uint32_t*)sha->buffer);
+
+                data += fill;
+                len -= fill;
+                sha->loLen += 4;
+                sha->buffLen = 0;
+            } else {
+                /* append partial to existing stored block */
+                XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len);
+                sha->buffLen += len;
+                return;
+            }
+        }
+       
+        /* write input block in the IN FIFO */
+        for(i = 0; i < len; i += 4)
+        {
+            diff = len - i;
+            if ( diff < 4) {
+                /* store incomplete last block, not yet in FIFO */
+                XMEMSET(sha->buffer, 0, SHA_REG_SIZE);
+                XMEMCPY((byte*)sha->buffer, data, diff);
+                sha->buffLen = diff;
+            } else {
+                HASH_DataIn(*(uint32_t*)data);
+                data+=4;
+            }
+        }
+
+        /* keep track of total data length thus far */ 
+        sha->loLen += (len - sha->buffLen);
+
+        return 0;
+    }
+
+    int ShaFinal(Sha* sha, byte* hash)
+    {
+        __IO uint16_t nbvalidbitsdata = 0;
+        
+        /* finish reading any trailing bytes into FIFO */
+        if (sha->buffLen) {
+            HASH_DataIn(*(uint32_t*)sha->buffer);
+            sha->loLen += sha->buffLen;
+        }
+
+        /* calculate number of valid bits in last word of input data */
+        nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
+
+        /* configure number of valid bits in last word of the data */
+        HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
+
+        /* start HASH processor */
+        HASH_StartDigest();
+
+        /* wait until Busy flag == RESET */
+        while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
+
+        /* read message digest */
+        sha->digest[0] = HASH->HR[0];
+        sha->digest[1] = HASH->HR[1];
+        sha->digest[2] = HASH->HR[2];
+        sha->digest[3] = HASH->HR[3];
+        sha->digest[4] = HASH->HR[4];
+        
+        ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
+
+        XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
+
+        return InitSha(sha);  /* reset state */
+    }
+
+#else /* CTaoCrypt software implementation */
+
+#ifndef min
+
+    static INLINE word32 min(word32 a, word32 b)
+    {
+        return a > b ? b : a;
+    }
+
+#endif /* min */
+
+
+int InitSha(Sha* sha)
+{
+    #ifdef FREESCALE_MMCAU
+        cau_sha1_initialize_output(sha->digest);
+    #else
+        sha->digest[0] = 0x67452301L;
+        sha->digest[1] = 0xEFCDAB89L;
+        sha->digest[2] = 0x98BADCFEL;
+        sha->digest[3] = 0x10325476L;
+        sha->digest[4] = 0xC3D2E1F0L;
+    #endif
+
+    sha->buffLen = 0;
+    sha->loLen   = 0;
+    sha->hiLen   = 0;
+
+    return 0;
+}
+
+#ifndef FREESCALE_MMCAU
+
+#define blk0(i) (W[i] = sha->buffer[i])
+#define blk1(i) (W[i&15] = \
+                   rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
+
+#define f1(x,y,z) (z^(x &(y^z)))
+#define f2(x,y,z) (x^y^z)
+#define f3(x,y,z) ((x&y)|(z&(x|y)))
+#define f4(x,y,z) (x^y^z)
+
+/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
+#define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \
+                        rotlFixed(v,5); w = rotlFixed(w,30);
+#define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \
+                        rotlFixed(v,5); w = rotlFixed(w,30);
+#define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \
+                        rotlFixed(v,5); w = rotlFixed(w,30);
+#define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \
+                        rotlFixed(v,5); w = rotlFixed(w,30);
+#define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \
+                        rotlFixed(v,5); w = rotlFixed(w,30);
+
+
+static void Transform(Sha* sha)
+{
+    word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
+
+    /* Copy context->state[] to working vars */ 
+    word32 a = sha->digest[0];
+    word32 b = sha->digest[1];
+    word32 c = sha->digest[2];
+    word32 d = sha->digest[3];
+    word32 e = sha->digest[4];
+
+#ifdef USE_SLOW_SHA
+    word32 t, i;
+
+    for (i = 0; i < 16; i++) {
+        R0(a, b, c, d, e, i);
+        t = e; e = d; d = c; c = b; b = a; a = t;
+    }
+
+    for (; i < 20; i++) {
+        R1(a, b, c, d, e, i);
+        t = e; e = d; d = c; c = b; b = a; a = t;
+    }
+
+    for (; i < 40; i++) {
+        R2(a, b, c, d, e, i);
+        t = e; e = d; d = c; c = b; b = a; a = t;
+    }
+
+    for (; i < 60; i++) {
+        R3(a, b, c, d, e, i);
+        t = e; e = d; d = c; c = b; b = a; a = t;
+    }
+
+    for (; i < 80; i++) {
+        R4(a, b, c, d, e, i);
+        t = e; e = d; d = c; c = b; b = a; a = t;
+    }
+#else
+    /* nearly 1 K bigger in code size but 25% faster  */
+    /* 4 rounds of 20 operations each. Loop unrolled. */
+    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
+    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
+    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
+    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
+
+    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
+
+    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
+    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
+    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
+    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
+    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
+
+    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
+    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
+    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
+    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
+    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
+
+    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
+    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
+    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
+    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
+    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
+#endif
+
+    /* Add the working vars back into digest state[] */
+    sha->digest[0] += a;
+    sha->digest[1] += b;
+    sha->digest[2] += c;
+    sha->digest[3] += d;
+    sha->digest[4] += e;
+}
+
+#endif /* FREESCALE_MMCAU */
+
+
+static INLINE void AddLength(Sha* sha, word32 len)
+{
+    word32 tmp = sha->loLen;
+    if ( (sha->loLen += len) < tmp)
+        sha->hiLen++;                       /* carry low to high */
+}
+
+
+int ShaUpdate(Sha* sha, const byte* data, word32 len)
+{
+    /* do block size increments */
+    byte* local = (byte*)sha->buffer;
+
+    while (len) {
+        word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
+        XMEMCPY(&local[sha->buffLen], data, add);
+
+        sha->buffLen += add;
+        data         += add;
+        len          -= add;
+
+        if (sha->buffLen == SHA_BLOCK_SIZE) {
+            #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
+                ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
+            #endif
+            XTRANSFORM(sha, local);
+            AddLength(sha, SHA_BLOCK_SIZE);
+            sha->buffLen = 0;
+        }
+    }
+
+    return 0;
+}
+
+
+int ShaFinal(Sha* sha, byte* hash)
+{
+    byte* local = (byte*)sha->buffer;
+
+    AddLength(sha, sha->buffLen);  /* before adding pads */
+
+    local[sha->buffLen++] = 0x80;  /* add 1 */
+
+    /* pad with zeros */
+    if (sha->buffLen > SHA_PAD_SIZE) {
+        XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
+        sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
+
+        #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
+            ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
+        #endif
+        XTRANSFORM(sha, local);
+        sha->buffLen = 0;
+    }
+    XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
+   
+    /* put lengths in bits */
+    sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + 
+                 (sha->hiLen << 3);
+    sha->loLen = sha->loLen << 3;
+
+    /* store lengths */
+    #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU)
+        ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE);
+    #endif
+    /* ! length ordering dependent on digest endian type ! */
+    XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
+    XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
+
+    #ifdef FREESCALE_MMCAU
+        /* Kinetis requires only these bytes reversed */
+        ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
+                         &sha->buffer[SHA_PAD_SIZE/sizeof(word32)],
+                         2 * sizeof(word32));
+    #endif
+
+    XTRANSFORM(sha, local);
+    #ifdef LITTLE_ENDIAN_ORDER
+        ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
+    #endif
+    XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
+
+    return InitSha(sha);  /* reset state */
+}
+
+#endif /* STM32F2_HASH */
+
+#endif /* NO_SHA */
+