dhgdh
Dependencies: MAX44000 PWM_Tone_Library nexpaq_mdk
Fork of LED_Demo by
mbd_os/TESTS/mbedmicro-rtos-mbed/mutex/main.cpp
- Committer:
- nexpaq
- Date:
- 2016-09-17
- Revision:
- 1:55a6170b404f
File content as of revision 1:55a6170b404f:
#include "mbed.h" #include "greentea-client/test_env.h" #include "rtos.h" #if defined(MBED_RTOS_SINGLE_THREAD) #error [NOT_SUPPORTED] test not supported #endif #define THREAD_DELAY 50 #define SIGNALS_TO_EMIT 100 /* * The stack size is defined in cmsis_os.h mainly dependent on the underlying toolchain and * the C standard library. For GCC, ARM_STD and IAR it is defined with a size of 2048 bytes * and for ARM_MICRO 512. Because of reduce RAM size some targets need a reduced stacksize. */ #if (defined(TARGET_STM32L053R8) || defined(TARGET_STM32L053C8)) && defined(TOOLCHAIN_GCC) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif (defined(TARGET_STM32F030R8) || defined(TARGET_STM32F070RB)) && defined(TOOLCHAIN_GCC) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif defined(TARGET_STM32F334R8) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif defined(TARGET_STM32F030R8) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/4 #elif defined(TARGET_STM32F070RB) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/2 #elif defined(TARGET_STM32F072RB) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/2 #elif defined(TARGET_STM32F302R8) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/2 #elif defined(TARGET_STM32F303K8) && defined(TOOLCHAIN_IAR) #define STACK_SIZE DEFAULT_STACK_SIZE/2 #elif (defined(TARGET_EFM32HG_STK3400)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 512 #elif (defined(TARGET_EFM32LG_STK3600) || defined(TARGET_EFM32WG_STK3800) || defined(TARGET_EFM32PG_STK3401)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 768 #elif (defined(TARGET_EFM32GG_STK3700)) && !defined(TOOLCHAIN_ARM_MICRO) #define STACK_SIZE 1536 #elif defined(TARGET_MCU_NRF51822) || defined(TARGET_MCU_NRF52832) #define STACK_SIZE 1024 #else #define STACK_SIZE DEFAULT_STACK_SIZE #endif void print_char(char c = '*') { printf("%c", c); fflush(stdout); } Mutex stdio_mutex; DigitalOut led(LED1); volatile int change_counter = 0; volatile bool changing_counter = false; volatile bool mutex_defect = false; bool manipulate_protected_zone(const int thread_delay) { bool result = true; stdio_mutex.lock(); // LOCK if (changing_counter == true) { // 'e' stands for error. If changing_counter is true access is not exclusively print_char('e'); result = false; mutex_defect = true; } changing_counter = true; // Some action on protected led = !led; change_counter++; print_char('.'); Thread::wait(thread_delay); changing_counter = false; stdio_mutex.unlock(); // UNLOCK return result; } void test_thread(void const *args) { const int thread_delay = int(args); while (true) { manipulate_protected_zone(thread_delay); } } int main() { GREENTEA_SETUP(20, "default_auto"); const int t1_delay = THREAD_DELAY * 1; const int t2_delay = THREAD_DELAY * 2; const int t3_delay = THREAD_DELAY * 3; Thread t2(test_thread, (void *)t2_delay, osPriorityNormal, STACK_SIZE); Thread t3(test_thread, (void *)t3_delay, osPriorityNormal, STACK_SIZE); while (true) { // Thread 1 action Thread::wait(t1_delay); manipulate_protected_zone(t1_delay); if (change_counter >= SIGNALS_TO_EMIT or mutex_defect == true) { t2.terminate(); t3.terminate(); break; } } fflush(stdout); GREENTEA_TESTSUITE_RESULT(!mutex_defect); return 0; }