Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of ESE519_Lab6_part3_skeleton by
MRF24J40/MRF24J40.h
- Committer:
- csharer
- Date:
- 2017-03-31
- Revision:
- 10:4b5f975c21c4
- Parent:
- 6:ae3e6aefe908
File content as of revision 10:4b5f975c21c4:
/* mbed MRF24J40 (IEEE 802.15.4 tranceiver) Library * Copyright (c) 2011 Jeroen Hilgers * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef MRF24J40_H #define MRF25J40_H #include "mbed.h" /** MRF24J40 class. Provides a simple send/receive API for a microchip ** MFR24J40 IEEE 802.15.4 tranceiver. The tranceiver is available on a ** module that can easilly be soldered to some header pins to use it with ** an mbed on a breadboard. The module is called 'MRF24J40MA' and can be ** ordered for example by www.farnell.com. * * Example: * @code * #include "mbed.h" * #include "MRF24J40.h" * * // RF tranceiver to link with handheld. * MRF24J40 mrf(p11, p12, p13, p14, p21); * * // LEDs * DigitalOut led1(LED1); * DigitalOut led2(LED2); * DigitalOut led3(LED3); * DigitalOut led4(LED4); * * // Timer. * Timer timer; * * // Serial port for showing RX data. * Serial pc(USBTX, USBRX); * * // Send / receive buffers. * // IMPORTANT: The MRF24J40 is intended as zigbee tranceiver; it tends * // to reject data that doesn't have the right header. So the first * // 8 bytes in txBuffer look like a valid header. The remaining 120 * // bytes can be used for anything you like. * uint8_t txBuffer[128]= {1, 8, 0, 0xA1, 0xB2, 0xC3, 0xD4, 0x00}; * * uint8_t rxBuffer[128]; * uint8_t rxLen; * * int main (void) * { * uint8_t count = 0; * pc.baud(115200); * timer.start(); * while(1) * { * // Check if any data was received. * rxLen = mrf.Receive(rxBuffer, 128); * if(rxLen) * { * // Toggle LED 1 upon each reception of data. * led1 = led1^1; * // Send to serial. * // IMPORTANT: The last two bytes of the received data * // are the checksum used in the transmission. * for(uint8_t i=0; i<rxLen; i++) * { * pc.printf("0x%02X ", rxBuffer[i]); * } * pc.printf("\r\n"); * } * * // Each second, send some data. * if(timer.read_ms() >= 1000) * { * timer.reset(); * // Toggle LED 2. * led2 = led2^1; * * // UART. * pc.printf("TXD\r\n"); * * // Send counter value. * count++; * txBuffer[8] = count; * mrf.Send(txBuffer, 9); * } * } * } * @endcode */ class MRF24J40 { public: /** Create a MRF24J40 object and initizalize it. * * @param pin mosi Spi MOSI pin connected to MRF's SDI. * @param pin miso Spi MISO pin connected to MRF's SDO. * @param pin sck Spi SCK pin connected to MRF's SCK. * @param pin cs Pin connected to MRF's #CS. * @param pin reset Pin connected to MRF's #Reset. */ MRF24J40(PinName mosi, PinName miso, PinName sck, PinName cs, PinName reset);//, PinName irq, PinName wake); /** Reset the MRF24J40 and initialize it. */ void Reset(void); // Reset chip and configure it. /** Send data. * * Note that the MRF24J40 only handles data with a valid IEEE 802.15.4 * header. See the example how to get around this. * * @param data Pointer to data to be send. * @param length Length of the data to be send in bytes. */ void Send(uint8_t *data, uint8_t length); // Send data. /** Check if any data was received. * * Note that the MRF24J40 appends two bytes of CRC for each packet. * So you will receive two bytes more than were send with the 'Send' function. * * @param data Pointer to buffer where received data can be placed. * @param maxLength Maximum amount of data to be placed in the buffer. * @param returns The number of bytes written into the buffer. */ uint8_t Receive(uint8_t *data, uint8_t maxLength); // Receive data if ready. /** Sets the channel of the MRF24J40 * * @param channel A number between 0-15 (0=2405MHz 15=2480MHz) */ void SetChannel(uint8_t channel); // void DebugDump(Serial &ser); private: SPI mSpi; DigitalOut mCs; DigitalOut mReset; // DigitalIn mIrq; // DigitalIn mWake; uint8_t ReadShort (uint8_t address); void WriteShort (uint8_t address, uint8_t data); uint8_t ReadLong (uint16_t address); void WriteLong (uint16_t address, uint8_t data); }; #endif