fixed drive strength
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32600/analogout_api.c
- Committer:
- cpadua
- Date:
- 2017-04-11
- Revision:
- 163:1d4c9d0af1e9
- Parent:
- 149:156823d33999
File content as of revision 163:1d4c9d0af1e9:
/******************************************************************************* * Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include "mbed_assert.h" #include "analogout_api.h" #include "clkman_regs.h" #include "pwrman_regs.h" #include "afe_regs.h" #include "PeripheralPins.h" //****************************************************************************** void analogout_init(dac_t *obj, PinName pin) { // Make sure pin is an analog pin we can use for ADC DACName dac = (DACName)pinmap_peripheral(pin, PinMap_DAC); MBED_ASSERT((DACName)dac != (DACName)NC); // Set the object pointer obj->dac = ((mxc_dac_regs_t*)MXC_DAC_GET_DAC((pin & 0x3))); obj->dac_fifo = ((mxc_dac_fifo_regs_t*)MXC_DAC_GET_FIFO((pin & 0x3))); obj->index = (pin & 0x3); // Set the ADC clock to the system clock frequency MXC_SET_FIELD(&MXC_CLKMAN->clk_ctrl, MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT, (MXC_F_CLKMAN_CLK_CTRL_ADC_GATE_N | (MXC_E_CLKMAN_ADC_SOURCE_SELECT_SYSTEM << MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT_POS))); // Setup the OPAMP in follower mode switch(obj->index) { case 0: // Enable DAC clock MXC_CLKMAN->clk_ctrl_14_dac0 = MXC_E_CLKMAN_CLK_SCALE_ENABLED; // Enable OPAMP MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP0; // Set the positive and negative inputs MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_A | MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0), ((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0_POS) | (0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0_POS) | (0x0 << MXC_F_AFE_CTRL4_DAC_SEL_A_POS))); // Enable N and P channel inputs MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP0 | MXC_F_AFE_CTRL3_EN_NCH_OPAMP0); break; case 1: // Enable DAC clock MXC_CLKMAN->clk_ctrl_15_dac1 = MXC_E_CLKMAN_CLK_SCALE_ENABLED; // Enable OPAMP MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP1; // Set the positive and negative inputs MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_B | MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1), ((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1_POS) | (0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1_POS) | (0x1 << MXC_F_AFE_CTRL4_DAC_SEL_B_POS))); // Enable N and P channel inputs MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP1 | MXC_F_AFE_CTRL3_EN_NCH_OPAMP1); break; case 2: // Enable DAC clock MXC_CLKMAN->clk_ctrl_16_dac2 = MXC_E_CLKMAN_CLK_SCALE_ENABLED; // Enable OPAMP MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP2; // Set the positive and negative inputs MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_C | MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2), ((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2_POS) | (0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2_POS) | (0x2 << MXC_F_AFE_CTRL4_DAC_SEL_C_POS))); // Enable N and P channel inputs MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP2 | MXC_F_AFE_CTRL3_EN_NCH_OPAMP2); break; case 3: // Enable DAC clock MXC_CLKMAN->clk_ctrl_17_dac3 = MXC_E_CLKMAN_CLK_SCALE_ENABLED; // Enable OPAMP MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP3; // Set the positive and negative inputs MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_D | MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3), ((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3_POS) | (0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3_POS) | (0x3 << MXC_F_AFE_CTRL4_DAC_SEL_D_POS))); // Enable N and P channel inputs MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP3 | MXC_F_AFE_CTRL3_EN_NCH_OPAMP3); break; } // Enable AFE power MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_AFE_POWERED; // Setup internal voltage references MXC_SET_FIELD(&MXC_AFE->ctrl1, (MXC_F_AFE_CTRL1_REF_DAC_VOLT_SEL | MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL), (MXC_F_AFE_CTRL1_REF_ADC_POWERUP | MXC_F_AFE_CTRL1_REF_BLK_POWERUP | (MXC_E_AFE_REF_VOLT_SEL_1500 << MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL_POS))); // Disable interpolation obj->dac->ctrl0 &= ~MXC_F_DAC_CTRL0_INTERP_MODE; } //****************************************************************************** void analogout_write(dac_t *obj, float value) { analogout_write_u16(obj, (uint16_t)((value/1.0) * 0xFFFF)); } //****************************************************************************** void analogout_write_u16(dac_t *obj, uint16_t value) { // Enable the OPAMP // Setup the OPAMP in follower mode switch(obj->index) { case 0: MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP0; break; case 1: MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP1; break; case 2: MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP2; break; case 3: MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP3; break; } // Output 1 sample with minimal delay obj->dac->rate |= 0x1; // Set the start mode to output once data is in the FIFO obj->dac->ctrl0 &= ~(MXC_F_DAC_CTRL0_START_MODE | MXC_F_DAC_CTRL0_OP_MODE); // Enable the DAC obj->dac->ctrl0 |= (MXC_F_DAC_CTRL0_POWER_MODE_2 | MXC_F_DAC_CTRL0_POWER_MODE_1_0 | MXC_F_DAC_CTRL0_POWER_ON | MXC_F_DAC_CTRL0_CLOCK_GATE_EN | MXC_F_DAC_CTRL0_CPU_START); if(obj->index < 2) { obj->out = (value); obj->dac_fifo->output_16 = (obj->out); } else { // Convert 16 bits to 8 bits obj->out = (value >> 8); obj->dac_fifo->output_8 = (obj->out); } } //****************************************************************************** float analogout_read(dac_t *obj) { return (((float)analogout_read_u16(obj) / (float)0xFFFF) * 1.5); } //****************************************************************************** uint16_t analogout_read_u16(dac_t *obj) { if(obj->index < 2) { // Convert 12 bits to 16 bits return (obj->out << 4); } else { // Convert 8 bits to 16 bits return (obj->out << 8); } }