fixed drive strength
Fork of mbed-dev by
targets/TARGET_STM/TARGET_STM32F1/serial_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
File content as of revision 149:156823d33999:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "serial_api.h" #if DEVICE_SERIAL #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include <string.h> #include "PeripheralPins.h" #define UART_NUM (3) static uint32_t serial_irq_ids[UART_NUM] = {0}; static UART_HandleTypeDef uart_handlers[UART_NUM]; static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; #if DEVICE_SERIAL_ASYNCH #define SERIAL_S(obj) (&((obj)->serial)) #else #define SERIAL_S(obj) (obj) #endif static void init_uart(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; huart->Instance = (USART_TypeDef *)(obj_s->uart); huart->Init.BaudRate = obj_s->baudrate; huart->Init.WordLength = obj_s->databits; huart->Init.StopBits = obj_s->stopbits; huart->Init.Parity = obj_s->parity; #if DEVICE_SERIAL_FC huart->Init.HwFlowCtl = obj_s->hw_flow_ctl; #else huart->Init.HwFlowCtl = UART_HWCONTROL_NONE; #endif huart->TxXferCount = 0; huart->TxXferSize = 0; huart->RxXferCount = 0; huart->RxXferSize = 0; if (obj_s->pin_rx == NC) { huart->Init.Mode = UART_MODE_TX; } else if (obj_s->pin_tx == NC) { huart->Init.Mode = UART_MODE_RX; } else { huart->Init.Mode = UART_MODE_TX_RX; } if (HAL_UART_Init(huart) != HAL_OK) { error("Cannot initialize UART\n"); } } void serial_init(serial_t *obj, PinName tx, PinName rx) { struct serial_s *obj_s = SERIAL_S(obj); // Determine the UART to use (UART_1, UART_2, ...) UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj_s->uart != (UARTName)NC); // Enable USART clock if (obj_s->uart == UART_1) { __HAL_RCC_USART1_FORCE_RESET(); __HAL_RCC_USART1_RELEASE_RESET(); __HAL_RCC_USART1_CLK_ENABLE(); obj_s->index = 0; } if (obj_s->uart == UART_2) { __HAL_RCC_USART2_FORCE_RESET(); __HAL_RCC_USART2_RELEASE_RESET(); __HAL_RCC_USART2_CLK_ENABLE(); obj_s->index = 1; } if (obj_s->uart == UART_3) { __HAL_RCC_USART3_FORCE_RESET(); __HAL_RCC_USART3_RELEASE_RESET(); __HAL_RCC_USART3_CLK_ENABLE(); obj_s->index = 2; } // Configure UART pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } // Configure UART obj_s->baudrate = 9600; obj_s->databits = UART_WORDLENGTH_8B; obj_s->stopbits = UART_STOPBITS_1; obj_s->parity = UART_PARITY_NONE; #if DEVICE_SERIAL_FC obj_s->hw_flow_ctl = UART_HWCONTROL_NONE; #endif obj_s->pin_tx = tx; obj_s->pin_rx = rx; init_uart(obj); // For stdio management if (obj_s->uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); // Reset UART and disable clock if (obj_s->uart == UART_1) { __USART1_FORCE_RESET(); __USART1_RELEASE_RESET(); __USART1_CLK_DISABLE(); } if (obj_s->uart == UART_2) { __USART2_FORCE_RESET(); __USART2_RELEASE_RESET(); __USART2_CLK_DISABLE(); } if (obj_s->uart == UART_3) { __USART3_FORCE_RESET(); __USART3_RELEASE_RESET(); __USART3_CLK_DISABLE(); } // Configure GPIOs pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); serial_irq_ids[obj_s->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { struct serial_s *obj_s = SERIAL_S(obj); obj_s->baudrate = baudrate; init_uart(obj); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { struct serial_s *obj_s = SERIAL_S(obj); if (data_bits == 9) { obj_s->databits = UART_WORDLENGTH_9B; } else { obj_s->databits = UART_WORDLENGTH_8B; } switch (parity) { case ParityOdd: obj_s->parity = UART_PARITY_ODD; break; case ParityEven: obj_s->parity = UART_PARITY_EVEN; break; default: // ParityNone case ParityForced0: // unsupported! case ParityForced1: // unsupported! obj_s->parity = UART_PARITY_NONE; break; } if (stop_bits == 2) { obj_s->stopbits = UART_STOPBITS_2; } else { obj_s->stopbits = UART_STOPBITS_1; } init_uart(obj); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static void uart_irq(int id) { UART_HandleTypeDef * huart = &uart_handlers[id]; if (serial_irq_ids[id] != 0) { if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) { irq_handler(serial_irq_ids[id], TxIrq); __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); } } if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET) { irq_handler(serial_irq_ids[id], RxIrq); __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE); } } if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET) { volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag } } } } static void uart1_irq(void) { uart_irq(0); } static void uart2_irq(void) { uart_irq(1); } static void uart3_irq(void) { uart_irq(2); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { struct serial_s *obj_s = SERIAL_S(obj); irq_handler = handler; serial_irq_ids[obj_s->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; if (obj_s->uart == UART_1) { irq_n = USART1_IRQn; vector = (uint32_t)&uart1_irq; } if (obj_s->uart == UART_2) { irq_n = USART2_IRQn; vector = (uint32_t)&uart2_irq; } if (obj_s->uart == UART_3) { irq_n = USART3_IRQn; vector = (uint32_t)&uart3_irq; } if (enable) { if (irq == RxIrq) { __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE); } else { // TxIrq __HAL_UART_ENABLE_IT(huart, UART_IT_TC); } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; if (irq == RxIrq) { __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); // Check if TxIrq is disabled too if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) { all_disabled = 1; } } else { // TxIrq __HAL_UART_DISABLE_IT(huart, UART_IT_TC); // Check if RxIrq is disabled too if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) { all_disabled = 1; } } if (all_disabled) { NVIC_DisableIRQ(irq_n); } } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; while (!serial_readable(obj)); if (obj_s->databits == UART_WORDLENGTH_8B) { return (int)(huart->Instance->DR & (uint8_t)0xFF); } else { return (int)(huart->Instance->DR & (uint16_t)0x1FF); } } void serial_putc(serial_t *obj, int c) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; while (!serial_writable(obj)); if (obj_s->databits == UART_WORDLENGTH_8B) { huart->Instance->DR = (uint8_t)(c & (uint8_t)0xFF); } else { huart->Instance->DR = (uint16_t)(c & (uint16_t)0x1FF); } } int serial_readable(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; // Check if data is received return (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) ? 1 : 0; } int serial_writable(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; // Check if data is transmitted return (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) ? 1 : 0; } void serial_clear(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; huart->TxXferCount = 0; huart->RxXferCount = 0; } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; HAL_LIN_SendBreak(huart); } void serial_break_clear(serial_t *obj) { (void)obj; } #if DEVICE_SERIAL_ASYNCH /****************************************************************************** * LOCAL HELPER FUNCTIONS ******************************************************************************/ /** * Configure the TX buffer for an asynchronous write serial transaction * * @param obj The serial object. * @param tx The buffer for sending. * @param tx_length The number of words to transmit. */ static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width) { (void)width; // Exit if a transmit is already on-going if (serial_tx_active(obj)) { return; } obj->tx_buff.buffer = tx; obj->tx_buff.length = tx_length; obj->tx_buff.pos = 0; } /** * Configure the RX buffer for an asynchronous write serial transaction * * @param obj The serial object. * @param tx The buffer for sending. * @param tx_length The number of words to transmit. */ static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width) { (void)width; // Exit if a reception is already on-going if (serial_rx_active(obj)) { return; } obj->rx_buff.buffer = rx; obj->rx_buff.length = rx_length; obj->rx_buff.pos = 0; } /** * Configure events * * @param obj The serial object * @param event The logical OR of the events to configure * @param enable Set to non-zero to enable events, or zero to disable them */ static void serial_enable_event(serial_t *obj, int event, uint8_t enable) { struct serial_s *obj_s = SERIAL_S(obj); // Shouldn't have to enable interrupt here, just need to keep track of the requested events. if (enable) { obj_s->events |= event; } else { obj_s->events &= ~event; } } /** * Get index of serial object TX IRQ, relating it to the physical peripheral. * * @param obj pointer to serial object * @return internal NVIC TX IRQ index of U(S)ART peripheral */ static IRQn_Type serial_get_irq_n(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); IRQn_Type irq_n; switch (obj_s->index) { case 0: irq_n = USART1_IRQn; break; case 1: irq_n = USART2_IRQn; break; case 2: irq_n = USART3_IRQn; break; default: irq_n = (IRQn_Type)0; } return irq_n; } /****************************************************************************** * MBED API FUNCTIONS ******************************************************************************/ /** * Begin asynchronous TX transfer. The used buffer is specified in the serial * object, tx_buff * * @param obj The serial object * @param tx The buffer for sending * @param tx_length The number of words to transmit * @param tx_width The bit width of buffer word * @param handler The serial handler * @param event The logical OR of events to be registered * @param hint A suggestion for how to use DMA with this transfer * @return Returns number of data transfered, or 0 otherwise */ int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint) { // TODO: DMA usage is currently ignored (void) hint; // Check buffer is ok MBED_ASSERT(tx != (void*)0); MBED_ASSERT(tx_width == 8); // support only 8b width struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef * huart = &uart_handlers[obj_s->index]; if (tx_length == 0) { return 0; } // Set up buffer serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width); // Set up events serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events serial_enable_event(obj, event, 1); // Set only the wanted events // Enable interrupt IRQn_Type irq_n = serial_get_irq_n(obj); NVIC_ClearPendingIRQ(irq_n); NVIC_DisableIRQ(irq_n); NVIC_SetPriority(irq_n, 1); NVIC_SetVector(irq_n, (uint32_t)handler); NVIC_EnableIRQ(irq_n); // the following function will enable UART_IT_TXE and error interrupts if (HAL_UART_Transmit_IT(huart, (uint8_t*)tx, tx_length) != HAL_OK) { return 0; } return tx_length; } /** * Begin asynchronous RX transfer (enable interrupt for data collecting) * The used buffer is specified in the serial object, rx_buff * * @param obj The serial object * @param rx The buffer for sending * @param rx_length The number of words to transmit * @param rx_width The bit width of buffer word * @param handler The serial handler * @param event The logical OR of events to be registered * @param handler The serial handler * @param char_match A character in range 0-254 to be matched * @param hint A suggestion for how to use DMA with this transfer */ void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint) { // TODO: DMA usage is currently ignored (void) hint; /* Sanity check arguments */ MBED_ASSERT(obj); MBED_ASSERT(rx != (void*)0); MBED_ASSERT(rx_width == 8); // support only 8b width struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0); serial_enable_event(obj, event, 1); // set CharMatch obj->char_match = char_match; serial_rx_buffer_set(obj, rx, rx_length, rx_width); IRQn_Type irq_n = serial_get_irq_n(obj); NVIC_ClearPendingIRQ(irq_n); NVIC_DisableIRQ(irq_n); NVIC_SetPriority(irq_n, 0); NVIC_SetVector(irq_n, (uint32_t)handler); NVIC_EnableIRQ(irq_n); // following HAL function will enable the RXNE interrupt + error interrupts HAL_UART_Receive_IT(huart, (uint8_t*)rx, rx_length); } /** * Attempts to determine if the serial peripheral is already in use for TX * * @param obj The serial object * @return Non-zero if the TX transaction is ongoing, 0 otherwise */ uint8_t serial_tx_active(serial_t *obj) { MBED_ASSERT(obj); struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_TX) ? 1 : 0); } /** * Attempts to determine if the serial peripheral is already in use for RX * * @param obj The serial object * @return Non-zero if the RX transaction is ongoing, 0 otherwise */ uint8_t serial_rx_active(serial_t *obj) { MBED_ASSERT(obj); struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_RX) ? 1 : 0); } void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) { __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); } } void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) { volatile uint32_t tmpval = huart->Instance->DR; // Clear PE flag } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) { volatile uint32_t tmpval = huart->Instance->DR; // Clear FE flag } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) { volatile uint32_t tmpval = huart->Instance->DR; // Clear NE flag } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) { volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag } } /** * The asynchronous TX and RX handler. * * @param obj The serial object * @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise */ int serial_irq_handler_asynch(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; volatile int return_event = 0; uint8_t *buf = (uint8_t*)(obj->rx_buff.buffer); uint8_t i = 0; // TX PART: if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) { // Return event SERIAL_EVENT_TX_COMPLETE if requested if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE ) != 0) { return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events); } } } // Handle error events if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) { return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events); } } if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) { return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events); } } if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) { if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) { return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events); } } HAL_UART_IRQHandler(huart); // Abort if an error occurs if (return_event & SERIAL_EVENT_RX_PARITY_ERROR || return_event & SERIAL_EVENT_RX_FRAMING_ERROR || return_event & SERIAL_EVENT_RX_OVERRUN_ERROR) { return return_event; } //RX PART if (huart->RxXferSize != 0) { obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount; } if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) { return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events); } // Check if char_match is present if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) { if (buf != NULL) { for (i = 0; i < obj->rx_buff.pos; i++) { if (buf[i] == obj->char_match) { obj->rx_buff.pos = i; return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events); serial_rx_abort_asynch(obj); break; } } } } return return_event; } /** * Abort the ongoing TX transaction. It disables the enabled interupt for TX and * flush TX hardware buffer if TX FIFO is used * * @param obj The serial object */ void serial_tx_abort_asynch(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; __HAL_UART_DISABLE_IT(huart, UART_IT_TC); __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); // clear flags __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); // reset states huart->TxXferCount = 0; // update handle state if(huart->State == HAL_UART_STATE_BUSY_TX_RX) { huart->State = HAL_UART_STATE_BUSY_RX; } else { huart->State = HAL_UART_STATE_READY; } } /** * Abort the ongoing RX transaction It disables the enabled interrupt for RX and * flush RX hardware buffer if RX FIFO is used * * @param obj The serial object */ void serial_rx_abort_asynch(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; // disable interrupts __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); __HAL_UART_DISABLE_IT(huart, UART_IT_PE); __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); // clear flags __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE); volatile uint32_t tmpval = huart->Instance->DR; // Clear errors flag // reset states huart->RxXferCount = 0; // update handle state if(huart->State == HAL_UART_STATE_BUSY_TX_RX) { huart->State = HAL_UART_STATE_BUSY_TX; } else { huart->State = HAL_UART_STATE_READY; } } #endif #if DEVICE_SERIAL_FC /** * Set HW Control Flow * @param obj The serial object * @param type The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS) * @param rxflow Pin for the rxflow * @param txflow Pin for the txflow */ void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { struct serial_s *obj_s = SERIAL_S(obj); // Determine the UART to use (UART_1, UART_2, ...) UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS); UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS); // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object obj_s->uart = (UARTName)pinmap_merge(uart_cts, uart_rts); MBED_ASSERT(obj_s->uart != (UARTName)NC); if(type == FlowControlNone) { // Disable hardware flow control obj_s->hw_flow_ctl = UART_HWCONTROL_NONE; } if (type == FlowControlRTS) { // Enable RTS MBED_ASSERT(uart_rts != (UARTName)NC); obj_s->hw_flow_ctl = UART_HWCONTROL_RTS; obj_s->pin_rts = rxflow; // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); } if (type == FlowControlCTS) { // Enable CTS MBED_ASSERT(uart_cts != (UARTName)NC); obj_s->hw_flow_ctl = UART_HWCONTROL_CTS; obj_s->pin_cts = txflow; // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); } if (type == FlowControlRTSCTS) { // Enable CTS & RTS MBED_ASSERT(uart_rts != (UARTName)NC); MBED_ASSERT(uart_cts != (UARTName)NC); obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS; obj_s->pin_rts = rxflow; obj_s->pin_cts = txflow; // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); } init_uart(obj); } #endif #endif