Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter MODSERIAL QEI mbed
Fork of StateMachineEMGisAFditisemcasper1643 by
main.cpp
- Committer:
- gastongab
- Date:
- 2018-11-01
- Revision:
- 7:88fa84742b3c
- Parent:
- 6:f55ab7e38a7f
- Child:
- 8:ec3ea0623620
File content as of revision 7:88fa84742b3c:
//Voor het toevoegen van een button:
#include "mbed.h"
#include <iostream>
#include "BiQuad.h"
#include "BiQuadchains_zelfbeun.h"
#include "MODSERIAL.h"
MODSERIAL pc(USBTX, USBRX);
DigitalOut gpo(D0);
DigitalIn button2(SW3);
DigitalIn button1(SW2); //or SW2
DigitalOut led1(LED_GREEN);
DigitalOut led2(LED_RED);
DigitalOut led3(LED_BLUE);
//EMG tickers, these tickers are called in the mainscript with fsample 500Hz, also sends to HIDscope with same fsample
Ticker sample_ticker; //ticker for filtering pref. with 1000Hz, define in tick.attach
Ticker threshold_check_ticker;
Timer t; //timer try out for Astrid
Timer timer_calibration; //timer for EMG calibration
//Input system
AnalogIn emg1(A0); //right biceps
AnalogIn emg2(A1); //right triceps
AnalogIn emg3(A2); //left biceps
AnalogIn emg4(A3); //left triceps
//Filtered EMG signals from the end of the chains
volatile double emg1_filtered, emg2_filtered, emg3_filtered, emg4_filtered;
int i = 0;
void emgsample()
{
//All EMG signal through Highpass
double emgread1 = emg1.read();
double emgread2 = emg2.read();
double emgread3 = emg3.read();
double emgread4 = emg4.read();
double emg1_highpassed = highp1.step(emgread1);
double emg2_highpassed = highp2.step(emgread2);
double emg3_highpassed = highp3.step(emgread3);
double emg4_highpassed = highp4.step(emgread4);
//All EMG highpassed through Notch
double emg1_notched = notch1.step(emg1_highpassed);
double emg2_notched = notch2.step(emg2_highpassed);
double emg3_notched = notch3.step(emg3_highpassed);
double emg4_notched = notch4.step(emg4_highpassed);
//All EMG notched rectify
double emg1_abs = abs(emg1_notched);
double emg2_abs = abs(emg2_notched);
double emg3_abs = abs(emg3_notched);
double emg4_abs = abs(emg4_notched);
//All EMG abs into lowpass
emg1_filtered = lowp1.step(emg1_abs);
emg2_filtered = lowp2.step(emg2_abs);
emg3_filtered = lowp3.step(emg3_abs);
emg4_filtered = lowp4.step(emg4_abs);
}
//Define doubles for calibration and ticker
double ts = 0.001; //tijdsstap
double calibration_time = 55; //time EMG calibration should take
volatile double temp_highest_emg1 = 0; //highest detected value right biceps
volatile double temp_highest_emg2 = 0;
volatile double temp_highest_emg3 = 0;
volatile double temp_highest_emg4 = 0;
//Doubles for calculation threshold
double biceps_p_t = 0.4; //set threshold at percentage of highest value
double triceps_p_t = 0.5; //set threshold at percentage of highest value
volatile double threshold1;
volatile double threshold2;
volatile double threshold3;
volatile double threshold4;
void CalibrationEMG()
{
//static float samples = calibration_time/ts;
while(timer_calibration<55) {
if(timer_calibration>0 && timer_calibration<10) {
led1=!led1;
if(emg1_filtered>temp_highest_emg1) {
temp_highest_emg1= emg1_filtered;
pc.printf("Temp1 = %f \r\n",temp_highest_emg1);
}
}
if(timer_calibration>10 && timer_calibration<15) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>15 && timer_calibration<25) {
led2=!led2;
if(emg2_filtered>temp_highest_emg2) {
temp_highest_emg2= emg2_filtered;
pc.printf("Temp2 = %f \r\n",temp_highest_emg2);
}
}
if(timer_calibration>25 && timer_calibration<30) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>30 && timer_calibration<40) {
led3=!led3;
if(emg3_filtered>temp_highest_emg3) {
temp_highest_emg3= emg3_filtered;
pc.printf("Temp3 = %f \r\n",temp_highest_emg3);
}
}
if(timer_calibration>40 && timer_calibration<45) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>45 && timer_calibration<55) {
led2=!led2;
led3=!led3;
if(emg4_filtered>temp_highest_emg4) {
temp_highest_emg4= emg4_filtered;
pc.printf("Temp4 = %f \r\n",temp_highest_emg4);
}
}
led1=1;
led2=1;
led3=1;
}
pc.printf("Highest value right biceps= %f \r\n", temp_highest_emg1);
pc.printf("Highest value right triceps= %f \r\n", temp_highest_emg2);
pc.printf("Highest value left biceps= %f \r\n", temp_highest_emg3);
pc.printf("Highest value left triceps= %f \r\n", temp_highest_emg4);
threshold1 = temp_highest_emg1*biceps_p_t; //Right Biceps
threshold2 = temp_highest_emg2*triceps_p_t; //Right Triceps
threshold3 = temp_highest_emg3*biceps_p_t; //Left Biceps
threshold4 = temp_highest_emg4*triceps_p_t; //Left Triceps
}
//Check if emg_filtered has reached their threshold
int bicepsR;
int tricepsR;
int bicepsL;
int tricepsL;
void threshold_check()
{
//EMG1 threshold check
if(emg1_filtered>threshold1) {
bicepsR = 1;
} else {
bicepsR= 0;
}
//EMG2 threshold check
if(emg2_filtered>threshold2) {
tricepsR = 1;
} else {
tricepsR= 0;
}
//EMG3 threshold check
if(emg3_filtered>threshold3) {
bicepsL = 1;
} else {
bicepsL= 0;
}
//EMG4 threshold check
if(emg4_filtered>threshold4) {
tricepsL = 1;
} else {
tricepsL= 0;
}
/*
pc.printf("Biceps Right = %i", bicepsR);
pc.printf("Triceps Right = %i",tricepsR);
pc.printf("Biceps Left = %i", bicepsL);
pc.printf("Triceps Left = %i", tricepsL);
*/
}
//Activate ticker for Movement state, filtering and Threshold checking
void movement_ticker_activator()
{
sample_ticker.attach(&emgsample, ts);
threshold_check_ticker.attach(&threshold_check, ts);
}
void movement_ticker_deactivator()
{
sample_ticker.detach();
threshold_check_ticker.detach();
}
enum states {MOTORS_OFF,CALIBRATION,HOMING,DEMO,MOVEMENT,CLICK};
states currentState = MOTORS_OFF; //Chosen startingposition for states
bool stateChanged = true; // Make sure the initialization of first state is executed
void ProcessStateMachine(void)
{
switch (currentState) {
case MOTORS_OFF:
// Actions
if (stateChanged) {
// state initialization: rood
led1 = 1;
led2 = 0;
led3 = 1;
wait (1);
stateChanged = false;
}
// State transition logic: Als button 1 word ingedrukt --> calibratie, anders motor uithouden
if (!button1) {
currentState = CALIBRATION;
stateChanged = true;
} else if (!button2) {
currentState = HOMING ;
stateChanged = true;
} else {
currentState = MOTORS_OFF;
stateChanged = true;
}
break;
case CALIBRATION:
// Actions
if (stateChanged) {
// state initialization: oranje
temp_highest_emg1 = 0; //highest detected value right biceps
temp_highest_emg2 = 0;
temp_highest_emg3 = 0;
temp_highest_emg4 = 0;
timer_calibration.reset();
timer_calibration.start();
sample_ticker.attach(&emgsample, ts);
CalibrationEMG();
sample_ticker.detach();
timer_calibration.stop();
stateChanged = false;
}
// State transition logic: automatisch terug naar motors off.
currentState = MOTORS_OFF;
stateChanged = true;
break;
case HOMING:
// Actions
if (stateChanged) {
// state initialization: green
t.reset();
t.start();
led1 = 0;
led2 = 1;
led3 = 1;
wait (1);
stateChanged = false;
}
// State transition logic: naar DEMO (button1), naar MOVEMENT(button2)
if (!button1) {
currentState = DEMO;
stateChanged = true;
} else if (!button2) {
currentState = MOVEMENT ;
stateChanged = true;
} else if (t>300) {
t.stop();
t.reset();
currentState = MOTORS_OFF ;
stateChanged = true;
} else {
currentState = HOMING ;
stateChanged = true;
}
break;
case DEMO:
// Actions
if (stateChanged) {
// state initialization: light blue
led1 = 0;
led2 = 1;
led3 = 0;
wait (1);
stateChanged = false;
}
// State transition logic: automatisch terug naar HOMING
currentState = HOMING;
stateChanged = true;
break;
case MOVEMENT:
// Actions
if (stateChanged) {
// state initialization: purple
//t.reset();
//t.start();
led1 = 1;
led2 = 0;
led3 = 0;
wait(2);
movement_ticker_activator();
led1 = 0;
led2 = 0;
led3 = 0;
wait(2);
stateChanged = false;
}
// State transition logic: naar CLICK (button1), naar MOTORS_OFF(button2) anders naar MOVEMENT
if (!button1) {
movement_ticker_deactivator();
currentState = CLICK;
stateChanged = true;
} else if (!button2) {
movement_ticker_deactivator();
currentState = MOTORS_OFF ;
stateChanged = true;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0) { //this check if person is idle for more than 300seconds
t.start();
} else if (bicepsR==1 || tricepsR==1 || bicepsL==1 || tricepsL==1) {
t.stop();
t.reset();
}
if(t>20) {
movement_ticker_deactivator();
t.stop();
t.reset();
currentState = HOMING ;
stateChanged = true;
}
// here ends the idle checking mode
else {
//For every muscle a different colour if threshold is passed
if(bicepsR==1) {
led1 = 0;
led2 = 1;
led3 = 1;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(tricepsR==1) {
led1 = 1;
led2 = 0;
led3 = 1;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(bicepsL==1) {
led1 = 1;
led2 = 1;
led3 = 0;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(tricepsL==1) {
led1 = 1;
led2 = 0;
led3 = 0;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
currentState = MOVEMENT ;
stateChanged = false;
}
break;
case CLICK:
// Actions
if (stateChanged) {
// state initialization: blue
led1 = 1;
led2 = 1;
led3 = 0;
wait (1);
stateChanged = false;
}
// State transition logic: automatisch terug naar MOVEMENT.
currentState = MOVEMENT;
stateChanged = true;
break;
}
}
int main()
{
//BiQuad Chain add
highp1.add( &highp1_1 ).add( &highp1_2 );
notch1.add( ¬ch1_1 ).add( ¬ch1_2 );
lowp1.add( &lowp1_1 ).add(&lowp1_2);
highp2.add( &highp2_1 ).add( &highp2_2 );
notch2.add( ¬ch2_1 ).add( ¬ch2_2 );
lowp2.add( &lowp2_1 ).add(&lowp2_2);
highp3.add( &highp3_1 ).add( &highp3_2 );
notch3.add( ¬ch3_1 ).add( ¬ch3_2 );
lowp3.add( &lowp3_1 ).add(&lowp3_2);
highp4.add( &highp4_1 ).add( &highp4_2 );
notch4.add( ¬ch4_1 ).add( ¬ch4_2 );
lowp4.add( &lowp4_1 ).add(&lowp4_2);
pc.baud(115200);
led1 = 1;
led2 = 1;
led3 = 1;
while (true) {
ProcessStateMachine();
}
}
