Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter MODSERIAL QEI mbed
Fork of StateMachineEMGisAFditisemcasper1643 by
main.cpp
- Committer:
- cmaas
- Date:
- 2018-11-01
- Revision:
- 10:2325e545ce11
- Parent:
- 9:40c9a18c3430
- Child:
- 11:4ee7f6d482f4
File content as of revision 10:2325e545ce11:
// EMG + KINEMATICS + PID + MOTOR CONTROL
//----------------~INITIATING-------------------------
#include "mbed.h"
// EMG -- DEPENDENCIES
#include <iostream>
#include "BiQuad.h"
#include "BiQuadchains_zelfbeun.h"
#include "MODSERIAL.h"
// KINEMATICS -- DEPENDENCIES
#include "stdio.h"
#define _USE_MATH_DEFINES
#include <math.h>
#define M_PI 3.14159265358979323846 /* pi */
// PID CONTROLLER -- DEPENDENCIES
#include "BiQuad.h"
#include "QEI.h"
//#include "HIDScope.h"
// GENERAL PIN DEFENITIONS
MODSERIAL pc(USBTX, USBRX);
// EMG -- PIN DEFENITIONS
DigitalOut gpo(D0);
DigitalIn button2(SW3);
DigitalIn button1(SW2); //or SW2
DigitalOut led1(LED_GREEN);
DigitalOut led2(LED_RED);
DigitalOut led3(LED_BLUE);
//EMG tickers, these tickers are called in the mainscript with fsample 500Hz, also sends to HIDscope with same fsample
Ticker sample_ticker; //ticker for filtering pref. with 1000Hz, define in tick.attach
Ticker threshold_check_ticker;
Timer t; //timer try out for Astrid
Timer timer_calibration; //timer for EMG calibration
//Input system
AnalogIn emg1(A0); //right biceps
AnalogIn emg2(A1); //right triceps
AnalogIn emg3(A2); //left biceps
AnalogIn emg4(A3); //left triceps
// PID CONTROLLER -- PIN DEFENITIONS
AnalogIn button3(A4);
AnalogIn button4(A5);
DigitalOut directionpin1(D7); // motor 1
DigitalOut directionpin2(D4); // motor 2
DigitalOut directionpin3(D13); // motor 3
PwmOut pwmpin1(D6); // motor 1
PwmOut pwmpin2(D5); // motor 2
PwmOut pwmpin3(D12); // motor 3
QEI encoder1 (D9, D8, NC, 8400, QEI::X4_ENCODING);
QEI encoder2 (D11, D10, NC, 8400, QEI::X4_ENCODING); // motor 2
QEI encoder3 (D3, D2, NC, 8400, QEI::X4_ENCODING); // motor 3
// HIDScope scope(2);
// PID - TICKERS
Ticker ref_rot;
Ticker show_counts;
Ticker Scope_Data;
//------------------------GLOBALS-----------------------------
// GLOBALS EMG
//Filtered EMG signals from the end of the chains
volatile double emg1_filtered, emg2_filtered, emg3_filtered, emg4_filtered;
int i = 0;
//Define doubles for calibration and ticker
double ts = 0.001; //tijdsstap
double calibration_time = 55; //time EMG calibration should take
volatile double temp_highest_emg1 = 0; //highest detected value right biceps
volatile double temp_highest_emg2 = 0;
volatile double temp_highest_emg3 = 0;
volatile double temp_highest_emg4 = 0;
//Doubles for calculation threshold
double biceps_p_t = 0.4; //set threshold at percentage of highest value
double triceps_p_t = 0.5; //set threshold at percentage of highest value
volatile double threshold1;
volatile double threshold2;
volatile double threshold3;
volatile double threshold4;
// thresholdreads bools
int bicepsR;
int tricepsR;
int bicepsL;
int tricepsL;
// VARIABLES ROBOT KINEMATICS
// constants
const float la = 0.256; // lengte actieve arm
const float lp = 0.21; // lengte passieve arm
const float rp = 0.052; // straal van midden end effector tot hoekpunt
const float rm = 0.23; // straal van global midden tot motor
const float a = 0.09; // zijde van de driehoek
const float xas = 0.40; // afstand van motor 1 tot motor 3
const float yas = 0.346; // afstand van xas tot motor 2
const float thetap = 0; // rotatiehoek van de end effector
// motor locatie
const int a1x = 0; //x locatie motor 1
const int a1y = 0; //y locatie motor 1
const float a2x = (0.5)*xas; // x locatie motor 2
const float a2y = yas; // y locatie motor 2
const float a3x = xas; // x locatie motor 3
const int a3y = 0; // y locatie motor 3
// script voor het bepalen van de desired position aan de hand van emg (1/0)
// EMG OUTPUT
int EMGxplus;
int EMGxmin ;
int EMGyplus;
int EMGymin ;
// Dit moet experimenteel geperfectioneerd worden
float tijdstap = 0.005; //nu wss heel langzaam, kan miss omhoog KEER V GEEFT VERANDERING IN POSITIE
float v = 0.1; // snelheid kan wss ook hoger
float px = 0.2; //starting x // BOUNDARIES
float py = 0.155; // starting y // BOUNDARIES
// verschil horizontale as met de actieve arm
float da1 = 1.619685; // verschil a1 hoek en motor
float da2 = -0.609780;
float da3 = 3.372859;
// limits (since no forward kinematics)
float upperxlim = 0.275; //36, 0.04, 0.315, -0.085niet helemaal naar requierments ff kijken of ie groter kan
float lowerxlim = 0.10;
float upperylim = 0.225;
float lowerylim = 0.03; //0.03 is goed
// VARIABLES PID CONTROLLER
double PI = M_PI;// CHANGE THIS INTO M_PI
double Kp = 14; //200 , 50
double Ki = 0; //1, 0.5
double Kd = 3; //200, 10
double Ts = 0.1; // Sample time in seconds
double reference_rotation; //define as radians
double motor_position;
bool AlwaysTrue;
//----------------FUNCTIONS--------------------------
// ~~~~~~~~~~~~~~~~~~~EMG FUNCTIONS~~~~~~~~~~~~~~~~~~
void emgsample()
{
//All EMG signal through Highpass
double emgread1 = emg1.read();
double emgread2 = emg2.read();
double emgread3 = emg3.read();
double emgread4 = emg4.read();
double emg1_highpassed = highp1.step(emgread1);
double emg2_highpassed = highp2.step(emgread2);
double emg3_highpassed = highp3.step(emgread3);
double emg4_highpassed = highp4.step(emgread4);
//All EMG highpassed through Notch
double emg1_notched = notch1.step(emg1_highpassed);
double emg2_notched = notch2.step(emg2_highpassed);
double emg3_notched = notch3.step(emg3_highpassed);
double emg4_notched = notch4.step(emg4_highpassed);
//All EMG notched rectify
double emg1_abs = abs(emg1_notched);
double emg2_abs = abs(emg2_notched);
double emg3_abs = abs(emg3_notched);
double emg4_abs = abs(emg4_notched);
//All EMG abs into lowpass
emg1_filtered = lowp1.step(emg1_abs);
emg2_filtered = lowp2.step(emg2_abs);
emg3_filtered = lowp3.step(emg3_abs);
emg4_filtered = lowp4.step(emg4_abs);
}
void CalibrationEMG()
{
//static float samples = calibration_time/ts;
while(timer_calibration<55) {
if(timer_calibration>0 && timer_calibration<10) {
led1=!led1;
if(emg1_filtered>temp_highest_emg1) {
temp_highest_emg1= emg1_filtered;
pc.printf("Temp1 = %f \r\n",temp_highest_emg1);
}
}
if(timer_calibration>10 && timer_calibration<15) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>15 && timer_calibration<25) {
led2=!led2;
if(emg2_filtered>temp_highest_emg2) {
temp_highest_emg2= emg2_filtered;
pc.printf("Temp2 = %f \r\n",temp_highest_emg2);
}
}
if(timer_calibration>25 && timer_calibration<30) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>30 && timer_calibration<40) {
led3=!led3;
if(emg3_filtered>temp_highest_emg3) {
temp_highest_emg3= emg3_filtered;
pc.printf("Temp3 = %f \r\n",temp_highest_emg3);
}
}
if(timer_calibration>40 && timer_calibration<45) {
led1=0;
led2=0;
led3=0;
}
if(timer_calibration>45 && timer_calibration<55) {
led2=!led2;
led3=!led3;
if(emg4_filtered>temp_highest_emg4) {
temp_highest_emg4= emg4_filtered;
pc.printf("Temp4 = %f \r\n",temp_highest_emg4);
}
}
led1=1;
led2=1;
led3=1;
}
/*
pc.printf("Highest value right biceps= %f \r\n", temp_highest_emg1);
pc.printf("Highest value right triceps= %f \r\n", temp_highest_emg2);
pc.printf("Highest value left biceps= %f \r\n", temp_highest_emg3);
pc.printf("Highest value left triceps= %f \r\n", temp_highest_emg4);
*/
threshold1 = temp_highest_emg1*biceps_p_t; //Right Biceps
threshold2 = temp_highest_emg2*triceps_p_t; //Right Triceps
threshold3 = temp_highest_emg3*biceps_p_t; //Left Biceps
threshold4 = temp_highest_emg4*triceps_p_t; //Left Triceps
}
//Check if emg_filtered has reached their threshold
void threshold_check()
{
//EMG1 threshold check
if(emg1_filtered>threshold1) {
bicepsR = 1;
} else {
bicepsR= 0;
}
//EMG2 threshold check
if(emg2_filtered>threshold2) {
tricepsR = 1;
} else {
tricepsR= 0;
}
//EMG3 threshold check
if(emg3_filtered>threshold3) {
bicepsL = 1;
} else {
bicepsL= 0;
}
//EMG4 threshold check
if(emg4_filtered>threshold4) {
tricepsL = 1;
} else {
tricepsL= 0;
}
/*
pc.printf("Biceps Right = %i", bicepsR);
pc.printf("Triceps Right = %i",tricepsR);
pc.printf("Biceps Left = %i", bicepsL);
pc.printf("Triceps Left = %i", tricepsL);
*/
}
//Activate ticker for Movement state, filtering and Threshold checking
void movement_ticker_activator()
{
sample_ticker.attach(&emgsample, ts);
threshold_check_ticker.attach(&threshold_check, ts);
}
void movement_ticker_deactivator()
{
sample_ticker.detach();
threshold_check_ticker.detach();
}
// ~~~~~~~~~~~~~~ROBOT KINEMATICS ~~~~~~~~~~~~~~~~~~
// functie x positie
float positionx(int EMGxplus,int EMGxmin)
{
float EMGx = EMGxplus - EMGxmin;
float verplaatsingx = EMGx * tijdstap * v;
float pxnieuw = px + verplaatsingx;
// x limit
if (pxnieuw <= upperxlim && pxnieuw >= lowerxlim) {
px = pxnieuw;
} else {
if (pxnieuw >= lowerxlim) {
px = upperxlim;
} else {
px = lowerxlim;
}
}
//printf("X eindpunt (%f) en verplaatsing: (%f)\n\r",px,verplaatsingx);
return px;
}
// functie y positie
float positiony(int EMGyplus,int EMGymin)
{
float EMGy = EMGyplus - EMGymin;
float verplaatsingy = EMGy * tijdstap * v;
float pynieuw = py + verplaatsingy;
// y limit
if (pynieuw <= upperylim && pynieuw >= lowerylim) {
py = pynieuw;
} else {
if (pynieuw >= lowerylim) {
py = upperylim;
} else {
py = lowerylim;
}
}
//printf("Y eindpunt (%f) en verplaatsing: (%f) \n\r",py,verplaatsingy);
return (py);
}
//~~~~~~~~~~~~CALCULATIING MOTOR ANGLES ~~~~~~~~
// arm 1 --> reference angle motor 1
float hoek1(float px, float py) // input: ref x, ref y
{
float c1x = px - rp * cos(thetap +(M_PI/6)); // x locatie hoekpunt end-effector
float c1y = py - rp*sin(thetap+(M_PI/6)); // y locatie hoekpunt end-effector
float alpha1 = atan2((c1y-a1y),(c1x-a1x)); // hoek tussen horizontaal en lijn van motor naar bijbehorende end-effector punt
float psi1 = acos(( pow(la,2)-pow(lp,2)+pow((c1x-a1x),2)+pow((c1y-a1y),2))/(2*la*sqrt(pow ((c1x-a1x),2)+pow((c1y-a1y),2) ))); //Hoek tussen lijn van motor naar bijbehorende end=effector punt en actieve arm
float a1 = alpha1 + psi1 - da1; //hoek tussen horizontaal en actieve arm
//printf("arm 1 = %f \n\r",a1);
return a1;
}
// arm 2 --> reference angle motor 2
float hoek2(float px, float py)
{
float c2x = px - rp * cos(thetap -(M_PI/2));
float c2y = py - rp*sin(thetap-(M_PI/2));
float alpha2 = atan2((c2y-a2y),(c2x-a2x));
float psi2 = acos(( pow(la,2)-pow(lp,2)+pow((c2x-a2x),2)+pow((c2y-a2y),2))/(2*la*sqrt(pow ((c2x-a2x),2)+pow((c2y-a2y),2) )));
float a2 = alpha2 + psi2 - da2;
//printf("arm 2 = %f \n\r",a2);
return a2;
}
//arm 3 --> reference angle motor 3
float hoek3(float px, float py)
{
float c3x = px - rp * cos(thetap +(5*M_PI/6));
float c3y = py - rp*sin(thetap+(5*M_PI/6));
float alpha3 = atan2((c3y-a3y),(c3x-a3x));
float psi3 = acos(( pow(la,2)-pow(lp,2)+pow((c3x-a3x),2)+pow((c3y-a3y),2))/(2*la*sqrt(pow ((c3x-a3x),2)+pow((c3y-a3y),2) )));
float a3 = alpha3 + psi3 - da3;
//printf("arm 3 = %f \n\r",a3);
return a3;
}
// ~~~~~~~~~~~~~~PID CONTROLLER~~~~~~~~~~~~~~~~~~
double PID_controller(double error)
{
static double error_integral = 0;
static double error_prev = error; // initialization with this value only done once!
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// Proportional part:
double u_k = Kp * error;
// Integral part
error_integral = error_integral + error * Ts;
double u_i = Ki * error_integral;
// Derivative part
double error_derivative = (error - error_prev)/Ts;
double filtered_error_derivative = LowPassFilter.step(error_derivative);
double u_d = Kd * filtered_error_derivative;
error_prev = error;
// Sum all parts and return it
return u_k + u_i + u_d;
}
// DIRECTON AND SPEED CONTROL
void moter_control(double u)
{
directionpin1= u > 0.0f; //eithertrueor false
if (fabs(u)> 0.7f) {
u = 0.7f;
} else {
u= u;
}
pwmpin1= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
void moter2_control(double u)
{
directionpin2= u > 0.0f; //eithertrueor false
if (fabs(u)> 0.7f) {
u = 0.7f;
} else {
u= u;
}
pwmpin2= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
void moter3_control(double u)
{
directionpin3= u > 0.0f; //eithertrueor false
if (fabs(u)> 0.7f) {
u = 0.7f;
} else {
u= u;
}
pwmpin3 = fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
// CONTROLLING THE MOTOR
void Motor_mover()
{
double motor_position = encoder1.getPulses(); //output in counts
double reference_rotation = hoek1(px, py);
double error = reference_rotation - motor_position*(2*PI)/8400;
double u = PID_controller(error);
moter_control(u);
double motor_position2 = encoder2.getPulses(); //output in counts
double reference_rotation2 = hoek2(px, py);
double error_2 = reference_rotation2 - motor_position2*(2*PI)/8400;
double u_2 = PID_controller(error_2);
moter2_control(u_2);
double motor_position3 = encoder3.getPulses(); //output in counts
double reference_rotation3 = hoek3(px, py);
double error_3 = reference_rotation3 - motor_position3*(2*PI)/8400;
double u_3 = PID_controller(error_3);
moter3_control(u_3);
}
//-------------------- STATE MACHINE --------------------------
enum states {MOTORS_OFF,CALIBRATION,HOMING,DEMO,MOVEMENT,CLICK};
states currentState = MOTORS_OFF; //Chosen startingposition for states
bool stateChanged = true; // Make sure the initialization of first state is executed
void ProcessStateMachine(void)
{
switch (currentState) {
case MOTORS_OFF:
// Actions
if (stateChanged) {
// state initialization: rood
led1 = 1;
led2 = 0;
led3 = 1;
wait (1);
stateChanged = false;
}
// State transition logic: Als button 1 word ingedrukt --> calibratie, anders motor uithouden
if (!button1) {
currentState = CALIBRATION;
stateChanged = true;
} else if (!button2) {
currentState = HOMING ;
stateChanged = true;
} else {
currentState = MOTORS_OFF;
stateChanged = true;
}
break;
case CALIBRATION:
// Actions
if (stateChanged) {
// state initialization: oranje
temp_highest_emg1 = 0; //highest detected value right biceps
temp_highest_emg2 = 0;
temp_highest_emg3 = 0;
temp_highest_emg4 = 0;
timer_calibration.reset();
timer_calibration.start();
sample_ticker.attach(&emgsample, ts);
CalibrationEMG();
sample_ticker.detach();
timer_calibration.stop();
stateChanged = false;
}
// State transition logic: automatisch terug naar motors off.
currentState = MOTORS_OFF;
stateChanged = true;
break;
case HOMING:
// Actions
if (stateChanged) {
// state initialization: green
t.reset();
t.start();
led1 = 0;
led2 = 1;
led3 = 1;
wait (1);
stateChanged = false;
}
// State transition logic: naar DEMO (button1), naar MOVEMENT(button2)
if (!button1) {
currentState = DEMO;
stateChanged = true;
} else if (!button2) {
currentState = MOVEMENT ;
stateChanged = true;
} else if (t>300) {
t.stop();
t.reset();
currentState = MOTORS_OFF ;
stateChanged = true;
} else {
currentState = HOMING ;
stateChanged = true;
}
break;
case DEMO:
// Actions
if (stateChanged) {
// state initialization: light blue
led1 = 0;
led2 = 1;
led3 = 0;
wait (1);
stateChanged = false;
}
// State transition logic: automatisch terug naar HOMING
currentState = HOMING;
stateChanged = true;
break;
case MOVEMENT:
// Actions
if (stateChanged) {
// state initialization: purple
//t.reset();
//t.start();
led1 = 1;
led2 = 0;
led3 = 0;
wait(2);
movement_ticker_activator();
led1 = 0;
led2 = 0;
led3 = 0;
wait(2);
stateChanged = false;
}
// State transition logic: naar CLICK (button1), naar MOTORS_OFF(button2) anders naar MOVEMENT
if (!button1) {
movement_ticker_deactivator();
currentState = CLICK;
stateChanged = true;
} else if (!button2) {
movement_ticker_deactivator();
currentState = MOTORS_OFF ;
stateChanged = true;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0) { //this check if person is idle for more than 300seconds
t.start();
} else if (bicepsR==1 || tricepsR==1 || bicepsL==1 || tricepsL==1) {
t.stop();
t.reset();
}
if(t>20) {
movement_ticker_deactivator();
t.stop();
t.reset();
currentState = HOMING ;
stateChanged = true;
}
// here ends the idle checking mode
else {
//For every muscle a different colour if threshold is passed
if(bicepsR==1) {
led1 = 0;
led2 = 1;
led3 = 1;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(tricepsR==1) {
led1 = 1;
led2 = 0;
led3 = 1;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(bicepsL==1) {
led1 = 1;
led2 = 1;
led3 = 0;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
if(tricepsL==1) {
led1 = 1;
led2 = 0;
led3 = 0;
} else if (bicepsR==0 && tricepsR==0 && bicepsL==0 && tricepsL==0 ) {
led1 = 1;
led2 = 1;
led3 = 1;
}
}
break;
case CLICK:
// Actions
if (stateChanged) {
// state initialization: blue
led1 = 1;
led2 = 1;
led3 = 0;
wait (1);
stateChanged = false;
}
// State transition logic: automatisch terug naar MOVEMENT.
currentState = MOVEMENT;
stateChanged = true;
break;
}
}
// --------------------------MAIN--------------------
int main()
{
//BiQuad Chain add
highp1.add( &highp1_1 ).add( &highp1_2 );
notch1.add( ¬ch1_1 ).add( ¬ch1_2 );
lowp1.add( &lowp1_1 ).add(&lowp1_2);
highp2.add( &highp2_1 ).add( &highp2_2 );
notch2.add( ¬ch2_1 ).add( ¬ch2_2 );
lowp2.add( &lowp2_1 ).add(&lowp2_2);
highp3.add( &highp3_1 ).add( &highp3_2 );
notch3.add( ¬ch3_1 ).add( ¬ch3_2 );
lowp3.add( &lowp3_1 ).add(&lowp3_2);
highp4.add( &highp4_1 ).add( &highp4_2 );
notch4.add( ¬ch4_1 ).add( ¬ch4_2 );
lowp4.add( &lowp4_1 ).add(&lowp4_2);
pc.baud(115200);
led1 = 1;
led2 = 1;
led3 = 1;
pwmpin1.period_us(60); // setup motor
ref_rot.attach(Motor_mover, 0.001);// HAS TO GO TO STATE MACHINE
while (true) {
//ProcessStateMachine();
if (button2 == false) {
wait(0.01f);
// berekenen positie
float px = positionx(1,0); // EMG: +x, -x
float py = positiony(0,0); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
if (button1 == false) {
wait(0.01f);
// berekenen positie
float px = positionx(0,1); // EMG: +x, -x
float py = positiony(0,0); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
if (button3 == false) {
wait(0.01f);
// berekenen positie
float px = positionx(0,0); // EMG: +x, -x
float py = positiony(1,0); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
if (button4 == false) {
wait(0.01f);
// berekenen positie
float px = positionx(0,0); // EMG: +x, -x
float py = positiony(0,1); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
}
}
