Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
main.cpp
- Committer:
- cmaas
- Date:
- 2018-10-31
- Revision:
- 6:6545e197858a
- Parent:
- 5:a54ea6514bc5
- Child:
- 7:83a69ca630bc
File content as of revision 6:6545e197858a:
// KINEMATICS + PID + MOTOR CONTROL
//----------------~INITIATING-------------------------
#include "mbed.h"
// KINEMATICS -- DEPENDENCIES
#include "stdio.h"
#define _USE_MATH_DEFINES
#include <math.h>
#define M_PI 3.14159265358979323846 /* pi */
// PID CONTROLLER -- DEPENDENCIES
#include "BiQuad.h"
#include "QEI.h"
#include "MODSERIAL.h"
#include "HIDScope.h"
//#include "Math.h"
// PID CONTROLLER -- PIN DEFENITIONS
AnalogIn button2(A4);
AnalogIn button1(A3);
DigitalOut directionpin1(D7); // motor 1
DigitalOut directionpin2(D4); // motor 2
DigitalOut directionpin3(D13); // motor 3
PwmOut pwmpin1(D6); // motor 1
PwmOut pwmpin2(D5); // motor 2
PwmOut pwmpin3(D12); // motor 3
QEI encoder1 (D9, D8, NC, 8400, QEI::X4_ENCODING);
QEI encoder2 (D11, D10, NC, 8400, QEI::X4_ENCODING); // motor 2
QEI encoder3 (D3, D2, NC, 8400, QEI::X4_ENCODING); // motor 3
MODSERIAL pc(USBTX, USBRX);
HIDScope scope(2);
// TICKERS
Ticker ref_rot;
Ticker show_counts;
Ticker Scope_Data;
//----------------GLOBALS--------------------------
// CONSTANTS PID CONTROLLER
double PI = M_PI;// CHANGE THIS INTO M_PI
double Kp = 14; //200 , 50
double Ki = 0; //1, 0.5
double Kd = 3; //200, 10
double Ts = 0.1; // Sample time in seconds
double reference_rotation; //define as radians
double motor_position;
bool AlwaysTrue;
//CONSTANTS KINEMATICS
// constants
const float la = 0.256; // lengte actieve arm
const float lp = 0.21; // lengte passieve arm
const float rp = 0.052; // straal van midden end effector tot hoekpunt
const float rm = 0.23; // straal van global midden tot motor
const float a = 0.09; // zijde van de driehoek
const float xas = 0.40; // afstand van motor 1 tot motor 3
const float yas = 0.346; // afstand van xas tot motor 2
const float thetap = 0; // rotatiehoek van de end effector
// motor locatie
const int a1x = 0; //x locatie motor 1
const int a1y = 0; //y locatie motor 1
const float a2x = (0.5)*xas; // x locatie motor 2
const float a2y = yas; // y locatie motor 2
const float a3x = xas; // x locatie motor 3
const int a3y = 0; // y locatie motor 3
// script voor het bepalen van de desired position aan de hand van emg (1/0)
// EMG OUTPUT
int EMGxplus;
int EMGxmin ;
int EMGyplus;
int EMGymin ;
// Dit moet experimenteel geperfectioneerd worden
float tijdstap = 0.05; //nu wss heel langzaam, kan miss omhoog
float v = 0.1; // snelheid kan wss ook hoger
float px = 0.2; //starting x
float py = 0.155; // starting y
// verschil horizontale as met de actieve arm
float da1 = 1.619685; // verschil a1 hoek en motor
float da2 = -0.609780;
float da3 = 3.372859;
// limits (since no forward kinematics)
float upperxlim = 0.36; //niet helemaal naar requierments ff kijken of ie groter kan
float lowerxlim = 0.04;
float upperylim = 0.30;
float lowerylim = 0.04;
//----------------FUNCTIONS--------------------------
// ~~~~~~~~~~~~~~ROBOT KINEMATICS ~~~~~~~~~~~~~~~~~~
// functie x positie
float positionx(int EMGxplus,int EMGxmin)
{
float EMGx = EMGxplus - EMGxmin;
float verplaatsingx = EMGx * tijdstap * v;
float pxnieuw = px + verplaatsingx;
// x limit
if (pxnieuw <= upperxlim && pxnieuw >= lowerxlim)
{
px = pxnieuw;
}
else
{
if (pxnieuw >= lowerxlim)
{
px = upperxlim;
}
else
{
px = lowerxlim;
}
}
//printf("X eindpunt (%f) en verplaatsing: (%f)\n\r",px,verplaatsingx);
return px;
}
// functie y positie
float positiony(int EMGyplus,int EMGymin)
{
float EMGy = EMGyplus - EMGymin;
float verplaatsingy = EMGy * tijdstap * v;
float pynieuw = py + verplaatsingy;
// y limit
if (pynieuw <= upperylim && pynieuw >= lowerylim)
{
py = pynieuw;
}
else
{
if (pynieuw >= lowerylim)
{
py = upperylim;
}
else
{
py = lowerylim;
}
}
//printf("Y eindpunt (%f) en verplaatsing: (%f) \n\r",py,verplaatsingy);
return (py);
}
//~~~~~~~~~~~~CALCULATIING MOTOR ANGLES ~~~~~~~~
// arm 1 --> reference angle motor 1
float hoek1(float px, float py) // input: ref x, ref y
{
float c1x = px - rp * cos(thetap +(M_PI/6)); // x locatie hoekpunt end-effector
float c1y = py - rp*sin(thetap+(M_PI/6)); // y locatie hoekpunt end-effector
float alpha1 = atan2((c1y-a1y),(c1x-a1x)); // hoek tussen horizontaal en lijn van motor naar bijbehorende end-effector punt
float psi1 = acos(( pow(la,2)-pow(lp,2)+pow((c1x-a1x),2)+pow((c1y-a1y),2))/(2*la*sqrt(pow ((c1x-a1x),2)+pow((c1y-a1y),2) ))); //Hoek tussen lijn van motor naar bijbehorende end=effector punt en actieve arm
float a1 = alpha1 + psi1 - da1; //hoek tussen horizontaal en actieve arm
printf("arm 1 = %f \n\r",a1);
return a1;
}
// arm 2 --> reference angle motor 2
float hoek2(float px, float py)
{
float c2x = px - rp * cos(thetap -(M_PI/2));
float c2y = py - rp*sin(thetap-(M_PI/2));
float alpha2 = atan2((c2y-a2y),(c2x-a2x));
float psi2 = acos(( pow(la,2)-pow(lp,2)+pow((c2x-a2x),2)+pow((c2y-a2y),2))/(2*la*sqrt(pow ((c2x-a2x),2)+pow((c2y-a2y),2) )));
float a2 = alpha2 + psi2 - da2;
printf("arm 2 = %f \n\r",a2);
return a2;
}
//arm 3 --> reference angle motor 3
float hoek3(float px, float py)
{
float c3x = px - rp * cos(thetap +(5*M_PI/6));
float c3y = py - rp*sin(thetap+(5*M_PI/6));
float alpha3 = atan2((c3y-a3y),(c3x-a3x));
float psi3 = acos(( pow(la,2)-pow(lp,2)+pow((c3x-a3x),2)+pow((c3y-a3y),2))/(2*la*sqrt(pow ((c3x-a3x),2)+pow((c3y-a3y),2) )));
float a3 = alpha3 + psi3 - da3;
printf("arm 3 = %f \n\r",a3);
return a3;
}
// ~~~~~~~~~~~~~~PID CONTROLLER~~~~~~~~~~~~~~~~~~
double PID_controller(double error)
{
static double error_integral = 0;
static double error_prev = error; // initialization with this value only done once!
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// Proportional part:
double u_k = Kp * error;
// Integral part
error_integral = error_integral + error * Ts;
double u_i = Ki * error_integral;
// Derivative part
double error_derivative = (error - error_prev)/Ts;
double filtered_error_derivative = LowPassFilter.step(error_derivative);
double u_d = Kd * filtered_error_derivative;
error_prev = error;
// Sum all parts and return it
return u_k + u_i + u_d;
}
// DIRECTON AND SPEED CONTROL
void moter_control(double u)
{
directionpin1= u > 0.0f; //eithertrueor false
pwmpin1= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
void moter2_control(double u)
{
directionpin2= u > 0.0f; //eithertrueor false
pwmpin2= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
void moter3_control(double u)
{
directionpin3= u > 0.0f; //eithertrueor false
pwmpin3 = fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}
// CONTROLLING THE MOTOR
void Motor_mover()
{
double motor_position = encoder1.getPulses(); //output in counts
double reference_rotation = hoek2(px, py);
double error = reference_rotation - motor_position*(2*PI)/8400;
double u = PID_controller(error);
moter_control(u);
double motor_position2 = encoder2.getPulses(); //output in counts
double reference_rotation2 = hoek2(px, py);
double error_2 = reference_rotation2 - motor_position2*(2*PI)/8400;
double u_2 = PID_controller(error_2);
moter2_control(u_2);
double motor_position3 = encoder3.getPulses(); //output in counts
double reference_rotation3 = hoek2(px, py);
double error_3 = reference_rotation3 - motor_position3*(2*PI)/8400;
double u_3 = PID_controller(error_3);
moter3_control(u_3);
}
//PRINT TICKER
void PrintFlag()
{
AlwaysTrue = true;
}
// HIDSCOPE
void ScopeData()
{
double y = encoder1.getPulses();
scope.set(0, y);
scope.send();
}
//----------------------MAIN---------------------------------
int main()
{
// ~~~~~~~~~~~~~~~~ INITIATING ~~~~~~~~~~~~
pwmpin1.period_us(60); // setup motor
// setup printing service
pc.baud(9600);
pc.printf("test");
// Tickers
//show_counts.attach(PrintFlag, 0.2);
ref_rot.attach(Motor_mover, 0.01);
//Scope_Data.attach(ScopeData, 0.01);
while(true){
if (button2 == false)
{
wait(0.05f);
// berekenen positie
float px = positionx(1,0); // EMG: +x, -x
float py = positiony(1,0); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
if (button1 == false){
wait(0.05f);
// berekenen positie
float px = positionx(0,1); // EMG: +x, -x
float py = positiony(0,1); // EMG: +y, -y
//printf("positie (%f,%f)\n\r",px,py);
}
}
// berekenen hoeken
/*
float a1 = hoek1(px, py);
float a2 = hoek2(px, py);
float a3 = hoek3(px, py);
printf("hoek(%f,%f,%f)\n\r",a1,a2,a3);
return 0;
*/
}
