working PID + Kinematics + Motorcontrol

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

main.cpp

Committer:
cmaas
Date:
2018-10-31
Revision:
6:6545e197858a
Parent:
5:a54ea6514bc5
Child:
7:83a69ca630bc

File content as of revision 6:6545e197858a:

// KINEMATICS + PID + MOTOR CONTROL

//----------------~INITIATING-------------------------
#include "mbed.h"

// KINEMATICS          --       DEPENDENCIES
#include "stdio.h"
#define _USE_MATH_DEFINES
#include <math.h>
#define M_PI    3.14159265358979323846 /* pi */

// PID CONTROLLER      --      DEPENDENCIES
#include "BiQuad.h"
#include "QEI.h"
#include "MODSERIAL.h"
#include "HIDScope.h"
//#include "Math.h"

// PID  CONTROLLER     --        PIN DEFENITIONS 
AnalogIn button2(A4);
AnalogIn button1(A3);

DigitalOut directionpin1(D7);   // motor 1
DigitalOut directionpin2(D4);   // motor 2
DigitalOut directionpin3(D13);  // motor 3
PwmOut pwmpin1(D6);             // motor 1
PwmOut pwmpin2(D5);             // motor 2
PwmOut pwmpin3(D12);            // motor 3

QEI encoder1 (D9, D8, NC, 8400, QEI::X4_ENCODING);
QEI encoder2 (D11, D10, NC, 8400, QEI::X4_ENCODING); // motor 2
QEI encoder3 (D3, D2, NC, 8400, QEI::X4_ENCODING);  // motor 3
MODSERIAL pc(USBTX, USBRX);
HIDScope scope(2);

// TICKERS
Ticker ref_rot;
Ticker show_counts;
Ticker Scope_Data;

//----------------GLOBALS--------------------------

// CONSTANTS PID CONTROLLER
double PI = M_PI;// CHANGE THIS INTO M_PI
double Kp = 14; //200 , 50
double Ki = 0;   //1, 0.5
double Kd = 3; //200, 10
double Ts = 0.1; // Sample time in seconds
double reference_rotation; //define as radians
double motor_position;
bool AlwaysTrue;

//CONSTANTS KINEMATICS
// constants
const float la = 0.256;         // lengte actieve arm
const float lp = 0.21;          // lengte passieve arm
const float rp = 0.052;         // straal van midden end effector tot hoekpunt
const float rm = 0.23;          // straal van global midden tot motor
const float a = 0.09;           // zijde van de driehoek
const float xas = 0.40;         // afstand van motor 1 tot motor 3
const float yas = 0.346;        // afstand van xas tot motor 2
const float thetap = 0;         // rotatiehoek van de end effector


// motor locatie
const int a1x = 0;              //x locatie motor 1
const int a1y = 0;              //y locatie motor 1
const float a2x = (0.5)*xas;    // x locatie motor 2
const float a2y = yas;          // y locatie motor 2
const float a3x = xas;          // x locatie motor 3
const int a3y = 0;              // y locatie motor 3

// script voor het bepalen van de desired position aan de hand van emg (1/0)

//  EMG OUTPUT
int EMGxplus;
int EMGxmin ;
int EMGyplus;
int EMGymin ;

// Dit moet experimenteel geperfectioneerd worden
float tijdstap = 0.05;      //nu wss heel langzaam, kan miss omhoog
float v = 0.1;                // snelheid kan wss ook hoger

float px = 0.2;     //starting x    
float py = 0.155;   // starting y

// verschil horizontale as met de actieve arm
float da1 = 1.619685; // verschil a1 hoek en motor
float da2 = -0.609780;
float da3 = 3.372859;

// limits (since no forward kinematics)
float upperxlim = 0.36; //niet helemaal naar requierments ff kijken of ie groter kan
float lowerxlim = 0.04;
float upperylim = 0.30;
float lowerylim = 0.04;


//----------------FUNCTIONS--------------------------

// ~~~~~~~~~~~~~~ROBOT KINEMATICS ~~~~~~~~~~~~~~~~~~

// functie x positie
float positionx(int EMGxplus,int EMGxmin)
{
    float EMGx = EMGxplus - EMGxmin;

    float verplaatsingx = EMGx * tijdstap * v;
    float pxnieuw = px + verplaatsingx;
    // x limit
    if (pxnieuw <= upperxlim && pxnieuw >= lowerxlim)
        {
        px = pxnieuw;
        }
    else
        {
        if (pxnieuw >= lowerxlim)
        {
        px = upperxlim;
        }
    else
        {
        px = lowerxlim;
        }
    }
//printf("X eindpunt (%f) en verplaatsing: (%f)\n\r",px,verplaatsingx);
return px;
}


// functie y positie
float positiony(int EMGyplus,int EMGymin)
{
    float EMGy = EMGyplus - EMGymin;

    float verplaatsingy = EMGy * tijdstap * v;
    float pynieuw = py + verplaatsingy;

    // y limit
    if (pynieuw <= upperylim && pynieuw >= lowerylim)
        {
        py = pynieuw;
        }
    else
        {
            if (pynieuw >= lowerylim)
            {
            py = upperylim;
            }
            else
            {
            py = lowerylim;
            }
        }
//printf("Y eindpunt (%f) en verplaatsing: (%f) \n\r",py,verplaatsingy);
return (py);
}


//~~~~~~~~~~~~CALCULATIING MOTOR ANGLES ~~~~~~~~
// arm 1 --> reference angle motor 1
float hoek1(float px, float py) // input: ref x, ref y
{
    float c1x =  px - rp * cos(thetap +(M_PI/6));       // x locatie hoekpunt end-effector
    float c1y = py - rp*sin(thetap+(M_PI/6));           // y locatie hoekpunt end-effector
    float alpha1 = atan2((c1y-a1y),(c1x-a1x));          // hoek tussen horizontaal en lijn van motor naar bijbehorende end-effector punt
    float psi1 = acos(( pow(la,2)-pow(lp,2)+pow((c1x-a1x),2)+pow((c1y-a1y),2))/(2*la*sqrt(pow ((c1x-a1x),2)+pow((c1y-a1y),2) ))); //Hoek tussen lijn van motor naar bijbehorende end=effector punt en actieve arm
    float a1 = alpha1 + psi1 - da1;                          //hoek tussen horizontaal en actieve arm
    printf("arm 1 = %f \n\r",a1);
    return a1;
}

// arm 2 --> reference angle motor 2
float hoek2(float px, float py)
{
    float c2x =  px - rp * cos(thetap -(M_PI/2)); 
    float c2y = py - rp*sin(thetap-(M_PI/2)); 
    float alpha2 = atan2((c2y-a2y),(c2x-a2x)); 
    float psi2 = acos(( pow(la,2)-pow(lp,2)+pow((c2x-a2x),2)+pow((c2y-a2y),2))/(2*la*sqrt(pow ((c2x-a2x),2)+pow((c2y-a2y),2) )));
    float a2 = alpha2 + psi2 - da2;   
    printf("arm 2 = %f \n\r",a2);
    return a2;
}

//arm 3 --> reference angle motor 3
float hoek3(float px, float py)
{
    float c3x =  px - rp * cos(thetap +(5*M_PI/6)); 
    float c3y = py - rp*sin(thetap+(5*M_PI/6)); 
    float alpha3 = atan2((c3y-a3y),(c3x-a3x)); 
    float psi3 = acos(( pow(la,2)-pow(lp,2)+pow((c3x-a3x),2)+pow((c3y-a3y),2))/(2*la*sqrt(pow ((c3x-a3x),2)+pow((c3y-a3y),2) ))); 
    float a3 = alpha3 + psi3 - da3;   
    printf("arm 3 = %f \n\r",a3);
    return a3;
}

// ~~~~~~~~~~~~~~PID CONTROLLER~~~~~~~~~~~~~~~~~~

double PID_controller(double error)
{
    static double error_integral = 0;
    static double error_prev = error; // initialization with this value only done once!
    static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);

    // Proportional part:
    double u_k = Kp * error;

    // Integral part
    error_integral = error_integral + error * Ts;
    double u_i = Ki * error_integral;

    // Derivative part
    double error_derivative = (error - error_prev)/Ts;
    double filtered_error_derivative = LowPassFilter.step(error_derivative);
    double u_d = Kd * filtered_error_derivative;
    error_prev = error;

    // Sum all parts and return it
    return u_k + u_i + u_d;
}


// DIRECTON AND SPEED CONTROL
void moter_control(double u)
{
    directionpin1= u > 0.0f; //eithertrueor false
    pwmpin1= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}

void moter2_control(double u)
{
    directionpin2= u > 0.0f; //eithertrueor false
    pwmpin2= fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}

void moter3_control(double u)
{
    directionpin3= u > 0.0f; //eithertrueor false
    pwmpin3 = fabs(u); //pwmduty cycle canonlybepositive, floatingpoint absolute value
}

// CONTROLLING THE MOTOR
void Motor_mover()
{
    double motor_position = encoder1.getPulses(); //output in counts
    double reference_rotation = hoek2(px, py);
    double error = reference_rotation - motor_position*(2*PI)/8400;
    double u = PID_controller(error);
    moter_control(u);
    
    double motor_position2 = encoder2.getPulses(); //output in counts
    double reference_rotation2 = hoek2(px, py);
    double error_2 = reference_rotation2 - motor_position2*(2*PI)/8400;
    double u_2 = PID_controller(error_2);
    moter2_control(u_2);
    
    double motor_position3 = encoder3.getPulses(); //output in counts
    double reference_rotation3 = hoek2(px, py);
    double error_3 = reference_rotation3 - motor_position3*(2*PI)/8400;
    double u_3 = PID_controller(error_3);
    moter3_control(u_3);  
    
    
}

//PRINT TICKER
void PrintFlag()
{
    AlwaysTrue = true;
}

// HIDSCOPE
void ScopeData()
{
    double y = encoder1.getPulses();
    scope.set(0, y);
    scope.send();
}


//----------------------MAIN---------------------------------
int main()
{
    // ~~~~~~~~~~~~~~~~ INITIATING ~~~~~~~~~~~~
        pwmpin1.period_us(60); // setup motor
        
        // setup printing service
        pc.baud(9600);
        pc.printf("test");
        
        // Tickers
        //show_counts.attach(PrintFlag, 0.2);
        ref_rot.attach(Motor_mover, 0.01);
        //Scope_Data.attach(ScopeData, 0.01);
        

while(true){ 
 
        
if (button2 == false)
{
   wait(0.05f);
        
        // berekenen positie
           float px = positionx(1,0);  // EMG: +x, -x
            float py = positiony(1,0);  // EMG: +y, -y
            //printf("positie (%f,%f)\n\r",px,py);
                }        

if (button1 == false){
    wait(0.05f);
            // berekenen positie
           float px = positionx(0,1);  // EMG: +x, -x
            float py = positiony(0,1);  // EMG: +y, -y
            //printf("positie (%f,%f)\n\r",px,py);
            }
}
// berekenen hoeken
/*
float a1 = hoek1(px, py);
float a2 = hoek2(px, py);
float a3 = hoek3(px, py);

printf("hoek(%f,%f,%f)\n\r",a1,a2,a3);

 return 0;
*/
}