Shengyuan Chu
/
AngleMeter
Simple Electronic Angle Meter and Spirit Level.
main.cpp
- Committer:
- chushengyuan
- Date:
- 2015-05-11
- Revision:
- 1:f167423f6f0c
- Parent:
- 0:2885d4453e88
File content as of revision 1:f167423f6f0c:
/** @file main.cpp @brief Electronic Angle Meter and Spirit Level. @brief Revision 1.0. @author Shengyuan Chu @date May 2015 */ #include "mbed.h" #include "main.h" #include "MMA8452.h" #include "PowerControl/PowerControl.h" #include "PowerControl/EthernetPowerControl.h" /** @brief Connect all components to mbed LPC1768. @brief Connect LCD to pin 7,8,9,10,11,13,26. @brief Connect Accelerometer to pin 27,28. @brief Connect buzzer to pin 21. @brief Connect button to pin 17. @brief Connect LEDs to pin 22,23,24,25. */ N5110 lcd(p7,p8,p9,p10,p11,p13,p26); MMA8452 mma8452(p28,p27); PwmOut buzzer(p21); DigitalIn pb(p17); DigitalOut ledA(p25); DigitalOut ledB(p23); DigitalOut ledC(p22); DigitalOut ledD(p24); Serial serial(USBTX,USBRX); Timeout flipper; /** @brief Function prototypes. */ void Switch (int functoion); void AngleMeter(); void SpiritLevel(); void fun1(); void fun2(); /** @brief Different frequencies of buzzer. */ float frequency1 = 1046.5; float frequency2 = 1174.7; float frequency3 = 1318.5; /** @brief Main function. @brief Call function of Angle Meter without pushing @brief button when power is initally turned on. */ int main() { /**Power down Ethernet interface to save power.*/ PHY_PowerDown(); /**Initialise LCD and set brightness to 0.8.*/ lcd.init(); lcd.normalMode(); lcd.setBrightness(0.8); /**Display the name of Angle Meter function after the initialization of LCD.*/ lcd.printString("Electronic",12,2); lcd.printString("Angle Meter",10,3); /**Call function of Angle Meter after 2 seconds' delay.*/ flipper.attach(&AngleMeter, 2.0); /**Turn all the LEDs on when the power is initially turned on.*/ ledA=1; ledB=1; ledC=1; ledD=1; /**Set button to PullDown mode.*/ pb.mode(PullDown); /**Change the integer between 1 and 2 when button is pressed and send it to Switch function.*/ int function = 1; while(1) { if (pb){ Switch(function); /**Allow 0.2 second for button debounce.*/ wait(0.2); while (pb); {if (function == 2) function = 1; else function++;} } } } /** @brief Switch functions between Angle Meter and Spirit Level. @param function - integer to change between 1 and 2. @return Call fun1() when function=2, call fun2() when function=1. */ void Switch (int function) { switch (function) { case 1 : fun2(); break; case 2 : fun1(); break; } } /** @brief Display angles in two dimensions and indicate directions using arrows. */ void AngleMeter() { /**Initialise the accelerometer.*/ mma8452.init(); Acceleration acceleration; /**Lower down the brightness of LCD to 0.5.*/ lcd.clear(); lcd.setBrightness(0.5); /**When button is not pushed, main features of Angle Meter will be run.*/ while(!pb) { /**Display 'degree' in the last line of LCD.*/ lcd.printString("degree",3,5); lcd.printString("degree",46,5); /**Read value of acceleration.*/ acceleration = mma8452.readValues(); float X=acceleration.x; float Y=acceleration.y; float Z=acceleration.z; /**Calculate the angles in X and Y dimensions.*/ float Ax=atan(X/sqrt(pow(Y,2)+pow(Z,2)))/3.14159265358979323846*180; float Ay=atan(Y/sqrt(pow(X,2)+pow(Z,2)))/3.14159265358979323846*180; /**Print formatted data to buffer.*/ char buffer1[14]; int length = sprintf(buffer1,"%.0f",abs(Ax)); char buffer2[14]; length = sprintf(buffer2,"%.0f",abs(Ay)); /**Display values if string will fit on display.*/ if (length <= 14) // lcd.printString(buffer1,20,3); lcd.printString(buffer2,55,3); /**LED C will be turned on if the angle in X dimension is larger than 20 degree.*/ if (Ax>20) ledC=1; else ledC=0; /**LED A will be turned on if the angle in X dimension is smaller than -20 degree.*/ if (Ax<-20) ledA=1; else ledA=0; /**LED D will be turned on if the angle in Y dimension is larger than 20 degree.*/ if (Ay>20) ledD=1; else ledD=0; /**LED B will be turned on if the angle in Y dimension is smaller than -20 degree.*/ if (Ay<-20) ledB=1; else ledB=0; /**Draw lines of the body of arrows.*/ lcd.drawLine(58,6,58,16,1); lcd.drawLine(17,11,29,11,1); lcd.refresh(); /**Pixes will be set if the angle in Y dimension is larger than 0 degree.*/ if (Ay>=0){ lcd.setPixel(60,5); lcd.setPixel(59,5); lcd.setPixel(58,5); lcd.setPixel(57,5); lcd.setPixel(56,5); lcd.setPixel(59,4); lcd.setPixel(58,4); lcd.setPixel(57,4); lcd.setPixel(58,3); lcd.refresh(); } /**Pixes will be set if the angle in Y dimension is smaller than 0 degree.*/ else if (Ay<=0) { lcd.setPixel(60,17); lcd.setPixel(59,17); lcd.setPixel(58,17); lcd.setPixel(57,17); lcd.setPixel(56,17); lcd.setPixel(59,18); lcd.setPixel(58,18); lcd.setPixel(57,18); lcd.setPixel(58,19); lcd.refresh(); } /**Pixes will be set if the angle in X dimension is larger than 0 degree.*/ if (Ax>=0) { lcd.setPixel(30,13); lcd.setPixel(30,12); lcd.setPixel(30,11); lcd.setPixel(30,10); lcd.setPixel(30,9); lcd.setPixel(31,12); lcd.setPixel(31,11); lcd.setPixel(31,10); lcd.setPixel(32,11); lcd.refresh(); } /**Pixes will be set if the angle in X dimension is smaller than 0 degree.*/ else if (Ax<=0) { lcd.setPixel(16,13); lcd.setPixel(16,12); lcd.setPixel(16,11); lcd.setPixel(16,10); lcd.setPixel(16,9); lcd.setPixel(15,12); lcd.setPixel(15,11); lcd.setPixel(15,10); lcd.setPixel(14,11); lcd.refresh(); } /**Decrease the fluctuation of values.*/ wait(0.3); lcd.clear(); /**Buzzer will beep in frequency 2 if the angle is between 50 and 75 degree.*/ if ((abs(Ax) >= 50 && abs(Ax) < 75)||(abs(Ay) >= 50 && abs(Ay) < 75)) { buzzer.period(1/frequency2); buzzer=0.1; } /**Buzzer will beep in frequency 3 if the angle is beyond 75 degree.*/ else if ((abs(Ax) >= 75)||(abs(Ay) >= 75)) { buzzer.period(1/frequency3); buzzer=0.1; } /**Buzzer will not beep.*/ else { buzzer.period(1/frequency1); buzzer=0; } } /**When button is pushed, main features will stop.*/ while(pb) { break; } } /** @brief Indicate the gradient in all directions by showing @brief the position of a group of pixes. */ void SpiritLevel() { /**Initialise all the LEDs to be off.*/ ledA=0; ledB=0; ledC=0; ledD=0; /**Set the LCD to inverse mode and lower down the brightness to 0.5.*/ lcd.clear(); lcd.inverseMode(); lcd.setBrightness(0.5); /**Initialise the accelerometer.*/ mma8452.init(); Acceleration acceleration; /**When button is not pushed, main features of Spirit Level will be run.*/ while(!pb) { /**Read value of acceleration.*/ acceleration = mma8452.readValues();//read value of acceleration float Ax=acceleration.x; float Ay=acceleration.y; /**Draw three circles and two lines.*/ lcd.drawCircle(41,24,23,0); lcd.drawCircle(41,24,4,0); lcd.drawCircle(41,24,13,0); lcd.drawLine(41,3,41,45,1); lcd.drawLine(20,24,62,24,1); lcd.refresh(); /**Pixes will be displayed if acceleration values are within -0.4 and 0.4.*/ if (abs(Ax)<=0.4&&abs(Ay)<=0.4) { float X=Ax/0.018; float Y=Ay/0.018; lcd.setPixel(42+X, 26-Y); lcd.setPixel(41+X, 26-Y); lcd.setPixel(40+X, 26-Y); lcd.setPixel(43+X, 25-Y); lcd.setPixel(42+X, 25-Y); lcd.setPixel(41+X, 25-Y); lcd.setPixel(40+X, 25-Y); lcd.setPixel(39+X, 25-Y); lcd.setPixel(43+X, 24-Y); lcd.setPixel(42+X, 24-Y); lcd.setPixel(41+X, 24-Y); lcd.setPixel(40+X, 24-Y); lcd.setPixel(39+X, 24-Y); lcd.setPixel(43+X, 23-Y); lcd.setPixel(42+X, 23-Y); lcd.setPixel(41+X, 23-Y); lcd.setPixel(40+X, 23-Y); lcd.setPixel(39+X, 23-Y); lcd.setPixel(42+X, 22-Y); lcd.setPixel(41+X, 22-Y); lcd.setPixel(40+X, 22-Y); lcd.refresh(); /**Displayed pixes will be cleared after 0.2 second.*/ wait(0.2); lcd.clearPixel(42+X, 26-Y); lcd.clearPixel(41+X, 26-Y); lcd.clearPixel(40+X, 26-Y); lcd.clearPixel(43+X, 25-Y); lcd.clearPixel(42+X, 25-Y); lcd.clearPixel(41+X, 25-Y); lcd.clearPixel(40+X, 25-Y); lcd.clearPixel(39+X, 25-Y); lcd.clearPixel(43+X, 24-Y); lcd.clearPixel(42+X, 24-Y); lcd.clearPixel(41+X, 24-Y); lcd.clearPixel(40+X, 24-Y); lcd.clearPixel(39+X, 24-Y); lcd.clearPixel(43+X, 23-Y); lcd.clearPixel(42+X, 23-Y); lcd.clearPixel(41+X, 23-Y); lcd.clearPixel(40+X, 23-Y); lcd.clearPixel(39+X, 23-Y); lcd.clearPixel(42+X, 22-Y); lcd.clearPixel(41+X, 22-Y); lcd.clearPixel(40+X, 22-Y); lcd.refresh(); } /**All LEDs will be turned on if acceleration values are within -0.05 and 0.05.*/ if (abs(Ax)<=0.05&&abs(Ay)<=0.05) { ledA=1; ledB=1; ledC=1; ledD=1; } /**All LEDs will be turned off if acceleration values go beyond this range.*/ else { ledA=0; ledB=0; ledC=0; ledD=0; } } } /** @brief Display the function name of Angle Meter for 1 second before calling it. */ void fun1() { /**Initialise the LCD and set brightness to 0.8.*/ lcd.init(); lcd.normalMode(); lcd.setBrightness(0.8); lcd.clear(); /**Display the function name of Angle Meter.*/ lcd.printString("Electronic",12,2); lcd.printString("Angle Meter",10,3); /**Turn LED A and LED C on.*/ ledA=1; ledB=0; ledC=1; ledD=0; /**Call function of Angle Meter after 1 second delay.*/ flipper.attach(&AngleMeter, 1.0); } /** @brief Display the function name of Spirit Level for 1 second before calling it. */ void fun2() { /**Turn off the buzzer.*/ buzzer = 0; /**Initialise the LCD and set brightness to 0.8.*/ lcd.init(); lcd.normalMode(); lcd.setBrightness(0.8); lcd.clear(); /**Display the function name of Spirit Level.*/ lcd.printString("Electronic",12,2); lcd.printString("Spirit Level",7,3); /**Turn LED B and LED D on.*/ ledA=0; ledB=1; ledC=0; ledD=1; /**Call function of Spirit Level after 1 second delay.*/ flipper.attach(&SpiritLevel, 1.0); } /** @brief Power down the Ethernet interface to save power. @brief Acknowledgements to Michael Wei's code. */ void PHY_PowerDown() { if (!Peripheral_GetStatus(LPC1768_PCONP_PCENET)) EMAC_Init(); //init EMAC if it is not already init'd unsigned int regv; regv = read_PHY(PHY_REG_BMCR); write_PHY(PHY_REG_BMCR, regv | (1 << PHY_REG_BMCR_POWERDOWN)); regv = read_PHY(PHY_REG_BMCR); //shouldn't need the EMAC now. Peripheral_PowerDown(LPC1768_PCONP_PCENET); //and turn off the PHY OSC LPC_GPIO1->FIODIR |= 0x8000000; LPC_GPIO1->FIOCLR = 0x8000000; } static void write_PHY (unsigned int PhyReg, unsigned short Value) { /* Write a data 'Value' to PHY register 'PhyReg'. */ unsigned int tout; /* Hardware MII Management for LPC176x devices. */ LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg; LPC_EMAC->MWTD = Value; /* Wait utill operation completed */ for (tout = 0; tout < MII_WR_TOUT; tout++) { if ((LPC_EMAC->MIND & MIND_BUSY) == 0) { break; } } } static unsigned short read_PHY (unsigned int PhyReg) { /* Read a PHY register 'PhyReg'. */ unsigned int tout, val; LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg; LPC_EMAC->MCMD = MCMD_READ; /* Wait until operation completed */ for (tout = 0; tout < MII_RD_TOUT; tout++) { if ((LPC_EMAC->MIND & MIND_BUSY) == 0) { break; } } LPC_EMAC->MCMD = 0; val = LPC_EMAC->MRDD; return (val); } void EMAC_Init() { unsigned int tout,regv; /* Power Up the EMAC controller. */ Peripheral_PowerUp(LPC1768_PCONP_PCENET); LPC_PINCON->PINSEL2 = 0x50150105; LPC_PINCON->PINSEL3 &= ~0x0000000F; LPC_PINCON->PINSEL3 |= 0x00000005; /* Reset all EMAC internal modules. */ LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES; LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES; /* A short delay after reset. */ for (tout = 100; tout; tout--); /* Initialize MAC control registers. */ LPC_EMAC->MAC1 = MAC1_PASS_ALL; LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN; LPC_EMAC->MAXF = ETH_MAX_FLEN; LPC_EMAC->CLRT = CLRT_DEF; LPC_EMAC->IPGR = IPGR_DEF; /* Enable Reduced MII interface. */ LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM; /* Reset Reduced MII Logic. */ LPC_EMAC->SUPP = SUPP_RES_RMII; for (tout = 100; tout; tout--); LPC_EMAC->SUPP = 0; /* Put the DP83848C in reset mode */ write_PHY (PHY_REG_BMCR, 0x8000); /* Wait for hardware reset to end. */ for (tout = 0; tout < 0x100000; tout++) { regv = read_PHY (PHY_REG_BMCR); if (!(regv & 0x8000)) { /* Reset complete */ break; } } } /** @brief Functions used to display characters and shapes. @brief Acknowledgements to Dr.Craig A. Evans's code. */ N5110::N5110(PinName pwrPin, PinName scePin, PinName rstPin, PinName dcPin, PinName mosiPin, PinName sclkPin, PinName ledPin) { spi = new SPI(mosiPin,NC,sclkPin); // create new SPI instance and initialise initSPI(); // set up pins as required led = new PwmOut(ledPin); pwr = new DigitalOut(pwrPin); sce = new DigitalOut(scePin); rst = new DigitalOut(rstPin); dc = new DigitalOut(dcPin); } // initialise function - powers up and sends the initialisation commands void N5110::init() { turnOn(); // power up wait_ms(10); // small delay seems to prevent spurious pixels during mbed reset reset(); // reset LCD - must be done within 100 ms // function set - extended sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE); // Don't completely understand these parameters - they seem to work as they are // Consult the datasheet if you need to change them sendCommand(CMD_VOP_7V38); // operating voltage - these values are from Chris Yan's Library sendCommand(CMD_TC_TEMP_2); // temperature control sendCommand(CMD_BI_MUX_48); // bias // function set - basic sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE); normalMode(); // normal video mode by default sendCommand(CMD_DC_NORMAL_MODE); // black on white // RAM is undefined at power-up so clear clearRAM(); } // sets normal video mode (black on white) void N5110::normalMode() { sendCommand(CMD_DC_NORMAL_MODE); } // sets normal video mode (white on black) void N5110::inverseMode() { sendCommand(CMD_DC_INVERT_VIDEO); } // function to power up the LCD and backlight void N5110::turnOn() { // set brightness of LED - 0.0 to 1.0 - default is 50% setBrightness(0.5); pwr->write(1); // apply power } // function to power down LCD void N5110::turnOff() { setBrightness(0.0); // turn backlight off clearRAM(); // clear RAM to ensure specified current consumption // send command to ensure we are in basic mode sendCommand(0x20 | CMD_FS_ACTIVE_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_BASIC_MODE); // clear the display sendCommand(CMD_DC_CLEAR_DISPLAY); // enter the extended mode and power down sendCommand(0x20 | CMD_FS_POWER_DOWN_MODE | CMD_FS_HORIZONTAL_MODE | CMD_FS_EXTENDED_MODE); // small delay and then turn off the power pin wait_ms(10); pwr->write(0); } // function to change LED backlight brightness void N5110::setBrightness(float brightness) { // check whether brightness is within range if (brightness < 0.0) brightness = 0.0; if (brightness > 1.0) brightness = 1.0; // set PWM duty cycle led->write(brightness); } // pulse the active low reset line void N5110::reset() { rst->write(0); // reset the LCD rst->write(1); } // function to initialise SPI peripheral void N5110::initSPI() { spi->format(8,1); // 8 bits, Mode 1 - polarity 0, phase 1 - base value of clock is 0, data captured on falling edge/propagated on rising edge spi->frequency(4000000); // maximum of screen is 4 MHz } // send a command to the display void N5110::sendCommand(unsigned char command) { dc->write(0); // set DC low for command sce->write(0); // set CE low to begin frame spi->write(command); // send command dc->write(1); // turn back to data by default sce->write(1); // set CE high to end frame (expected for transmission of single byte) } // this function writes 0 to the 504 bytes to clear the RAM void N5110::clearRAM() { int i; sce->write(0); //set CE low to begin frame for(i = 0; i < WIDTH * HEIGHT; i++) { // 48 x 84 bits = 504 bytes spi->write(0x00); // send 0's } sce->write(1); // set CE high to end frame } // function to set the XY address in RAM for subsequenct data write void N5110::setXYAddress(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range sendCommand(0x80 | x); // send addresses to display with relevant mask sendCommand(0x40 | y); } } // These functions are used to set, clear and get the value of pixels in the display // Pixels are addressed in the range of 0 to 47 (y) and 0 to 83 (x). The refresh() // function must be called after set and clear in order to update the display void N5110::setPixel(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position in the data byte buffer[x][y/8] |= (1 << y%8); } } void N5110::clearPixel(int x, int y) { if (x>=0 && x<WIDTH && y>=0 && y<HEIGHT) { // check within range // calculate bank and shift 1 to required position (using bit clear) buffer[x][y/8] &= ~(1 << y%8); } } // function to refresh the display void N5110::refresh() { int i,j; setXYAddress(0,0); // important to set address back to 0,0 before refreshing display // address auto increments after printing string, so buffer[0][0] will not coincide // with top-left pixel after priting string sce->write(0); //set CE low to begin frame for(j = 0; j < BANKS; j++) { // be careful to use correct order (j,i) for horizontal addressing for(i = 0; i < WIDTH; i++) { spi->write(buffer[i][j]); // send buffer } } sce->write(1); // set CE high to end frame } // function to print string at specified position void N5110::printString(const char * str,int x,int y) { if (y>=0 && y<BANKS) { // check if printing in range of y banks int n = 0 ; // counter for number of characters in string // loop through string and print character while(*str) { // writes the character bitmap data to the buffer, so that // text and pixels can be displayed at the same time for (int i = 0; i < 5 ; i++ ) { int pixel_x = x+i+n*6; if (pixel_x > WIDTH-1) // ensure pixel isn't outside the buffer size (0 - 83) break; buffer[pixel_x][y] = font5x7[(*str - 32)*5 + i]; } str++; // go to next character in string n++; // increment index } refresh(); // this sends the buffer to the display and sets address (cursor) back to 0,0 } } // function to clear the screen void N5110::clear() { clearBuffer(); // clear the buffer then call the refresh function refresh(); } // function to clear the buffer void N5110::clearBuffer() { int i,j; for (i=0; i<WIDTH; i++) { // loop through the banks and set the buffer to 0 for (j=0; j<BANKS; j++) { buffer[i][j]=0; } } } // function to draw circle void N5110:: drawCircle(int x0,int y0,int radius,int fill) { // from http://en.wikipedia.org/wiki/Midpoint_circle_algorithm int x = radius; int y = 0; int radiusError = 1-x; while(x >= y) { // if transparent, just draw outline if (fill == 0) { setPixel( x + x0, y + y0); setPixel(-x + x0, y + y0); setPixel( y + x0, x + y0); setPixel(-y + x0, x + y0); setPixel(-y + x0, -x + y0); setPixel( y + x0, -x + y0); setPixel( x + x0, -y + y0); setPixel(-x + x0, -y + y0); } else { // drawing filled circle, so draw lines between points at same y value int type = (fill==1) ? 1:0; // black or white fill drawLine(x+x0,y+y0,-x+x0,y+y0,type); drawLine(y+x0,x+y0,-y+x0,x+y0,type); drawLine(y+x0,-x+y0,-y+x0,-x+y0,type); drawLine(x+x0,-y+y0,-x+x0,-y+y0,type); } y++; if (radiusError<0) { radiusError += 2 * y + 1; } else { x--; radiusError += 2 * (y - x) + 1; } } } void N5110::drawLine(int x0,int y0,int x1,int y1,int type) { int y_range = y1-y0; // calc range of y and x int x_range = x1-x0; int start,stop,step; // if dotted line, set step to 2, else step is 1 step = (type==2) ? 2:1; // make sure we loop over the largest range to get the most pixels on the display // for instance, if drawing a vertical line (x_range = 0), we need to loop down the y pixels // or else we'll only end up with 1 pixel in the x column if ( abs(x_range) > abs(y_range) ) { // ensure we loop from smallest to largest or else for-loop won't run as expected start = x1>x0 ? x0:x1; stop = x1>x0 ? x1:x0; // loop between x pixels for (int x = start; x<= stop ; x+=step) { // do linear interpolation int y = y0 + (y1-y0)*(x-x0)/(x1-x0); if (type == 0) // if 'white' line, turn off pixel clearPixel(x,y); else setPixel(x,y); // else if 'black' or 'dotted' turn on pixel } } else { // ensure we loop from smallest to largest or else for-loop won't run as expected start = y1>y0 ? y0:y1; stop = y1>y0 ? y1:y0; for (int y = start; y<= stop ; y+=step) { // do linear interpolation int x = x0 + (x1-x0)*(y-y0)/(y1-y0); if (type == 0) // if 'white' line, turn off pixel clearPixel(x,y); else setPixel(x,y); // else if 'black' or 'dotted' turn on pixel } } } MMA8452:: MMA8452(PinName sdaPin, PinName sclPin) { i2c = new I2C(sdaPin,sclPin); // create new I2C instance and initialise i2c->frequency(400000); // I2C Fast Mode - 400kHz leds = new BusOut(LED4,LED3,LED2,LED1); // for debug } void MMA8452::init() { i2c->frequency(400000); // set Fast Mode I2C frequency (5.10 datasheet) char data = readByteFromRegister(WHO_AM_I); // p18 datasheet if (data != 0x2A) { // if correct ID not found, hand and flash error message error(); } // put into STANDBY while configuring data = readByteFromRegister(CTRL_REG1); // get current value of register data &= ~(1<<0); // clear bit 0 (p37 datasheet) sendByteToRegister(data,CTRL_REG1); // Set output data rate, default is 800 Hz, will set to 100 Hz (clear b5, set b4/b3 - p37 datasheet) data = readByteFromRegister(CTRL_REG1); data &= ~(1<<5); data |= (1<<4); data |= (1<<3); sendByteToRegister(data,CTRL_REG1); //// Can also change default 2g range to 4g or 8g (p22 datasheet) data = readByteFromRegister(XYZ_DATA_CFG); data |= (1<<0); // set bit 0 - 4g range sendByteToRegister(data,XYZ_DATA_CFG); // set ACTIVE data = readByteFromRegister(CTRL_REG1); data |= (1<<0); // set bit 0 in CTRL_REG1 sendByteToRegister(data,CTRL_REG1); } // read acceleration data from device Acceleration MMA8452::readValues() { // acceleration data stored in 6 registers (0x01 to 0x06) // device automatically increments register, so can read 6 bytes starting from OUT_X_MSB char data[6]; readBytesFromRegister(OUT_X_MSB,6,data); char x_MSB = data[0]; // extract MSB and LSBs for x,y,z values char x_LSB = data[1]; char y_MSB = data[2]; char y_LSB = data[3]; char z_MSB = data[4]; char z_LSB = data[5]; // [0:7] of MSB are 8 MSB of 12-bit value , [7:4] of LSB are 4 LSB's of 12-bit value // need to type-cast as numbers are in signed (2's complement) form (p20 datasheet) int x = (int16_t) (x_MSB << 8) | x_LSB; // combine bytes x >>= 4; // are left-aligned, so shift 4 places right to right-align int y = (int16_t) (y_MSB << 8) | y_LSB; y >>= 4; int z = (int16_t) (z_MSB << 8) | z_LSB; z >>= 4; // sensitivity is 1024 counts/g in 2g mode (pg 9 datasheet) // " " 512 " 4g " // " " 256 " 8g " Acceleration acc; acc.x = x/512.0; acc.y = y/512.0; acc.z = z/512.0; return acc; } // reads a byte from a specific register char MMA8452::readByteFromRegister(char reg) { int nack = i2c->write(MMA8452_W_ADDRESS,®,1,true); // send the register address to the slave // true as need to send repeated start condition (5.10.1 datasheet) // http://www.i2c-bus.org/repeated-start-condition/ if (nack) error(); // if we don't receive acknowledgement, flash error message char rx; nack = i2c->read(MMA8452_R_ADDRESS,&rx,1); // read a byte from the register and store in buffer if (nack) error(); // if we don't receive acknowledgement, flash error message return rx; } // reads a series of bytes, starting from a specific register void MMA8452::readBytesFromRegister(char reg,int numberOfBytes,char bytes[]) { int nack = i2c->write(MMA8452_W_ADDRESS,®,1,true); // send the slave write address and the configuration register address // true as need to send repeated start condition (5.10.1 datasheet) // http://www.i2c-bus.org/repeated-start-condition/ if (nack) error(); // if we don't receive acknowledgement, flash error message nack = i2c->read(MMA8452_R_ADDRESS,bytes,numberOfBytes); // read bytes if (nack) error(); // if we don't receive acknowledgement, flash error message } // sends a byte to a specific register void MMA8452::sendByteToRegister(char byte,char reg) { char data[2]; data[0] = reg; data[1] = byte; // send the register address, followed by the data int nack = i2c->write(MMA8452_W_ADDRESS,data,2); if (nack) error(); // if we don't receive acknowledgement, flash error message } void MMA8452::error() { while(1) { leds->write(15); wait(0.1); leds->write(0); wait(0.1); } }