This program is for an autonomous robot for the competition at the Hochschule Luzern. We are one of the 32 teams. <a href="http://cruisingcrepe.wordpress.com/">http://cruisingcrepe.wordpress.com/</a> The postition control is based on this Documentation: Control of Wheeled Mobile Robots: An Experimental Overview from Alessandro De Luca, Giuseppe Oriolo, Marilena Vendittelli. For more information see here: <a href="http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf">http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf</a>

Dependencies:   mbed

Fork of autonomousRobotAndroid by Christian Burri

StateDefines/State.cpp

Committer:
chrigelburri
Date:
2013-03-21
Revision:
5:48a258f6335e
Parent:
4:3a97923ff2d4
Child:
6:48eeb41188dd

File content as of revision 5:48a258f6335e:

#include "State.h"

using namespace std;

// File
FILE *logp;

// LocalFileSystem
LocalFileSystem local("local");

State::State(state_t* s, RobotControl* robotControl, MaxonESCON* motorControllerLeft, MaxonESCON* motorControllerRight, /*HMC6352* compass,*/ AnalogIn* battery, float period) : Task(period)
{
    /* get peripherals */
    this->s = s;
    this->robotControl = robotControl;
    this->motorControllerLeft = motorControllerLeft;
    this->motorControllerRight = motorControllerRight;
    // this->compass = compass;
    this->battery =battery;
    this->period = period;
}

State::~State() {}

void State::initPlotFile(void)
{
    logp = fopen("/local/plots.txt", "w"); // only write
    if(logp == NULL) {
        exit(1);
    } else {
        fprintf(logp,
                "Time[ms]\t"
                "BatteryVoltage[V]\t"
                "NumberOfPulsesLeft\t"
                "NumberOfPulsesRight\t"
                "VelocityLeft[m/s]\t"
                "VelocityRight[m/s]\t"
                "VelocityCar[m/s]\t" //7
                "VelocityRotation[grad/s]\t"
                "X-AxisCo-ordinate[m]\t"
                "Y-AxisCo-ordinate[m]\t"
                "X-AxisError[m]\t"
                "X-AxisError[m]\t"
                "AngleError[grad]\t"
                "AngleCar[grad]\t"
                "SetpointX-Axis[m]\t" //15
                "SetpointY-Axis[m]\t"
                "SetpointAngel[grad]\t" //17
                "RightDistanceSensor[m]\t"
                "CompassAngle[grad]\t"
                "CompassX-Axis\t" //20
                "CompassY-Axis\t"
                "State\t"
                "distanceToGoal[m]\t" //23
                "angleToGoal[grad]\t"
                "thetaFromTheGoal[grad]\n");
    }
}


void State::savePlotFile(state_t s)
{
    char buf[256];

    sprintf(buf,"%d\t%f\t%d\t%d\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%d\t%f\t%f\t%f",
            s.millis,
            s.voltageBattery,
            s.leftPulses,
            s.rightPulses,
            s.leftVelocity,
            s.rightVelocity,
            s.velocity,
            s.omega,
            s.xAxis,
            s.yAxis,
            s.xAxisError,
            s.yAxisError,
            s.angleError,
            s.angle,
            s.setxAxis,
            s.setyAxis,
            s.setAngle,
            s.rightDist,
            s.compassAngle,
            s.compassxAxis,
            s.compassyAxis,
            s.state,
            s.rho,
            s.lamda,
            s.delta
           );

    if (logp)
        fprintf(logp, buf);
    fprintf(logp, "\n"); // new line
}

void State::savePlotText(char text[])
{
    fprintf(logp, text);
}

void State::closePlotFile(void)
{
    fclose(logp);
}

float State::readBattery()
{
    return battery->read()*BAT_MULTIPLICATOR;
}

void State::setBatteryBit()
{
    if(s->voltageBattery < BAT_MIN) {
        s->state |= STATE_UNDER;
    } else {
        s->state &= (~STATE_UNDER);
    }
}

void State::setEnableLeftBit()
{
    if(motorControllerLeft->isEnabled()) {
        s->state &= (~STATE_LEFT);
    } else {
        s->state |= STATE_LEFT;
    }
}

void State::setEnableRightBit()
{
    if(motorControllerRight->isEnabled()) {
        s->state &= (~STATE_RIGHT);
    } else {
        s->state |= STATE_RIGHT;
    }
}

void State::startTimerFromZero()
{
    timer.reset();
    timer.start();
}

void State::run()
{
    s->millis = timer.read_ms();
    s->voltageBattery = readBattery();
    s->leftPulses = - motorControllerLeft->getPulses();
    s->rightPulses = motorControllerRight->getPulses();
    s->leftVelocity = motorControllerLeft->getActualSpeed() * 2.0f * WHEEL_RADIUS * PI;
    s->rightVelocity = - motorControllerRight->getActualSpeed()* 2.0f * WHEEL_RADIUS * PI;
    s->velocity = robotControl->getActualSpeed();
    s->omega =  robotControl->getActualOmega();
    s->xAxis = robotControl->getxActualPosition();
    s->yAxis = robotControl->getyActualPosition();
    s->angle = robotControl->getActualTheta() * 180 / PI;
    s->xAxisError = robotControl->getxPositionError();
    s->yAxisError = robotControl->getyPositionError();
    s->angleError = robotControl->getThetaError() * 180 / PI;
    s->setxAxis = robotControl->getDesiredxPosition();
    s->setyAxis = robotControl->getDesiredyPosition();
    s->setAngle = robotControl->getDesiredTheta() * 180 / PI;
    // s->compassAngle = compass->getFilteredAngle() * 180 / PI;

    s->rho = robotControl->getDistanceError();
    s->lamda = robotControl->getThetaErrorToGoal() * 180 / PI;
    s->delta = robotControl->getThetaGoal() * 180 / PI;

    setBatteryBit();
    setEnableLeftBit();
    setEnableRightBit();

}