This program is for an autonomous robot for the competition at the Hochschule Luzern. http://cruisingcrepe.wordpress.com/ We are one of the 32 teams. http://cruisingcrepe.wordpress.com/ The postition control is based on this Documentation: Control of Wheeled Mobile Robots: An Experimental Overview from Alessandro De Luca, Giuseppe Oriolo, Marilena Vendittelli. For more information see here: http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf
Fork of autonomous Robot Android by
RobotControl/RobotControl.h
- Committer:
- chrigelburri
- Date:
- 2013-06-10
- Revision:
- 38:d76e488e725f
- Parent:
- 12:235e318a414f
File content as of revision 38:d76e488e725f:
#ifndef _ROBOT_CONTROL_H_ #define _ROBOT_CONTROL_H_ #include "MaxonESCON.h" #include "MotionState.h" #include "Task.h" #include "defines.h" /** * @author Christian Burri * * @copyright Copyright (c) 2013 HSLU Pren Team #1 Cruising Crêpe * All rights reserved. * * @brief * * This class controls the position of the robot. It has * a run loop that is called periodically. This run loop reads the actual * positions of the wheels, calculates the actual position and orientation * of the robot, calculates to move the robot * and writes these velocity values to the motor servo drives. * This class offers methods to enable or disable the controller, and to set * the desired x- and y-postion and the θ values of the robot. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ class RobotControl : public Task { private: MaxonESCON* motorControllerLeft; MaxonESCON* motorControllerRight; MotionState Desired; MotionState Actual; MotionState stateLeft; MotionState stateRight; float period; float speed; float omega; /** * @brief Add ±2π when the range of * the radian is over +π or under -π. * @param theta to check the value * @return the value in the range from -π to +π */ float PiRange(float theta); public: /** * @brief Creates a <code>Robot Control</code> object and * initializes all private state variables. * @param motorControllerLeft a reference to the servo * drive for the left motor * @param motorControllerRight a reference to the servo * drive for the right motor * @param period the sampling period of the run loop of * this controller, given in [s] */ RobotControl(MaxonESCON* motorControllerLeft, MaxonESCON* motorControllerRight, float period); /** * @brief Destructor of the Object to destroy the Object. **/ virtual ~RobotControl(); /** * @brief Enables or disables the servo drives of the motors. * @param enable if <code>true</code> enables the drives, * <code>false</code> otherwise * the servo drives are shut down. */ void setEnable(bool enable); /** * @brief Tests if the servo drives of the motors are enabled. * @return <code>true</code> if the drives are enabled, * <code>false</code> otherwise */ bool isEnabled(); /** * @brief Sets the desired translational speed of the robot. * @param speed the desired speed, given in [m/s] */ void setDesiredSpeed(float speed); /** * @brief Sets the desired rotational speed of the robot. * @param omega the desired rotational speed, given in [rad/s] */ void setDesiredOmega(float omega); /** * @brief Sets the desired X-position of the robot. * @param xposition the desired position, given in [m] */ void setDesiredxPosition(float xposition); /** * @brief Sets the desired Y-position of the robot. * @param yposition the desired position, given in [m] */ void setDesiredyPosition(float yposition); /** * @brief Sets the desired θ of the robot. * @param theta the desired θ, given in [rad] */ void setDesiredTheta(float theta); /** * @brief Get the desired X-position of the robot. * @return xposition the desired position, given in [m] */ float getDesiredxPosition(); /** * @brief Get the desired Y-position of the robot. * @return yposition the desired position, given in [m] */ float getDesiredyPosition(); /** * @brief Get the desired θ of the robot. * @return theta the desired θ, given in [rad] */ float getDesiredTheta(); /** * @brief Sets the desired Position and θ. * @param xposition the desired position, given in [m] * @param yposition the desired position, given in [m] * @param theta the desired θ, given in [rad] */ void setDesiredPositionAndAngle(float xposition, float yposition, float theta); /** * @brief Gets the desired θ of the goal point. * @return the desired θ, given in [rad] */ float getTheta(); /** * @brief Gets the desired translational speed of the robot. * @return the desired speed, given in [m/s] */ float getDesiredSpeed(); /** * @brief Gets the actual translational speed of the robot. * @return the desired speed, given in [m/s] */ float getActualSpeed(); /** * @brief Gets the desired rotational speed of the robot. * @return the desired speed, given in [rad/s] */ float getDesiredOmega(); /** * @brief Gets the actual rotational speed of the robot. * @return the desired speed, given in [rad/s] */ float getActualOmega(); /** * @brief Gets the actual translational X-position of the robot. * @return the actual position, given in [m] */ float getxActualPosition(); /** * @brief Gets the X-position following error of the robot. * @return the position following error, given in [m] */ float getxPositionError(); /** * @brief Gets the actual translational Y-position of the robot. * @return the actual position, given in [m] */ float getyActualPosition(); /** * @brief Gets the Y-position following error of the robot. * @return the position following error, given in [m] */ float getyPositionError(); /** * @brief Gets the actual orientation of the robot. * @return the orientation, given in [rad] */ float getActualTheta(); /** * @brief Gets the orientation following error of the robot. * @return the orientation following error, given in [rad] */ float getThetaError(); /** * @brief Gets the distance to disired point. Calculate with pythagoras. * @return distance to goal, given in [m] */ float getDistanceError(); /** * @brief Gets the θ ot the pointing vector to the goal right * the unicycle axis from actual point. * @return theta to goal, given in [rad] */ float getThetaErrorToGoal(); /** * @brief Gets the θ ot the pointing vector to the goal right the unicycle main axis. * @return theta from the goal, given in [rad] */ float getThetaGoal(); /** * @brief Set all state to zero, except the X-position, y-position and θ. * @param xZeroPos Sets the start X-position, given in [m] * @param yZeroPos Sets the start y-position, given in [m] * @param theta Sets the start θ, given in [rad] */ void setAllToZero(float xZeroPos, float yZeroPos, float theta); /** * @brief Run method actualize every period. */ void run(); }; #endif