This program is for an autonomous robot for the competition at the Hochschule Luzern. http://cruisingcrepe.wordpress.com/ We are one of the 32 teams. http://cruisingcrepe.wordpress.com/ The postition control is based on this Documentation: Control of Wheeled Mobile Robots: An Experimental Overview from Alessandro De Luca, Giuseppe Oriolo, Marilena Vendittelli. For more information see here: http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf

Dependencies:   mbed

Fork of autonomous Robot Android by Christian Burri

main.cpp

Committer:
chrigelburri
Date:
2013-03-23
Revision:
6:48eeb41188dd
Parent:
5:48a258f6335e
Child:
7:34be8b3a979c

File content as of revision 6:48eeb41188dd:

/**
 * \mainpage Index Page
 * 
 * @file main.cpp
 * @author Christian Burri
 *
 * @section LICENSE
 *
 * Copyright © 2013 HSLU Pren Team #1 Cruising Crêpe
 * All rights reserved.
 *
 * @section DESCRIPTION
 *
 * This Programm is for a autonomous robot for the competition
 * at the Hochschule Luzern.
 * We are one of the 32 teams. In the team #1 is:
 * - Bauernfeind Julia <B>WI</B> <a href="julia.bauernfeind@stud.hslu.ch">julia.bauernfeind@stud.hslu.ch</a>
 * - Büttler Pirmin <B>WI</B> <a href="pirmin.buetler@stud.hslu.ch">pirmin.buetler@stud.hslu.ch</a>
 * - Amberg Reto <B>I</B> <a href="reto.amberg@stud.hslu.ch">reto.amberg@stud.hslu.ch</a>
 * - Galliker Arno <B>I</B> <a href="arno.galliker@stud.hslu.ch">arno.galliker@stud.hslu.ch</a>
 * - Amrein Marcel <B>M</B> <a href="marcel.amrein@stud.hslu.ch">marcel.amrein@stud.hslu.ch</a>
 * - Flühler Ramon <B>M</B> <a href="ramon.fluehler@stud.hslu.ch">ramon.fluehler@stud.hslu.ch</a>
 * - Burri Christian <B>ET</B> <a href="christian.burri@stud.hslu.ch">christian.burri@stud.hslu.ch</a>
 *
 * The postition control is based on polar coordiantes.
 * For more information see here: <a href="http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf">a href="http://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf</a>
 *
 */

#include "mbed.h"
#include "math.h"
#include "defines.h"
#include "State.h"
#include "HMC5883L.h"
#include "HMC6352.h"
#include "RobotControl.h"
#include "Ping.h"
#include "PowerControl/EthernetPowerControl.h"
//#include "android.h"

//Android
//AdkTerm AdkTerm;

// LiPo Batterie
AnalogIn battery(p15);           // Battery check

// compass
//HMC5883L compass(p9, p10, PERIOD_COMPASS);       // sda, sdl (I2C)
//HMC6352 compass(p9, p10, PERIOD_COMPASS);        // sda, sdl (I2C)

//Hallsensor
//hall1, hall2, hall3
Hallsensor hallLeft(p18, p17, p16);
//hall1, hall2, hall3
Hallsensor hallRight(p27, p28, p29);

// Motors
//enb, ready, pwm, actualSpeed, Hallsensor object
MaxonESCON leftMotor(p26, p25, p24, p19, &hallLeft);
//enb, ready, pwm, actualSpeed, Hallsensor object
MaxonESCON rightMotor(p23, p22, p21, p20, &hallRight);

// Robot Control
RobotControl robotControl (&leftMotor, &rightMotor, /*&compass,*/ PERIOD_ROBOTCONTROL);

// Logging & State
state_t s; // stuct state
State state(&s, &robotControl, &leftMotor, &rightMotor, /*&compass,*/ &battery, PERIOD_STATE);

// PC USB communications
Serial pc(USBTX, USBRX);

DigitalOut myled(LED1);


// LiPo Batterie
float batterie_voltage;

int main()
{
    /** Normal mbed power level for this setup is around 690mW
    * assuming 5V used on Vin pin
    * If you don't need networking...
    * Power down Ethernet interface - saves around 175mW
    * Also need to unplug network cable - just a cable sucks power
    */
    PHY_PowerDown();

    //  robotControl.start();
    //  compass.setOpMode(HMC6352_CONTINUOUS, 1, 20);
    //  compass.start();

    state.initPlotFile();

    robotControl.start();
    robotControl.setEnable(false);
    wait(0.1);
    robotControl.setEnable(true);
    wait(0.1);
    robotControl.setAllToZero(0, 0, PI/2 );
  //  robotControl.setAllToZero(START_X_OFFSET, START_Y_OFFSET, PI/2 );

    leftMotor.setPulses(0);
    rightMotor.setPulses(0);

    state.startTimerFromZero();
    state.start();

   // robotControl.setDesiredPositionAndAngle(START_X_OFFSET, START_Y_OFFSET, PI/2);
  //  robotControl.setDesiredPositionAndAngle(0, 0, PI/2);
    wait(0.1);
    
    //////////////////////////////////////////
    
            robotControl.setDesiredPositionAndAngle(0.0f, 1.0f,  PI);
        while(!(robotControl.getDistanceError() <= 0.1)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.00f, 1.0f,  -PI/2);
        while(!(robotControl.getDistanceError() <= 0.1)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.0f, 0.0f,  0);
        while(!(robotControl.getDistanceError() <= 0.1)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(0.0, 0.0f,  PI/2);
        while(!(s.millis >= 55000)) {
            state.savePlotFile(s);
        };
    
    
    
    
    
    
    
    
    
    
    
    
    ////////////////////////////////////////////////////////////////////////
    
    

    //Zum Umfang einstellen
    /*
    robotControl.setDesiredPositionAndAngle(0.0f, 1.0f,  PI/2);
    while(!(s.millis >= 20000)) {
        state.savePlotFile(s);
    };
    

*/

    ///////////////oder//////////////////


    // Zum radabstand einstellen
      
    /*
    int sek = 1000;
    int step = 1000;
    int i = 0;
    int totalTurns = 5;

    while(i >= totalTurns) {
        robotControl.setDesiredPositionAndAngle(0.0f, 0.0f,  PI);
        while(!(s.millis >= sek)) {
            state.savePlotFile(s);
        };
        sek += step;

        robotControl.setDesiredPositionAndAngle(0.0f, 0.0f,  -PI/2);
        while(!(s.millis >= sek)) {
            state.savePlotFile(s);
        };
        sek += step;

        robotControl.setDesiredPositionAndAngle(0.0f, 0.0f,  0);
        while(!(s.millis >= sek)) {
            state.savePlotFile(s);
        };
        sek += step;

        robotControl.setDesiredPositionAndAngle(0.0f, 0.0f,  PI/2);
        while(!(s.millis >= sek)) {
            state.savePlotFile(s);
        };
        sek += step;

        i++;
    }
*/


////////////////////////////////////////////////////////



    //  Epä Parkour fahrä
/*
        robotControl.setDesiredPositionAndAngle(START_X_OFFSET, START_Y_OFFSET, PI/2);
        wait(0.1);

        robotControl.setDesiredPositionAndAngle(-1.20f, 1.50f,  3*PI/4);
        while(!(robotControl.getDistanceError() <= 0.4)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.20f, 2.5f,  PI/4);
        while(!(robotControl.getDistanceError() <= 0.4)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-0.45f, 3.2f,  3*PI/4);
        while(!(robotControl.getDistanceError() <= 0.4)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.0f, 3.6f,  PI);
        while(!(robotControl.getDistanceError() <= 0.2)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.5f, 3.6f,  PI);
        while(!(robotControl.getDistanceError() <= 0.1)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-2.5f, 3.0f,  -PI/2);
        while(!(robotControl.getDistanceError() <= 0.4)) {
            state.savePlotFile(s);
        };

        robotControl.setDesiredPositionAndAngle(-1.75f, 1.30f,  -PI/2);
        while(!(robotControl.getDistanceError() <= 0.06)) {
            state.savePlotFile(s);
        };
        

    */
    
    
    
    
    /*
        printf("here we go... \n");
        AdkTerm.setupDevice();
        printf("Android Development Kit: start\r\n");
        USBInit();
        while (!(s.millis >= 60000)) {
            USBLoop();

            printf("x: %f y: %f theta: %f", AdkTerm.getx(), AdkTerm.getx(), AdkTerm.getx() )

            if( AdkTerm.getx() == 99) {
                break;
            }
        }
    */

    state.savePlotFile(s);
    state.closePlotFile();
    state.stop();
    robotControl.setEnable(false);
}