things are working
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of CDMS_DEC_2016_jan by
cdms_sd.cpp
- Committer:
- pradeepvk2208
- Date:
- 2016-01-21
- Revision:
- 1:ad3b8a8032e2
- Parent:
- 0:bcbd76c86cde
File content as of revision 1:ad3b8a8032e2:
#include "cdms_sd.h" SPI spi_sd(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order) DigitalOut cs_sd(PTE22); Serial sd1(USBTX,USBRX); int cdv; uint64_t sd_sectors(); uint64_t sectors; void FCTN_CDMS_SD_INIT() { initialise_card(); disk_initialize(); } uint32_t FCTN_SD_MNGR(uint8_t sid) { uint32_t SD_MNG_SECT=7000; uint32_t fsc; uint8_t buffer[512]; int b=disk_read(buffer, SD_MNG_SECT); if(sid==0x0) { fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; uint32_t next_fsc=fsc+1; buffer[0]=(uint8_t) (next_fsc>>24 & 0xFF); buffer[1]=(uint8_t) (next_fsc>>16 & 0xFF); buffer[2]=(uint8_t) (next_fsc>>8 & 0xFF); buffer[3]=(uint8_t) (next_fsc & 0xFF); buffer[511]+=2; disk_write(buffer,SD_MNG_SECT); } if(sid==0x1) { fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; uint32_t next_fsc=fsc+1; buffer[4]=(uint8_t) (next_fsc>>24 & 0xFF); buffer[5]=(uint8_t) (next_fsc>>16 & 0xFF); buffer[6]=(uint8_t) (next_fsc>>8 & 0xFF); buffer[7]=(uint8_t) (next_fsc & 0xFF); buffer[511]+=2; disk_write(buffer,SD_MNG_SECT); } if(sid==0x2) { fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; uint32_t next_fsc=fsc+1; buffer[8]=(uint8_t) (next_fsc>>24 & 0xFF); buffer[9]=(uint8_t) (next_fsc>>16 & 0xFF); buffer[10]=(uint8_t) (next_fsc>>8 & 0xFF); buffer[11]=(uint8_t) (next_fsc & 0xFF); buffer[511]+=2; disk_write(buffer,SD_MNG_SECT); } if(sid==0x3) { fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; uint32_t next_fsc=fsc+1; buffer[12]=(uint8_t) (next_fsc>>24 & 0xFF); buffer[13]=(uint8_t) (next_fsc>>16 & 0xFF); buffer[14]=(uint8_t) (next_fsc>>8 & 0xFF); buffer[15]=(uint8_t) (next_fsc & 0xFF); buffer[511]+=2; disk_write(buffer,SD_MNG_SECT); } if(sid==0x4) { fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; uint32_t next_fsc=fsc+1; buffer[16]=(uint8_t) (next_fsc>>24 & 0xFF); buffer[17]=(uint8_t) (next_fsc>>16 & 0xFF); buffer[18]=(uint8_t) (next_fsc>>8 & 0xFF); buffer[19]=(uint8_t) (next_fsc & 0xFF); buffer[511]+=2; disk_write(buffer,SD_MNG_SECT); } return fsc; } int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid) { uint32_t SD_SCP_FIRST=1001; uint32_t SD_SCP_LAST=2000; uint32_t SD_SFF_AT_FIRST=2001; uint32_t SD_SFF_AT_LAST = 3000; uint32_t SD_SFF_BT_FIRST =3001; uint32_t SD_SFF_BT_LAST=4000; uint32_t SD_HK_ARCH_FIRST=4001; uint32_t SD_HK_ARCH_LAST= 5000; uint32_t LOG_FIRST =5001; uint32_t LOG_LAST=6000; uint32_t SD_MNG_SECT=7000; uint32_t block_number; int result; if(sid==0x0) { block_number=SD_SCP_FIRST+fsc; printf("write_block_number=%d\r\n",block_number); result= disk_write(buffer,block_number); return result; } if(sid==0x1) { block_number=SD_SFF_AT_FIRST + fsc; result= disk_write(buffer,block_number); return result; } if(sid==0x2) { block_number=SD_SFF_BT_FIRST + fsc; result= disk_write(buffer,block_number); return result; } if(sid==0x3) { block_number=SD_HK_ARCH_FIRST+fsc; sd1.printf("Block number is %d \r\n",block_number); result= disk_write(buffer,block_number); return result; } if(sid==0x4) { block_number=LOG_FIRST +fsc; result= disk_write(buffer,block_number); return result; } return 1; } int SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid) { uint32_t SD_SCP_FIRST=1001; uint32_t SD_SCP_LAST=2000; uint32_t SD_SFF_AT_FIRST=2001; uint32_t SD_SFF_AT_LAST = 3000; uint32_t SD_SFF_BT_FIRST =3001; uint32_t SD_SFF_BT_LAST=4000; uint32_t SD_HK_ARCH_FIRST=4001; uint32_t SD_HK_ARCH_LAST= 5000; uint32_t LOG_FIRST =5001; uint32_t LOG_LAST=6000; uint32_t SD_MNG_SECT=7000; uint32_t block_number; int result; if(sid==0x0) { block_number=SD_SCP_FIRST + fsc; sd1.printf("read_block_number=%d\r\n",block_number); result= disk_read(buffer,block_number); } else if(sid==0x1) { block_number=SD_SFF_AT_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x2) { block_number=SD_SFF_BT_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x3) { block_number=SD_HK_ARCH_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x4) { block_number=LOG_FIRST +fsc; result= disk_read(buffer,block_number); } else { return 1; } return result; } int initialise_card() { // Set to 100kHz for initialisation, and clock card with cs_sd = 1 spi_sd.frequency(100000); // changed on 31 12 2015 to 1 MHz cs_sd = 1; for (int i = 0; i < 16; i++) { spi_sd.write(0xFF); } // send CMD0, should return with all zeros except IDLE STATE set (bit 0) if (cmd(0, 0) != R1_IDLE_STATE) { debug("No disk, or could not put SD card in to spi_sd idle state\r\n"); return SDCARD_FAIL; } // send CMD8 to determine whther it is ver 2.x int r = cmd8(); if (r == R1_IDLE_STATE) { printf("\rEntering v2\r\n"); return initialise_card_v2(); } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { printf("\rEntering v1\r\n"); return initialise_card_v1(); } else { debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n"); return SDCARD_FAIL; } } int initialise_card_v1() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { cmd(55, 0); if (cmd(41, 0) == 0) { printf("\rv1 initialization successfull\r\n"); cdv = 512; debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); return SDCARD_V1; } } debug("\rTimeout waiting for v1.x card\r\n"); return SDCARD_FAIL; } int initialise_card_v2() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { wait_ms(50); cmd58(); cmd(55, 0); if (cmd(41, 0x40000000) == 0) { printf("\rv2 initialization successfull\r\n"); cmd58(); debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); cdv = 1; return SDCARD_V2; } } debug("\rTimeout waiting for v2.x card\r\n"); return SDCARD_FAIL; } int cmd(int cmd, int arg) { cs_sd = 0; // send a command spi_sd.write(0x40 | cmd); spi_sd.write(arg >> 24); spi_sd.write(arg >> 16); spi_sd.write(arg >> 8); spi_sd.write(arg >> 0); spi_sd.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi_sd.write(0xFF); if (!(response & 0x80)) { cs_sd = 1; spi_sd.write(0xFF); return response; } } cs_sd = 1; spi_sd.write(0xFF); return -1; // timeout } int cmd58() { cs_sd = 0; int arg = 0; // send a command spi_sd.write(0x40 | 58); spi_sd.write(arg >> 24); spi_sd.write(arg >> 16); spi_sd.write(arg >> 8); spi_sd.write(arg >> 0); spi_sd.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi_sd.write(0xFF); if (!(response & 0x80)) { int ocr = spi_sd.write(0xFF) << 24; ocr |= spi_sd.write(0xFF) << 16; ocr |= spi_sd.write(0xFF) << 8; ocr |= spi_sd.write(0xFF) << 0; cs_sd = 1; spi_sd.write(0xFF); return response; } } cs_sd = 1; spi_sd.write(0xFF); return -1; // timeout } int cmd8() { cs_sd = 0; // send a command spi_sd.write(0x40 | 8); // CMD8 spi_sd.write(0x00); // reserved spi_sd.write(0x00); // reserved spi_sd.write(0x01); // 3.3v spi_sd.write(0xAA); // check pattern spi_sd.write(0x87); // crc // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { char response[5]; response[0] = spi_sd.write(0xFF); if (!(response[0] & 0x80)) { for (int j = 1; j < 5; j++) { response[i] = spi_sd.write(0xFF); } cs_sd = 1; spi_sd.write(0xFF); return response[0]; } } cs_sd = 1; spi_sd.write(0xFF); return -1; // timeout } uint64_t sd_sectors() { uint32_t c_size, c_size_mult, read_bl_len; uint32_t block_len, mult, blocknr, capacity; uint32_t hc_c_size; uint64_t blocks; // CMD9, Response R2 (R1 byte + 16-byte block read) if (cmdx(9, 0) != 0) { debug("\rDidn't get a response from the disk\n"); return 0; } uint8_t cs_sdd[16]; if (read(cs_sdd, 16) != 0) { debug("\rCouldn't read cs_sdd response from disk\n"); return 0; } // cs_sdd_structure : cs_sdd[127:126] // c_size : cs_sdd[73:62] // c_size_mult : cs_sdd[49:47] // read_bl_len : cs_sdd[83:80] - the *maximum* read block length int cs_sdd_structure = ext_bits(cs_sdd, 127, 126); switch (cs_sdd_structure) { case 0: cdv = 512; c_size = ext_bits(cs_sdd, 73, 62); c_size_mult = ext_bits(cs_sdd, 49, 47); read_bl_len = ext_bits(cs_sdd, 83, 80); block_len = 1 << read_bl_len; mult = 1 << (c_size_mult + 2); blocknr = (c_size + 1) * mult; capacity = blocknr * block_len; blocks = capacity / 512; debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); break; case 1: cdv = 1; hc_c_size = ext_bits(cs_sdd, 63, 48); blocks = (hc_c_size+1)*1024; debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); break; default: debug("cs_sdD struct unsupported\r\n"); return 0; }; return blocks; } int cmdx(int cmd, int arg) { cs_sd = 0; // send a command spi_sd.write(0x40 | cmd); spi_sd.write(arg >> 24); spi_sd.write(arg >> 16); spi_sd.write(arg >> 8); spi_sd.write(arg >> 0); spi_sd.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi_sd.write(0xFF); if (!(response & 0x80)) { return response; } } cs_sd = 1; spi_sd.write(0xFF); return -1; // timeout } static uint32_t ext_bits(unsigned char *data, int msb, int lsb) { uint32_t bits = 0; uint32_t size = 1 + msb - lsb; for (int i = 0; i < size; i++) { uint32_t position = lsb + i; uint32_t byte = 15 - (position >> 3); uint32_t bit = position & 0x7; uint32_t value = (data[byte] >> bit) & 1; bits |= value << i; } return bits; } int disk_initialize() { int i = initialise_card(); debug_if(SD_DBG, "init card = %d\n", i); sectors = sd_sectors(); // Set block length to 512 (CMD16) if (cmd(16, 512) != 0) { debug("\rSet 512-byte block timed out\r\n"); return 1; } else { printf("\rDisk initialization successfull\r\n"); } spi_sd.frequency(1000000); // Set to 1MHz for data transfer return 0; } int disk_write(const uint8_t *buffer, uint64_t block_number) { // set write address for single block (CMD24) if (cmd(24, block_number * cdv) != 0) { return 1; } // send the data block write(buffer, 512); //printf("Written Successfully bro \n"); return 0; } int write(const uint8_t*buffer, uint32_t length) { cs_sd = 0; // indicate start of block spi_sd.write(0xFE); // write the data for (int i = 0; i < length; i++) { spi_sd.write(buffer[i]); } // write the checksum spi_sd.write(0xFF); spi_sd.write(0xFF); // check the response token if ((spi_sd.write(0xFF) & 0x1F) != 0x05) { cs_sd = 1; spi_sd.write(0xFF); return 1; } // wait for write to finish while (spi_sd.write(0xFF) == 0); cs_sd = 1; spi_sd.write(0xFF); return 0; } int disk_read(uint8_t *buffer, uint64_t block_number) { // set read address for single block (CMD17) if (cmd(17, block_number * cdv) != 0) { return 1; } // receive the data read(buffer, 512); return 0; } int read(uint8_t *buffer, uint32_t length) { cs_sd = 0; // read until start byte (0xFF) while (spi_sd.write(0xFF) != 0xFE); // read data for (int i = 0; i < length; i++) { buffer[i] = spi_sd.write(0xFF); } spi_sd.write(0xFF); // checksum spi_sd.write(0xFF); cs_sd = 1; spi_sd.write(0xFF); return 0; } int disk_erase(int startBlock, int totalBlocks) { if(cmd(32, startBlock * cdv) != 0) { return 1; } if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) { return 1; } if (cmd(38,0) != 0) { return 1; } return 0; //normal return }