plot accelerometer data
Dependents: ORIGINAL_SEND_ACC_DATA_TO_PLOTTER
LSM9DS1.cpp
- Committer:
- chebbi
- Date:
- 2020-06-25
- Revision:
- 3:f41e43493008
- Parent:
- 2:36abf8e18ade
- Child:
- 4:0396042de602
File content as of revision 3:f41e43493008:
/****************************************************************************** SFE_LSM9DS1.cpp SFE_LSM9DS1 Library Source File Jim Lindblom @ SparkFun Electronics Original Creation Date: February 27, 2015 https://github.com/sparkfun/LSM9DS1_Breakout This file implements all functions of the LSM9DS1 class. Functions here range from higher level stuff, like reading/writing LSM9DS1 registers to low-level, hardware reads and writes. Both SPI and I2C handler functions can be found towards the bottom of this file. Development environment specifics: IDE: Arduino 1.6 Hardware Platform: Arduino Uno LSM9DS1 Breakout Version: 1.0 This code is beerware; if you see me (or any other SparkFun employee) at the local, and you've found our code helpful, please buy us a round! Distributed as-is; no warranty is given. ******************************************************************************/ #include "LSM9DS1.h" #include "LSM9DS1_Registers.h" #include "LSM9DS1_Types.h" //#include <Wire.h> // Wire library is used for I2C //#include <SPI.h> // SPI library is used for...SPI. //#if defined(ARDUINO) && ARDUINO >= 100 // #include "Arduino.h" //#else // #include "WProgram.h" //#endif #define LSM9DS1_COMMUNICATION_TIMEOUT 1000 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; extern Serial pc; LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) :i2c(sda, scl) { init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B } /* LSM9DS1::LSM9DS1() { init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1)); } LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) { init(interface, xgAddr, mAddr); } */ void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) { settings.device.commInterface = interface; settings.device.agAddress = xgAddr; settings.device.mAddress = mAddr; settings.gyro.enabled = true; settings.gyro.enableX = true; settings.gyro.enableY = true; settings.gyro.enableZ = true; // gyro scale can be 245, 500, or 2000 settings.gyro.scale = 245; // gyro sample rate: value between 1-6 // 1 = 14.9 4 = 238 // 2 = 59.5 5 = 476 // 3 = 119 6 = 952 settings.gyro.sampleRate = 6; // gyro cutoff frequency: value between 0-3 // Actual value of cutoff frequency depends // on sample rate. settings.gyro.bandwidth = 0; settings.gyro.lowPowerEnable = false; settings.gyro.HPFEnable = false; // Gyro HPF cutoff frequency: value between 0-9 // Actual value depends on sample rate. Only applies // if gyroHPFEnable is true. settings.gyro.HPFCutoff = 0; settings.gyro.flipX = false; settings.gyro.flipY = false; settings.gyro.flipZ = false; settings.gyro.orientation = 0; settings.gyro.latchInterrupt = true; settings.accel.enabled = true; settings.accel.enableX = true; settings.accel.enableY = true; settings.accel.enableZ = true; // accel scale can be 2, 4, 8, or 16 settings.accel.scale = 4; // accel sample rate can be 1-6 // 1 = 10 Hz 4 = 238 Hz // 2 = 50 Hz 5 = 476 Hz // 3 = 119 Hz 6 = 952 Hz settings.accel.sampleRate = 1; // Accel cutoff freqeuncy can be any value between -1 - 3. // -1 = bandwidth determined by sample rate // 0 = 408 Hz 2 = 105 Hz // 1 = 211 Hz 3 = 50 Hz settings.accel.bandwidth = -1; settings.accel.highResEnable = false; // accelHighResBandwidth can be any value between 0-3 // LP cutoff is set to a factor of sample rate // 0 = ODR/50 2 = ODR/9 // 1 = ODR/100 3 = ODR/400 settings.accel.highResBandwidth = 0; settings.mag.enabled = true; // mag scale can be 4, 8, 12, or 16 settings.mag.scale = 4; // mag data rate can be 0-7 // 0 = 0.625 Hz 4 = 10 Hz // 1 = 1.25 Hz 5 = 20 Hz // 2 = 2.5 Hz 6 = 40 Hz // 3 = 5 Hz 7 = 80 Hz settings.mag.sampleRate = 7; settings.mag.tempCompensationEnable = false; // magPerformance can be any value between 0-3 // 0 = Low power mode 2 = high performance // 1 = medium performance 3 = ultra-high performance settings.mag.XYPerformance = 3; settings.mag.ZPerformance = 3; settings.mag.lowPowerEnable = false; // magOperatingMode can be 0-2 // 0 = continuous conversion // 1 = single-conversion // 2 = power down settings.mag.operatingMode = 0; settings.temp.enabled = true; for (int i=0; i<3; i++) { gBias[i] = 0; aBias[i] = 0; mBias[i] = 0; gBiasRaw[i] = 0; aBiasRaw[i] = 0; mBiasRaw[i] = 0; } _autoCalc = false; } uint16_t LSM9DS1::begin() { //! Todo: don't use _xgAddress or _mAddress, duplicating memory _xgAddress = settings.device.agAddress; _mAddress = settings.device.mAddress; constrainScales(); // Once we have the scale values, we can calculate the resolution // of each sensor. That's what these functions are for. One for each sensor calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable calcaRes(); // Calculate g / ADC tick, stored in aRes variable // Now, initialize our hardware interface. if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C initI2C(); // Initialize I2C else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI initSPI(); // Initialize SPI // To verify communication, we can read from the WHO_AM_I register of // each device. Store those in a variable so we can return them. uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); uint16_t whoAmICombined = (xgTest << 8) | mTest; if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) return 0; // Gyro initialization stuff: initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. // Accelerometer initialization stuff: initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. // Magnetometer initialization stuff: initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. // Once everything is initialized, return the WHO_AM_I registers we read: return whoAmICombined; } void LSM9DS1::initGyro() { uint8_t tempRegValue = 0; // CTRL_REG1_G (Default value: 0x00) // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] // ODR_G[2:0] - Output data rate selection // FS_G[1:0] - Gyroscope full-scale selection // BW_G[1:0] - Gyroscope bandwidth selection // To disable gyro, set sample rate bits to 0. We'll only set sample // rate if the gyro is enabled. if (settings.gyro.enabled) { tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; } switch (settings.gyro.scale) { case 500: tempRegValue |= (0x1 << 3); break; case 2000: tempRegValue |= (0x3 << 3); break; // Otherwise we'll set it to 245 dps (0x0 << 4) } tempRegValue |= (settings.gyro.bandwidth & 0x3); xgWriteByte(CTRL_REG1_G, tempRegValue); // CTRL_REG2_G (Default value: 0x00) // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] // INT_SEL[1:0] - INT selection configuration // OUT_SEL[1:0] - Out selection configuration xgWriteByte(CTRL_REG2_G, 0x00); // CTRL_REG3_G (Default value: 0x00) // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] // LP_mode - Low-power mode enable (0: disabled, 1: enabled) // HP_EN - HPF enable (0:disabled, 1: enabled) // HPCF_G[3:0] - HPF cutoff frequency tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; if (settings.gyro.HPFEnable) { tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); } xgWriteByte(CTRL_REG3_G, tempRegValue); // CTRL_REG4 (Default value: 0x38) // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] // Zen_G - Z-axis output enable (0:disable, 1:enable) // Yen_G - Y-axis output enable (0:disable, 1:enable) // Xen_G - X-axis output enable (0:disable, 1:enable) // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) tempRegValue = 0; if (settings.gyro.enableZ) tempRegValue |= (1<<5); if (settings.gyro.enableY) tempRegValue |= (1<<4); if (settings.gyro.enableX) tempRegValue |= (1<<3); if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); xgWriteByte(CTRL_REG4, tempRegValue); // ORIENT_CFG_G (Default value: 0x00) // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) // Orient [2:0] - Directional user orientation selection tempRegValue = 0; if (settings.gyro.flipX) tempRegValue |= (1<<5); if (settings.gyro.flipY) tempRegValue |= (1<<4); if (settings.gyro.flipZ) tempRegValue |= (1<<3); xgWriteByte(ORIENT_CFG_G, tempRegValue); } void LSM9DS1::initAccel() { uint8_t tempRegValue = 0; // CTRL_REG5_XL (0x1F) (Default value: 0x38) // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples // Zen_XL - Z-axis output enabled // Yen_XL - Y-axis output enabled // Xen_XL - X-axis output enabled if (settings.accel.enableZ) tempRegValue |= (1<<5); if (settings.accel.enableY) tempRegValue |= (1<<4); if (settings.accel.enableX) tempRegValue |= (1<<3); xgWriteByte(CTRL_REG5_XL, tempRegValue); // CTRL_REG6_XL (0x20) (Default value: 0x00) // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] // ODR_XL[2:0] - Output data rate & power mode selection // FS_XL[1:0] - Full-scale selection // BW_SCAL_ODR - Bandwidth selection // BW_XL[1:0] - Anti-aliasing filter bandwidth selection tempRegValue = 0; // To disable the accel, set the sampleRate bits to 0. if (settings.accel.enabled) { tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; } switch (settings.accel.scale) { case 4: tempRegValue |= (0x2 << 3); break; case 8: tempRegValue |= (0x3 << 3); break; case 16: tempRegValue |= (0x1 << 3); break; // Otherwise it'll be set to 2g (0x0 << 3) } if (settings.accel.bandwidth >= 0) { tempRegValue |= (1<<2); // Set BW_SCAL_ODR tempRegValue |= (settings.accel.bandwidth & 0x03); } xgWriteByte(CTRL_REG6_XL, tempRegValue); // CTRL_REG7_XL (0x21) (Default value: 0x00) // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] // HR - High resolution mode (0: disable, 1: enable) // DCF[1:0] - Digital filter cutoff frequency // FDS - Filtered data selection // HPIS1 - HPF enabled for interrupt function tempRegValue = 0; if (settings.accel.highResEnable) { tempRegValue |= (1<<7); // Set HR bit tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; } xgWriteByte(CTRL_REG7_XL, tempRegValue); } // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to // subtract the biases ourselves. This results in a more accurate measurement in general and can // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner // is good practice. void LSM9DS1::calibrate(bool autoCalc) { uint8_t data[6] = {0, 0, 0, 0, 0, 0}; uint8_t samples = 0; int ii; int32_t aBiasRawTemp[3] = {0, 0, 0}; int32_t gBiasRawTemp[3] = {0, 0, 0}; pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r"); wait(1); // Turn on FIFO and set threshold to 32 samples enableFIFO(true); setFIFO(FIFO_THS, 0x1F); while (samples < 0x1F) { samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples } for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO readGyro(); gBiasRawTemp[0] += gx; gBiasRawTemp[1] += gy; gBiasRawTemp[2] += gz; readAccel(); aBiasRawTemp[0] += ax; aBiasRawTemp[1] += ay; aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! } for (ii = 0; ii < 3; ii++) { gBiasRaw[ii] = gBiasRawTemp[ii] / samples; gBias[ii] = calcGyro(gBiasRaw[ii]); aBiasRaw[ii] = aBiasRawTemp[ii] / samples; aBias[ii] = calcAccel(aBiasRaw[ii]); } enableFIFO(false); setFIFO(FIFO_OFF, 0x00); if (autoCalc) _autoCalc = true; } void LSM9DS1::calibrateMag(bool loadIn) { int i, j; int16_t magMin[3] = {0, 0, 0}; int16_t magMax[3] = {0, 0, 0}; // The road warrior pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r"); wait(0.5); for (i=0; i<1000; i++) { while (!magAvailable(ALL_AXIS)); readMag(); int16_t magTemp[3] = {0, 0, 0}; magTemp[0] = mx; magTemp[1] = my; magTemp[2] = mz; for (j = 0; j < 3; j++) { if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; } } for (j = 0; j < 3; j++) { mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; mBias[j] = calcMag(mBiasRaw[j]); pc.printf("%f ",mBias[j]); if (loadIn) magOffset(j, mBiasRaw[j]); } pc.printf("\n\rMAG calibration done\n\r"); } void LSM9DS1::magOffset(uint8_t axis, int16_t offset) { if (axis > 2) return; uint8_t msb, lsb; msb = (offset & 0xFF00) >> 8; lsb = offset & 0x00FF; mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); } void LSM9DS1::initMag() { uint8_t tempRegValue = 0; // CTRL_REG1_M (Default value: 0x10) // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] // TEMP_COMP - Temperature compensation // OM[1:0] - X & Y axes op mode selection // 00:low-power, 01:medium performance // 10: high performance, 11:ultra-high performance // DO[2:0] - Output data rate selection // ST - Self-test enable if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; mWriteByte(CTRL_REG1_M, tempRegValue); // CTRL_REG2_M (Default value 0x00) // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] // FS[1:0] - Full-scale configuration // REBOOT - Reboot memory content (0:normal, 1:reboot) // SOFT_RST - Reset config and user registers (0:default, 1:reset) tempRegValue = 0; switch (settings.mag.scale) { case 8: tempRegValue |= (0x1 << 5); break; case 12: tempRegValue |= (0x2 << 5); break; case 16: tempRegValue |= (0x3 << 5); break; // Otherwise we'll default to 4 gauss (00) } mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss // CTRL_REG3_M (Default value: 0x03) // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) // LP - Low-power mode cofiguration (1:enable) // SIM - SPI mode selection (0:write-only, 1:read/write enable) // MD[1:0] - Operating mode // 00:continuous conversion, 01:single-conversion, // 10,11: Power-down tempRegValue = 0; if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); tempRegValue |= (settings.mag.operatingMode & 0x3); mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode // CTRL_REG4_M (Default value: 0x00) // [0][0][0][0][OMZ1][OMZ0][BLE][0] // OMZ[1:0] - Z-axis operative mode selection // 00:low-power mode, 01:medium performance // 10:high performance, 10:ultra-high performance // BLE - Big/little endian data tempRegValue = 0; tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; mWriteByte(CTRL_REG4_M, tempRegValue); // CTRL_REG5_M (Default value: 0x00) // [0][BDU][0][0][0][0][0][0] // BDU - Block data update for magnetic data // 0:continuous, 1:not updated until MSB/LSB are read tempRegValue = 0; mWriteByte(CTRL_REG5_M, tempRegValue); } uint8_t LSM9DS1::accelAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); return (status & (1<<0)); } uint8_t LSM9DS1::gyroAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); return ((status & (1<<1)) >> 1); } uint8_t LSM9DS1::tempAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); return ((status & (1<<2)) >> 2); } uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) { uint8_t status; status = mReadByte(STATUS_REG_M); return ((status & (1<<axis)) >> axis); } void LSM9DS1::readAccel() { uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay az = (temp[5] << 8) | temp[4]; // Store z-axis values into az if (_autoCalc) { ax -= aBiasRaw[X_AXIS]; ay -= aBiasRaw[Y_AXIS]; az -= aBiasRaw[Z_AXIS]; } } int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) { uint8_t temp[2]; int16_t value; xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); value = (temp[1] << 8) | temp[0]; if (_autoCalc) value -= aBiasRaw[axis]; return value; } void LSM9DS1::readMag() { uint8_t temp[6]; // We'll read six bytes from the mag into temp mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx my = (temp[3] << 8) | temp[2]; // Store y-axis values into my mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz mx = mx - mBiasRaw[0]; my = my - mBiasRaw[1]; mz = mz - mBiasRaw[2]; } int16_t LSM9DS1::readMag(lsm9ds1_axis axis) { uint8_t temp[2]; mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); return (temp[1] << 8) | temp[0]; } void LSM9DS1::readTemp() { uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L temperature = (int16_t)((temp[1] << 8) | temp[0]); } void LSM9DS1::readGyro() { uint8_t temp[6]; // We'll read six bytes from the gyro into temp xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz if (_autoCalc) { gx -= gBiasRaw[X_AXIS]; gy -= gBiasRaw[Y_AXIS]; gz -= gBiasRaw[Z_AXIS]; } } int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) { uint8_t temp[2]; int16_t value; xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); value = (temp[1] << 8) | temp[0]; if (_autoCalc) value -= gBiasRaw[axis]; return value; } float LSM9DS1::calcGyro(int16_t gyro) { // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): return gRes * gyro; } float LSM9DS1::calcAccel(int16_t accel) { // Return the accel raw reading times our pre-calculated g's / (ADC tick): return aRes * accel; } float LSM9DS1::calcMag(int16_t mag) { // Return the mag raw reading times our pre-calculated Gs / (ADC tick): return mRes * mag; } void LSM9DS1::setGyroScale(uint16_t gScl) { // Read current value of CTRL_REG1_G: uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); // Mask out scale bits (3 & 4): ctrl1RegValue &= 0xE7; switch (gScl) { case 500: ctrl1RegValue |= (0x1 << 3); settings.gyro.scale = 500; break; case 2000: ctrl1RegValue |= (0x3 << 3); settings.gyro.scale = 2000; break; default: // Otherwise we'll set it to 245 dps (0x0 << 4) settings.gyro.scale = 245; break; } xgWriteByte(CTRL_REG1_G, ctrl1RegValue); calcgRes(); } void LSM9DS1::setAccelScale(uint8_t aScl) { // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); // Mask out accel scale bits: tempRegValue &= 0xE7; switch (aScl) { case 4: tempRegValue |= (0x2 << 3); settings.accel.scale = 4; break; case 8: tempRegValue |= (0x3 << 3); settings.accel.scale = 8; break; case 16: tempRegValue |= (0x1 << 3); settings.accel.scale = 16; break; default: // Otherwise it'll be set to 2g (0x0 << 3) settings.accel.scale = 2; break; } xgWriteByte(CTRL_REG6_XL, tempRegValue); // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(); } void LSM9DS1::setMagScale(uint8_t mScl) { // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: uint8_t temp = mReadByte(CTRL_REG2_M); // Then mask out the mag scale bits: temp &= 0xFF^(0x3 << 5); switch (mScl) { case 8: temp |= (0x1 << 5); settings.mag.scale = 8; break; case 12: temp |= (0x2 << 5); settings.mag.scale = 12; break; case 16: temp |= (0x3 << 5); settings.mag.scale = 16; break; default: // Otherwise we'll default to 4 gauss (00) settings.mag.scale = 4; break; } // And write the new register value back into CTRL_REG6_XM: mWriteByte(CTRL_REG2_M, temp); // We've updated the sensor, but we also need to update our class variables // First update mScale: //mScale = mScl; // Then calculate a new mRes, which relies on mScale being set correctly: calcmRes(); } void LSM9DS1::setGyroODR(uint8_t gRate) { // Only do this if gRate is not 0 (which would disable the gyro) if ((gRate & 0x07) != 0) { // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: uint8_t temp = xgReadByte(CTRL_REG1_G); // Then mask out the gyro ODR bits: temp &= 0xFF^(0x7 << 5); temp |= (gRate & 0x07) << 5; // Update our settings struct settings.gyro.sampleRate = gRate & 0x07; // And write the new register value back into CTRL_REG1_G: xgWriteByte(CTRL_REG1_G, temp); } } void LSM9DS1::setAccelODR(uint8_t aRate) { // Only do this if aRate is not 0 (which would disable the accel) if ((aRate & 0x07) != 0) { // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: uint8_t temp = xgReadByte(CTRL_REG6_XL); // Then mask out the accel ODR bits: temp &= 0x1F; // Then shift in our new ODR bits: temp |= ((aRate & 0x07) << 5); settings.accel.sampleRate = aRate & 0x07; // And write the new register value back into CTRL_REG1_XM: xgWriteByte(CTRL_REG6_XL, temp); } } void LSM9DS1::setMagODR(uint8_t mRate) { // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: uint8_t temp = mReadByte(CTRL_REG1_M); // Then mask out the mag ODR bits: temp &= 0xFF^(0x7 << 2); // Then shift in our new ODR bits: temp |= ((mRate & 0x07) << 2); settings.mag.sampleRate = mRate & 0x07; // And write the new register value back into CTRL_REG5_XM: mWriteByte(CTRL_REG1_M, temp); } void LSM9DS1::calcgRes() { gRes = ((float) settings.gyro.scale) / 32768.0; } void LSM9DS1::calcaRes() { aRes = ((float) settings.accel.scale) / 32768.0; } void LSM9DS1::calcmRes() { //mRes = ((float) settings.mag.scale) / 32768.0; switch (settings.mag.scale) { case 4: mRes = magSensitivity[0]; break; case 8: mRes = magSensitivity[1]; break; case 12: mRes = magSensitivity[2]; break; case 16: mRes = magSensitivity[3]; break; } } void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, h_lactive activeLow, pp_od pushPull) { // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of // those two values. // [generator] should be an OR'd list of values from the interrupt_generators enum xgWriteByte(interrupt, generator); // Configure CTRL_REG8 uint8_t temp; temp = xgReadByte(CTRL_REG8); if (activeLow) temp |= (1<<5); else temp &= ~(1<<5); if (pushPull) temp &= ~(1<<4); else temp |= (1<<4); xgWriteByte(CTRL_REG8, temp); } void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) { uint8_t temp = 0; temp = threshold & 0x7F; if (sleepOn) temp |= (1<<7); xgWriteByte(ACT_THS, temp); xgWriteByte(ACT_DUR, duration); } uint8_t LSM9DS1::getInactivity() { uint8_t temp = xgReadByte(STATUS_REG_0); temp &= (0x10); return temp; } void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) { // Use variables from accel_interrupt_generator, OR'd together to create // the [generator]value. uint8_t temp = generator; if (andInterrupts) temp |= 0x80; xgWriteByte(INT_GEN_CFG_XL, temp); } void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) { // Write threshold value to INT_GEN_THS_?_XL. // axis will be 0, 1, or 2 (x, y, z respectively) xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); // Write duration and wait to INT_GEN_DUR_XL uint8_t temp; temp = (duration & 0x7F); if (wait) temp |= 0x80; xgWriteByte(INT_GEN_DUR_XL, temp); } uint8_t LSM9DS1::getAccelIntSrc() { uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); // Check if the IA_XL (interrupt active) bit is set if (intSrc & (1<<6)) { return (intSrc & 0x3F); } return 0; } void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) { // Use variables from accel_interrupt_generator, OR'd together to create // the [generator]value. uint8_t temp = generator; if (aoi) temp |= 0x80; if (latch) temp |= 0x40; xgWriteByte(INT_GEN_CFG_G, temp); } void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) { uint8_t buffer[2]; buffer[0] = (threshold & 0x7F00) >> 8; buffer[1] = (threshold & 0x00FF); // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. // axis will be 0, 1, or 2 (x, y, z respectively) xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); // Write duration and wait to INT_GEN_DUR_XL uint8_t temp; temp = (duration & 0x7F); if (wait) temp |= 0x80; xgWriteByte(INT_GEN_DUR_G, temp); } uint8_t LSM9DS1::getGyroIntSrc() { uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); // Check if the IA_G (interrupt active) bit is set if (intSrc & (1<<6)) { return (intSrc & 0x3F); } return 0; } void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) { // Mask out non-generator bits (0-4) uint8_t config = (generator & 0xE0); // IEA bit is 0 for active-low, 1 for active-high. if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); // IEL bit is 0 for latched, 1 for not-latched if (!latch) config |= (1<<1); // As long as we have at least 1 generator, enable the interrupt if (generator != 0) config |= (1<<0); mWriteByte(INT_CFG_M, config); } void LSM9DS1::configMagThs(uint16_t threshold) { // Write high eight bits of [threshold] to INT_THS_H_M mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); // Write low eight bits of [threshold] to INT_THS_L_M mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); } uint8_t LSM9DS1::getMagIntSrc() { uint8_t intSrc = mReadByte(INT_SRC_M); // Check if the INT (interrupt active) bit is set if (intSrc & (1<<0)) { return (intSrc & 0xFE); } return 0; } void LSM9DS1::sleepGyro(bool enable) { uint8_t temp = xgReadByte(CTRL_REG9); if (enable) temp |= (1<<6); else temp &= ~(1<<6); xgWriteByte(CTRL_REG9, temp); } void LSM9DS1::enableFIFO(bool enable) { uint8_t temp = xgReadByte(CTRL_REG9); if (enable) temp |= (1<<1); else temp &= ~(1<<1); xgWriteByte(CTRL_REG9, temp); } void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) { // Limit threshold - 0x1F (31) is the maximum. If more than that was asked // limit it to the maximum. uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); } uint8_t LSM9DS1::getFIFOSamples() { return (xgReadByte(FIFO_SRC) & 0x3F); } void LSM9DS1::constrainScales() { if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && (settings.gyro.scale != 2000)) { settings.gyro.scale = 245; } if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && (settings.accel.scale != 8) && (settings.accel.scale != 16)) { settings.accel.scale = 2; } if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && (settings.mag.scale != 12) && (settings.mag.scale != 16)) { settings.mag.scale = 4; } } void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) { // Whether we're using I2C or SPI, write a byte using the // gyro-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) { pc.printf("yo"); I2CwriteByte(_xgAddress, subAddress, data); } else if (settings.device.commInterface == IMU_MODE_SPI) { SPIwriteByte(_xgAddress, subAddress, data); } } void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) { // Whether we're using I2C or SPI, write a byte using the // accelerometer-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) { pc.printf("mo"); return I2CwriteByte(_mAddress, subAddress, data); } else if (settings.device.commInterface == IMU_MODE_SPI) return SPIwriteByte(_mAddress, subAddress, data); } uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) { // Whether we're using I2C or SPI, read a byte using the // gyro-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) return I2CreadByte(_xgAddress, subAddress); else if (settings.device.commInterface == IMU_MODE_SPI) return SPIreadByte(_xgAddress, subAddress); } void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { // Whether we're using I2C or SPI, read multiple bytes using the // gyro-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) { I2CreadBytes(_xgAddress, subAddress, dest, count); } else if (settings.device.commInterface == IMU_MODE_SPI) { SPIreadBytes(_xgAddress, subAddress, dest, count); } } uint8_t LSM9DS1::mReadByte(uint8_t subAddress) { // Whether we're using I2C or SPI, read a byte using the // accelerometer-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) return I2CreadByte(_mAddress, subAddress); else if (settings.device.commInterface == IMU_MODE_SPI) return SPIreadByte(_mAddress, subAddress); } void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { // Whether we're using I2C or SPI, read multiple bytes using the // accelerometer-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) I2CreadBytes(_mAddress, subAddress, dest, count); else if (settings.device.commInterface == IMU_MODE_SPI) SPIreadBytes(_mAddress, subAddress, dest, count); } void LSM9DS1::initSPI() { /* pinMode(_xgAddress, OUTPUT); digitalWrite(_xgAddress, HIGH); pinMode(_mAddress, OUTPUT); digitalWrite(_mAddress, HIGH); SPI.begin(); // Maximum SPI frequency is 10MHz, could divide by 2 here: SPI.setClockDivider(SPI_CLOCK_DIV2); // Data is read and written MSb first. SPI.setBitOrder(MSBFIRST); // Data is captured on rising edge of clock (CPHA = 0) // Base value of the clock is HIGH (CPOL = 1) SPI.setDataMode(SPI_MODE0); */ } void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) { /* digitalWrite(csPin, LOW); // Initiate communication // If write, bit 0 (MSB) should be 0 // If single write, bit 1 should be 0 SPI.transfer(subAddress & 0x3F); // Send Address SPI.transfer(data); // Send data digitalWrite(csPin, HIGH); // Close communication */ } uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) { uint8_t temp; // Use the multiple read function to read 1 byte. // Value is returned to `temp`. SPIreadBytes(csPin, subAddress, &temp, 1); return temp; } void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, uint8_t * dest, uint8_t count) { // To indicate a read, set bit 0 (msb) of first byte to 1 uint8_t rAddress = 0x80 | (subAddress & 0x3F); // Mag SPI port is different. If we're reading multiple bytes, // set bit 1 to 1. The remaining six bytes are the address to be read if ((csPin == _mAddress) && count > 1) rAddress |= 0x40; /* digitalWrite(csPin, LOW); // Initiate communication SPI.transfer(rAddress); for (int i=0; i<count; i++) { dest[i] = SPI.transfer(0x00); // Read into destination array } digitalWrite(csPin, HIGH); // Close communication */ } void LSM9DS1::initI2C() { /* Wire.begin(); // Initialize I2C library */ //already initialized in constructor! } // Wire.h read and write protocols void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) { /* Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.write(data); // Put data in Tx buffer Wire.endTransmission(); // Send the Tx buffer */ char temp_data[2] = {subAddress, data}; i2c.write(address, temp_data, 2); } uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) { /* int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; uint8_t data; // `data` will store the register data Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address while ((Wire.available() < 1) && (timeout-- > 0)) delay(1); if (timeout <= 0) return 255; //! Bad! 255 will be misinterpreted as a good value. data = Wire.read(); // Fill Rx buffer with result return data; // Return data read from slave register */ char data; char temp[2] = {subAddress}; i2c.write(address, temp, 1); //i2c.write(address & 0xFE); temp[1] = 0x00; i2c.write(address, temp, 1); //i2c.write( address | 0x01); int a = i2c.read(address, &data, 1); return data; } uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) { /* int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; Wire.beginTransmission(address); // Initialize the Tx buffer // Next send the register to be read. OR with 0x80 to indicate multi-read. Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; Wire.requestFrom(address, count); // Read bytes from slave register address while ((Wire.available() < count) && (timeout-- > 0)) delay(1); if (timeout <= 0) return -1; for (int i=0; i<count;) { if (Wire.available()) { dest[i++] = Wire.read(); } } return count; */ int i; char temp_dest[count]; char temp[1] = {subAddress}; i2c.write(address, temp, 1); i2c.read(address, temp_dest, count); //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion for (i=0; i < count; i++) { dest[i] = temp_dest[i]; } return count; }