mmm
Dependencies: PinDetect TFT_fonts TouchADS7843 mbed
Fork of SPI_TFT_ILI9341 by
SPI_TFT_ILI9341_NUCLEO.cpp
- Committer:
- dreschpe
- Date:
- 2014-06-25
- Revision:
- 13:b2b3e5430f81
- Parent:
- 12:98cc5c193ecd
File content as of revision 13:b2b3e5430f81:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2013, 2014 Peter Drescher - DC2PD * Special version for STM Nucleo -L152 * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // 24.06.14 initial version // 25.06.14 add Nucleo F103RB // only include this file if target is L152 or F103RB : #if defined TARGET_NUCLEO_L152RE || defined TARGET_NUCLEO_F103RB #include "SPI_TFT_ILI9341.h" #include "mbed.h" #if defined TARGET_NUCLEO_L152RE #include "stm32l1xx_dma.h" #define use_ram #endif #if defined TARGET_NUCLEO_F103RB #include "stm32f10x_dma.h" #endif #define BPP 16 // Bits per pixel //extern Serial pc; //extern DigitalOut xx; // debug !! DMA_InitTypeDef DMA_InitStructure; SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name) : GraphicsDisplay(name), SPI(mosi,miso,sclk,NC), _cs(cs), _reset(reset), _dc(dc) { format(8,3); // 8 bit spi mode 3 frequency(10000000); // 10 Mhz SPI clock : result 2 / 4 = 8 orientation = 0; char_x = 0; if(_spi.spi == SPI_1){ // test which SPI is in use spi_num = 1; } if(_spi.spi == SPI_2){ spi_num = 2; } #ifdef SPI_3 // there is no SPI 3 on all devices if(_spi.spi == SPI_3){ spi_num = 3; } #endif tft_reset(); } // we define a fast write to the SPI port // we use the bit banding address to get the flag without masking #define bit_SPI1_txe *((volatile unsigned int *)0x42260104) #define SPI1_DR *((volatile unsigned int *)0x4001300C) #define bit_SPI2_txe *((volatile unsigned int *)0x42070104) #define SPI2_DR *((volatile unsigned int *)0x4000380C) #define bit_SPI3_txe *((volatile unsigned int *)0x42078104) #define SPI3_DR *((volatile unsigned int *)0x40003C0C) void SPI_TFT_ILI9341::f_write(int data){ switch(spi_num){ // used SPI port case (1): while(bit_SPI1_txe == 0); // wait for SPI1->SR TXE flag SPI1_DR = data; break; case (2): while( bit_SPI2_txe == 0); // wait for SPI2->SR TXE flag SPI2_DR = data; break; case (3): while( bit_SPI3_txe == 0); // wait for SPI3->SR TXE flag SPI3_DR = data; break; } } // wait for SPI not busy // we have to wait for the last bit to switch the cs off // we use the bit banding address to get the flag without masking #define bit_SPI1_bsy *((volatile unsigned int *)0x4226011C) #define bit_SPI2_bsy *((volatile unsigned int *)0x4207011C) #define bit_SPI3_bsy *((volatile unsigned int *)0x4207811C) void inline SPI_TFT_ILI9341::spi_bsy(void){ switch(spi_num){ // decide which SPI is to use case (1): while(bit_SPI1_bsy == 1); // SPI1->SR bit 7 break; case (2): while(bit_SPI2_bsy == 1); // SPI2->SR bit 7 break; case (3): while(bit_SPI3_bsy == 1); // SPI2->SR bit 7 break; } } // switch fast between 8 and 16 bit mode #define bit_SPI1_dff *((volatile unsigned int *)0x4226002C) #define bit_SPI2_dff *((volatile unsigned int *)0x4207002C) #define bit_SPI3_dff *((volatile unsigned int *)0x4207802C) void SPI_TFT_ILI9341::spi_16(bool s){ switch(spi_num){ // decide which SPI is to use case(1): if(s) bit_SPI1_dff = 1; // switch to 16 bit Mode else bit_SPI1_dff = 0; // switch to 8 bit Mode break; case(2): if(s) bit_SPI2_dff = 1; // switch to 16 bit Mode else bit_SPI2_dff = 0; // switch to 8 bit Mode break; case(3): if(s) bit_SPI3_dff = 1; // switch to 16 bit Mode else bit_SPI3_dff = 0; // switch to 8 bit Mode break; } } int SPI_TFT_ILI9341::width() { if (orientation == 0 || orientation == 2) return 240; else return 320; } int SPI_TFT_ILI9341::height() { if (orientation == 0 || orientation == 2) return 320; else return 240; } void SPI_TFT_ILI9341::set_orientation(unsigned int o) { orientation = o; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL switch (orientation) { case 0: f_write(0x48); break; case 1: f_write(0x28); break; case 2: f_write(0x88); break; case 3: f_write(0xE8); break; } spi_bsy(); // wait for end of transfer _cs = 1; WindowMax(); } // write command to tft register // use fast command void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd) { _dc = 0; _cs = 0; f_write(cmd); spi_bsy(); _dc = 1; } void SPI_TFT_ILI9341::wr_dat(unsigned char dat) { f_write(dat); spi_bsy(); // wait for SPI send } // the ILI9341 can read char SPI_TFT_ILI9341::rd_byte(unsigned char cmd) { // has to change !! return(0); } // read 32 bit int SPI_TFT_ILI9341::rd_32(unsigned char cmd) { // has to change !!! return(0); } int SPI_TFT_ILI9341::Read_ID(void){ int r; r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); return(r); } // Init code based on MI0283QT datasheet // this code is called only at start // no need to be optimized void SPI_TFT_ILI9341::tft_reset() { _cs = 1; // cs high _dc = 1; // dc high _reset = 0; // display reset wait_us(50); _reset = 1; // end hardware reset wait_ms(5); wr_cmd(0x01); // SW reset wait_ms(5); wr_cmd(0x28); // display off /* Start Initial Sequence ----------------------------------------------------*/ wr_cmd(0xCF); f_write(0x00); f_write(0x83); f_write(0x30); spi_bsy(); _cs = 1; wr_cmd(0xED); f_write(0x64); f_write(0x03); f_write(0x12); f_write(0x81); spi_bsy(); _cs = 1; wr_cmd(0xE8); f_write(0x85); f_write(0x01); f_write(0x79); spi_bsy(); _cs = 1; wr_cmd(0xCB); f_write(0x39); f_write(0x2C); f_write(0x00); f_write(0x34); f_write(0x02); spi_bsy(); _cs = 1; wr_cmd(0xF7); f_write(0x20); spi_bsy(); _cs = 1; wr_cmd(0xEA); f_write(0x00); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0xC0); // POWER_CONTROL_1 f_write(0x26); spi_bsy(); _cs = 1; wr_cmd(0xC1); // POWER_CONTROL_2 f_write(0x11); spi_bsy(); _cs = 1; wr_cmd(0xC5); // VCOM_CONTROL_1 f_write(0x35); f_write(0x3E); spi_bsy(); _cs = 1; wr_cmd(0xC7); // VCOM_CONTROL_2 f_write(0xBE); spi_bsy(); _cs = 1; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL f_write(0x48); spi_bsy(); _cs = 1; wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET f_write(0x55); // 16 bit pixel spi_bsy(); _cs = 1; wr_cmd(0xB1); // Frame Rate f_write(0x00); f_write(0x1B); spi_bsy(); _cs = 1; wr_cmd(0xF2); // Gamma Function Disable f_write(0x08); spi_bsy(); _cs = 1; wr_cmd(0x26); f_write(0x01); // gamma set for curve 01/2/04/08 spi_bsy(); _cs = 1; wr_cmd(0xE0); // positive gamma correction f_write(0x1F); f_write(0x1A); f_write(0x18); f_write(0x0A); f_write(0x0F); f_write(0x06); f_write(0x45); f_write(0x87); f_write(0x32); f_write(0x0A); f_write(0x07); f_write(0x02); f_write(0x07); f_write(0x05); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0xE1); // negativ gamma correction f_write(0x00); f_write(0x25); f_write(0x27); f_write(0x05); f_write(0x10); f_write(0x09); f_write(0x3A); f_write(0x78); f_write(0x4D); f_write(0x05); f_write(0x18); f_write(0x0D); f_write(0x38); f_write(0x3A); f_write(0x1F); spi_bsy(); _cs = 1; WindowMax (); //wr_cmd(0x34); // tearing effect off //_cs = 1; //wr_cmd(0x35); // tearing effect on //_cs = 1; wr_cmd(0xB7); // entry mode f_write(0x07); spi_bsy(); _cs = 1; wr_cmd(0xB6); // display function control f_write(0x0A); f_write(0x82); f_write(0x27); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0x11); // sleep out spi_bsy(); _cs = 1; wait_ms(100); wr_cmd(0x29); // display on spi_bsy(); _cs = 1; wait_ms(100); // Configure the DMA controller init-structure DMA_StructInit(&DMA_InitStructure); switch(spi_num){ // decide which SPI is to use case (1): RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI1->DR); break; case (2): RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 and SPI2 are using DMA 1 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI2->DR); break; case (3): RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); // SPI3 is using DMA 2 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI3->DR); break; } DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_BufferSize = 0; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; } // speed optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::pixel(int x, int y, int color) { wr_cmd(0x2A); spi_16(1); // switch to 8 bit Mode f_write(x); spi_bsy(); _cs = 1; spi_16(0); // switch to 8 bit Mode wr_cmd(0x2B); spi_16(1); f_write(y); spi_bsy(); _cs = 1; spi_16(0); wr_cmd(0x2C); // send pixel spi_16(1); f_write(color); spi_bsy(); _cs = 1; spi_16(0); } // optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h) { wr_cmd(0x2A); spi_16(1); f_write(x); f_write(x+w-1); spi_bsy(); _cs = 1; spi_16(0); wr_cmd(0x2B); spi_16(1); f_write(y) ; f_write(y+h-1); spi_bsy(); _cs = 1; spi_16(0); } void SPI_TFT_ILI9341::WindowMax (void) { window (0, 0, width(), height()); } // optimized // use DMA to transfer pixel data to the screen void SPI_TFT_ILI9341::cls (void) { // we can use the fillrect function fillrect(0,0,width()-1,height()-1,_background); } void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { pixel(x0-x, y0+y,color); pixel(x0+x, y0+y,color); pixel(x0+x, y0-y,color); pixel(x0-x, y0-y,color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { vline(x0-x, y0-y, y0+y, color); vline(x0+x, y0-y, y0+y, color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } // optimized for speed void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color) { int w,j; w = x1 - x0 + 1; window(x0,y,w,1); _dc = 0; _cs = 0; f_write(0x2C); // send pixel spi_bsy(); _dc = 1; spi_16(1); for (j=0; j<w; j++) { f_write(color); } spi_bsy(); spi_16(0); _cs = 1; WindowMax(); return; } // optimized for speed void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color) { int h,y; h = y1 - y0 + 1; window(x,y0,1,h); _dc = 0; _cs = 0; f_write(0x2C); // send pixel spi_bsy(); _dc = 1; spi_16(1); // switch to 16 bit Mode 3 for (y=0; y<h; y++) { f_write(color); } spi_bsy(); spi_16(0); _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color) { //WindowMax(); int dx = 0, dy = 0; int dx_sym = 0, dy_sym = 0; int dx_x2 = 0, dy_x2 = 0; int di = 0; dx = x1-x0; dy = y1-y0; if (dx == 0) { /* vertical line */ if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); return; } if (dx > 0) { dx_sym = 1; } else { dx_sym = -1; } if (dy == 0) { /* horizontal line */ if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); return; } if (dy > 0) { dy_sym = 1; } else { dy_sym = -1; } dx = dx_sym*dx; dy = dy_sym*dy; dx_x2 = dx*2; dy_x2 = dy*2; if (dx >= dy) { di = dy_x2 - dx; while (x0 != x1) { pixel(x0, y0, color); x0 += dx_sym; if (di<0) { di += dy_x2; } else { di += dy_x2 - dx_x2; y0 += dy_sym; } } pixel(x0, y0, color); } else { di = dx_x2 - dy; while (y0 != y1) { pixel(x0, y0, color); y0 += dy_sym; if (di < 0) { di += dx_x2; } else { di += dx_x2 - dy_x2; x0 += dx_sym; } } pixel(x0, y0, color); } return; } void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color) { if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); if (x1 > x0) hline(x0,x1,y1,color); else hline(x1,x0,y1,color); if (y1 > y0) vline(x1,y0,y1,color); else vline(x1,y1,y0,color); return; } // optimized for speed // use DMA void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color) { int h = y1 - y0 + 1; int w = x1 - x0 + 1; int pixel = h * w; unsigned int dma_transfer; window(x0,y0,w,h); wr_cmd(0x2C); // send pixel spi_16(1); DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &color; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; switch(spi_num){ // decide which SPI is to use case (1): DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA do{ if(pixel < 0x10000) { dma_transfer = pixel; pixel = 0; } else { dma_transfer = 0xffff; pixel = pixel - 0xffff; } DMA_SetCurrDataCounter(DMA1_Channel3, dma_transfer); SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel3, ENABLE); while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); }while(pixel > 0); break; case (2): DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA do{ if(pixel < 0x10000) { dma_transfer = pixel; pixel = 0; } else { dma_transfer = 0xffff; pixel = pixel - 0xffff; } DMA_SetCurrDataCounter(DMA1_Channel5, dma_transfer); SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel5, ENABLE); while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel5, DISABLE); }while(pixel > 0); break; case (3): DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA do{ if(pixel < 0x10000) { dma_transfer = pixel; pixel = 0; } else { dma_transfer = 0xffff; pixel = pixel - 0xffff; } DMA_SetCurrDataCounter(DMA2_Channel2, dma_transfer); SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA2_Channel2, ENABLE); while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer DMA_Cmd(DMA2_Channel2, DISABLE); }while(pixel > 0); break; } spi_bsy(); spi_16(0); _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::locate(int x, int y) { char_x = x; char_y = y; } int SPI_TFT_ILI9341::columns() { return width() / font[1]; } int SPI_TFT_ILI9341::rows() { return height() / font[2]; } int SPI_TFT_ILI9341::_putc(int value) { if (value == '\n') { // new line char_x = 0; char_y = char_y + font[2]; if (char_y >= height() - font[2]) { char_y = 0; } } else { character(char_x, char_y, value); } return value; } // speed optimized // will use dma void SPI_TFT_ILI9341::character(int x, int y, int c) { unsigned int hor,vert,offset,bpl,j,i,b; unsigned char* zeichen; unsigned char z,w; #ifdef use_ram unsigned int pixel; unsigned int p; unsigned int dma_count,dma_off; uint16_t *buffer; #endif if ((c < 31) || (c > 127)) return; // test char range // read font parameter from start of array offset = font[0]; // bytes / char hor = font[1]; // get hor size of font vert = font[2]; // get vert size of font bpl = font[3]; // bytes per line if (char_x + hor > width()) { char_x = 0; char_y = char_y + vert; if (char_y >= height() - font[2]) { char_y = 0; } } window(char_x, char_y,hor,vert); // setup char box wr_cmd(0x2C); spi_16(1); // switch to 16 bit Mode #ifdef use_ram pixel = hor * vert; // calculate buffer size buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the font if(buffer != NULL) { // there is memory space -> use dma zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char p = 0; // construct the font into the buffer for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { buffer[p] = _background; } else { buffer[p] = _foreground; } p++; } } // copy the buffer with DMA SPI to display dma_off = 0; // offset for DMA transfer DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) (buffer + dma_off); DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; switch(spi_num){ // decide which SPI is to use case (1): DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA // start DMA do { if (pixel > 0X10000) { // this is a giant font ! dma_count = 0Xffff; pixel = pixel - 0Xffff; } else { dma_count = pixel; pixel = 0; } DMA_SetCurrDataCounter(DMA1_Channel3, dma_count); SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel3, ENABLE); while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); }while(pixel > 0); break; case (2): DMA_Init(DMA1_Channel5, &DMA_InitStructure); // init the DMA // start DMA do { if (pixel > 0X10000) { // this is a giant font ! dma_count = 0Xffff; pixel = pixel - 0Xffff; } else { dma_count = pixel; pixel = 0; } DMA_SetCurrDataCounter(DMA1_Channel5, dma_count); SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel5, ENABLE); while(DMA_GetCurrDataCounter(DMA1_Channel5) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel5, DISABLE); }while(pixel > 0); break; case (3): DMA_Init(DMA2_Channel2, &DMA_InitStructure); // init the DMA // start DMA do { if (pixel > 0X10000) { // this is a giant font ! dma_count = 0Xffff; pixel = pixel - 0Xffff; } else { dma_count = pixel; pixel = 0; } DMA_SetCurrDataCounter(DMA2_Channel2, dma_count); SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA2_Channel2, ENABLE); while(DMA_GetCurrDataCounter(DMA2_Channel2) != 0); // wait for end of transfer DMA_Cmd(DMA2_Channel2, DISABLE); }while(pixel > 0); break; } spi_bsy(); free ((uint16_t *) buffer); spi_16(0); } else{ #endif zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { f_write(_background); } else { f_write(_foreground); } } } spi_bsy(); _cs = 1; spi_16(0); #ifdef use_ram } #endif _cs = 1; WindowMax(); if ((w + 2) < hor) { // x offset to next char char_x += w + 2; } else char_x += hor; } void SPI_TFT_ILI9341::set_font(unsigned char* f) { font = f; } void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap) { unsigned int j; int padd; unsigned short *bitmap_ptr = (unsigned short *)bitmap; unsigned int i; // the lines are padded to multiple of 4 bytes in a bitmap padd = -1; do { padd ++; } while (2*(w + padd)%4 != 0); window(x, y, w, h); bitmap_ptr += ((h - 1)* (w + padd)); wr_cmd(0x2C); // send pixel spi_16(1); for (j = 0; j < h; j++) { //Lines for (i = 0; i < w; i++) { // one line f_write(*bitmap_ptr); // one line bitmap_ptr++; } bitmap_ptr -= 2*w; bitmap_ptr -= padd; } spi_bsy(); _cs = 1; spi_16(0); WindowMax(); } // local filesystem is not implemented but you can add a SD card to a different SPI int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP) { #define OffsetPixelWidth 18 #define OffsetPixelHeigh 22 #define OffsetFileSize 34 #define OffsetPixData 10 #define OffsetBPP 28 char filename[50]; unsigned char BMP_Header[54]; unsigned short BPP_t; unsigned int PixelWidth,PixelHeigh,start_data; unsigned int i,off; int padd,j; unsigned short *line; // get the filename i=0; while (*Name_BMP!='\0') { filename[i++]=*Name_BMP++; } filename[i] = 0; FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file if (!Image) { return(0); // error file not found ! } fread(&BMP_Header[0],1,54,Image); // get the BMP Header if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte fclose(Image); return(-1); // error no BMP file } BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8); if (BPP_t != 0x0010) { fclose(Image); return(-2); // error no 16 bit BMP } PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24); PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24); if (PixelHeigh > height() + y || PixelWidth > width() + x) { fclose(Image); return(-3); // to big } start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24); line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line if (line == NULL) { return(-4); // error no memory } // the bmp lines are padded to multiple of 4 bytes padd = -1; do { padd ++; } while ((PixelWidth * 2 + padd)%4 != 0); window(x, y,PixelWidth ,PixelHeigh); wr_cmd(0x2C); // send pixel spi_16(1); for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up off = j * (PixelWidth * 2 + padd) + start_data; // start of line fseek(Image, off ,SEEK_SET); fread(line,1,PixelWidth * 2,Image); // read a line - slow for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT f_write(line[i]); // one 16 bit pixel } } spi_bsy(); _cs = 1; spi_16(0); free (line); fclose(Image); WindowMax(); return(1); } #endif