1
main.cpp
- Committer:
- benkatz
- Date:
- 2017-05-26
- Revision:
- 0:d6186b8990c5
- Child:
- 1:79e0d4791936
File content as of revision 0:d6186b8990c5:
#define CAN_ID 0x1 #include "mbed.h" #include "math_ops.h" Serial pc(PA_2, PA_3); CAN can(PB_8, PB_9); // CAN Rx pin name, CAN Tx pin name CANMessage rxMsg; CANMessage txMsg1; CANMessage txMsg2; int ledState; Timer timer; Ticker sendCAN; int counter = 0; volatile bool msgAvailable = false; Ticker loop; float theta1, theta2, dtheta1, dtheta2; /// Value Limits /// #define P_MIN -12.5f #define P_MAX 12.5f #define V_MIN -30.0f #define V_MAX 30.0f #define KP_MIN 0.0f #define KP_MAX 500.0f #define KD_MIN 0.0f #define KD_MAX 5.0f #define T_MIN -18.0f #define T_MAX 18.0f #define I_MAX 40.0f /// CAN Command Packet Structure /// /// 16 bit position command, between -4*pi and 4*pi /// 12 bit velocity command, between -30 and + 30 rad/s /// 12 bit kp, between 0 and 500 N-m/rad /// 12 bit kd, between 0 and 100 N-m*s/rad /// 12 bit feed forward torque, between -18 and 18 N-m /// CAN Packet is 8 8-bit words /// Formatted as follows. For each quantity, bit 0 is LSB /// 0: [position[15-8]] /// 1: [position[7-0]] /// 2: [velocity[11-4]] /// 3: [velocity[3-0], kp[11-8]] /// 4: [kp[7-0]] /// 5: [kd[11-4]] /// 6: [kd[3-0], torque[11-8]] /// 7: [torque[7-0]] void pack_cmd(CANMessage * msg, float p_des, float v_des, float kp, float kd, float t_ff){ /// limit data to be within bounds /// p_des = fminf(fmaxf(P_MIN, p_des), P_MAX); v_des = fminf(fmaxf(V_MIN, v_des), V_MAX); kp = fminf(fmaxf(KP_MIN, kp), KP_MAX); kd = fminf(fmaxf(KD_MIN, kd), KD_MAX); t_ff = fminf(fmaxf(T_MIN, t_ff), T_MAX); /// convert floats to unsigned ints /// int p_int = float_to_uint(p_des, P_MIN, P_MAX, 16); int v_int = float_to_uint(v_des, V_MIN, V_MAX, 12); int kp_int = float_to_uint(kp, KP_MIN, KP_MAX, 12); int kd_int = float_to_uint(kd, KD_MIN, KD_MAX, 12); int t_int = float_to_uint(t_ff, T_MIN, T_MAX, 12); /// pack ints into the can buffer /// msg->data[0] = p_int>>8; msg->data[1] = p_int&0xFF; msg->data[2] = v_int>>4; msg->data[3] = ((v_int&0xF)<<4)|(kp_int>>8); msg->data[4] = kp_int&0xFF; msg->data[5] = kd_int>>4; msg->data[6] = ((kd_int&0xF)<<4)|(t_int>>8); msg->data[7] = t_int&0xff; } /// CAN Reply Packet Structure /// /// 16 bit position, between -4*pi and 4*pi /// 12 bit velocity, between -30 and + 30 rad/s /// 12 bit current, between -40 and 40; /// CAN Packet is 5 8-bit words /// Formatted as follows. For each quantity, bit 0 is LSB /// 0: [position[15-8]] /// 1: [position[7-0]] /// 2: [velocity[11-4]] /// 3: [velocity[3-0], current[11-8]] /// 4: [current[7-0]] void unpack_reply(CANMessage msg){ /// unpack ints from can buffer /// int id = msg.data[0]; int p_int = (msg.data[1]<<8)|msg.data[2]; int v_int = (msg.data[3]<<4)|(msg.data[4]>>4); int i_int = ((msg.data[4]&0xF)<<8)|msg.data[5]; /// convert ints to floats /// float p = uint_to_float(p_int, P_MIN, P_MAX, 16); float v = uint_to_float(v_int, V_MIN, V_MAX, 12); float i = uint_to_float(i_int, -I_MAX, I_MAX, 12); if(id == 2){ theta1 = p; dtheta1 = v; } else if(id ==3){ theta2 = p; dtheta2 = v; } } void onMsgReceived() { can.read(rxMsg); // read message into Rx message storage unpack_reply(rxMsg); } void sendCMD(){ /// bilateral teleoperation demo /// pack_cmd(&txMsg1, theta2, dtheta2, 10, .1, 0); pack_cmd(&txMsg2, theta1, dtheta1, 10, .1, 0); can.write(txMsg2); wait(.0003); // Give motor 1 time to respond. can.write(txMsg1); } void serial_isr(){ /// hangle keyboard commands from the serial terminal /// while(pc.readable()){ char c = pc.getc(); switch(c){ case(27): printf("\n\r exiting motor mode \n\r"); txMsg1.data[0] = 0xFF; txMsg1.data[1] = 0xFF; txMsg1.data[2] = 0xFF; txMsg1.data[3] = 0xFF; txMsg1.data[4] = 0xFF; txMsg1.data[5] = 0xFF; txMsg1.data[6] = 0xFF; txMsg1.data[7] = 0xFD; txMsg2.data[0] = 0xFF; txMsg2.data[1] = 0xFF; txMsg2.data[2] = 0xFF; txMsg2.data[3] = 0xFF; txMsg2.data[4] = 0xFF; txMsg2.data[5] = 0xFF; txMsg2.data[6] = 0xFF; txMsg2.data[7] = 0xFD; break; case('m'): printf("\n\r entering motor mode \n\r"); txMsg1.data[0] = 0xFF; txMsg1.data[1] = 0xFF; txMsg1.data[2] = 0xFF; txMsg1.data[3] = 0xFF; txMsg1.data[4] = 0xFF; txMsg1.data[5] = 0xFF; txMsg1.data[6] = 0xFF; txMsg1.data[7] = 0xFC; txMsg2.data[0] = 0xFF; txMsg2.data[1] = 0xFF; txMsg2.data[2] = 0xFF; txMsg2.data[3] = 0xFF; txMsg2.data[4] = 0xFF; txMsg2.data[5] = 0xFF; txMsg2.data[6] = 0xFF; txMsg2.data[7] = 0xFC; break; case('z'): printf("\n\r zeroing \n\r"); txMsg1.data[0] = 0xFF; txMsg1.data[1] = 0xFF; txMsg1.data[2] = 0xFF; txMsg1.data[3] = 0xFF; txMsg1.data[4] = 0xFF; txMsg1.data[5] = 0xFF; txMsg1.data[6] = 0xFF; txMsg1.data[7] = 0xFE; txMsg2.data[0] = 0xFF; txMsg2.data[1] = 0xFF; txMsg2.data[2] = 0xFF; txMsg2.data[3] = 0xFF; txMsg2.data[4] = 0xFF; txMsg2.data[5] = 0xFF; txMsg2.data[6] = 0xFF; txMsg2.data[7] = 0xFE; break; } } can.write(txMsg1); can.write(txMsg2); } int can_packet[8] = {1, 2, 3, 4, 5, 6, 7, 8}; int main() { pc.baud(921600); pc.attach(&serial_isr); can.frequency(1000000); // set bit rate to 1Mbps can.attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler can.filter(CAN_ID<<21, 0xFFE00004, CANStandard, 0); //set up can filter printf("Master\n\r"); //printf("%d\n\r", RX_ID << 18); int count = 0; txMsg1.len = 8; //transmit 8 bytes txMsg2.len = 8; //transmit 8 bytes rxMsg.len = 6; //receive 5 bytes loop.attach(&sendCMD, .001); txMsg1.id = 0x2; //1st motor ID txMsg2.id = 0x3; //2nd motor ID pack_cmd(&txMsg1, 0, 0, 0, 0, 0); //Start out by sending all 0's pack_cmd(&txMsg2, 0, 0, 0, 0, 0); timer.start(); while(1) { } }