first release fork of MPU9250AHRS from Kris Winer
Dependents: mbed-os-i2c-test mbed-test-i2c-PCA-biquad-peakdet Mix-code-v2 mbed-os-step-counting ... more
MPU9250.cpp
- Committer:
- elessair
- Date:
- 2016-10-05
- Revision:
- 0:76dc2aad77bc
- Child:
- 1:c27bb1a0deca
File content as of revision 0:76dc2aad77bc:
#include <mbed.h> #include "MPU9250.h" mpu9250::mpu9250(PinName _sda, PinName _scl) : i2c(_sda, _scl) { i2c.frequency(400000); } void mpu9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { char data_write[2]; data_write[0] = subAddress; data_write[1] = data; i2c.write(address, data_write, 2, 0); } char mpu9250::readByte(uint8_t address, uint8_t subAddress) { char data[1]; // `data` will store the register data char data_write[1]; data_write[0] = subAddress; i2c.write(address, data_write, 1, 1); // no stop i2c.read(address, data, 1, 0); return data[0]; } void mpu9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { char data[14]; char data_write[1]; data_write[0] = subAddress; i2c.write(address, data_write, 1, 1); // no stop i2c.read(address, data, count, 0); for(int ii = 0; ii < count; ii++) { dest[ii] = data[ii]; } } bool mpu9250::alive() { if(readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250) == 0x71) return true; else return false; } void mpu9250::getGres(uint8_t Gscale) { switch (Gscale) { case GFS_250DPS: gRes = 250.0/32768.0; break; case GFS_500DPS: gRes = 500.0/32768.0; break; case GFS_1000DPS: gRes = 1000.0/32768.0; break; case GFS_2000DPS: gRes = 2000.0/32768.0; break; } } void mpu9250::getAres(uint8_t Ascale) { switch (Ascale) { case AFS_2G: aRes = 2.0/32768.0; break; case AFS_4G: aRes = 4.0/32768.0; break; case AFS_8G: aRes = 8.0/32768.0; break; case AFS_16G: aRes = 16.0/32768.0; break; } } void mpu9250::readAccelData(int16_t * destination) { uint8_t rawData[6]; // x/y/z accel register data stored here readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; } void mpu9250::readGyroData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; } void mpu9250::readTempData(int16_t * destination) { uint8_t rawData[2]; readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array destination[0] = (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value } void mpu9250::readAll(int16_t * destinationAcc, int16_t * destinationGyro, int16_t * destinationTemp) { readAccelData(destinationAcc); // Read the x/y/z adc values readGyroData(destinationGyro); // Read the x/y/z adc values readTempData(destinationTemp); // Read the adc values } void mpu9250::ReadConvertAll(float * destinationAcc, float * destinationGyro, float * destinationTemp) { int16_t AccRead[3]; int16_t GyroRead[3]; int16_t TempRead[1]; readAll(AccRead,GyroRead,TempRead); destinationAcc[0] = -1000*((float)AccRead[1]*aRes - accelBias[1]); // get actual g value, this depends on scale being set destinationAcc[1] = -1000*((float)AccRead[0]*aRes - accelBias[0]); destinationAcc[2] = 1000*((float)AccRead[2]*aRes - accelBias[2]); destinationGyro[0] = (float)GyroRead[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set destinationGyro[1] = (float)GyroRead[1]*gRes - gyroBias[1]; destinationGyro[2] = (float)GyroRead[2]*gRes - gyroBias[2]; destinationTemp[0] = ((float) TempRead[0]) / 333.87f + 21.0f; // Temperature in degrees Centigrade } void mpu9250::resetMPU9250() { writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device wait(0.1); } void mpu9250::initMPU9250(uint8_t Ascale,uint8_t Gscale) { resetMPU9250(); wait(0.2); writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 writeByte(MPU9250_ADDRESS, CONFIG, 0x03); writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale); // Set full scale range for the gyro c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale); // Set full scale range for the accelerometer c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz // writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); // writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt getAres(Ascale); // Get accelerometer sensitivity getGres(Gscale); // Get gyro sensitivity calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers } void mpu9250::calibrateMPU9250(float * dest1, float * dest2) { uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device wait(0.1); writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); wait(0.2); // Configure device for bias calculation writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP wait(0.015); // Configure MPU9250 gyro and accelerometer for bias calculation writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec uint16_t accelsensitivity = 16384; // = 16384 LSB/g // Configure FIFO to capture accelerometer and gyro data for bias calculation writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes // At end of sample accumulation, turn off FIFO sensor read writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging for (ii = 0; ii < packet_count; ii++) { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; gyro_bias[0] += (int32_t) gyro_temp[0]; gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; } accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases accel_bias[1] /= (int32_t) packet_count; accel_bias[2] /= (int32_t) packet_count; gyro_bias[0] /= (int32_t) packet_count; gyro_bias[1] /= (int32_t) packet_count; gyro_bias[2] /= (int32_t) packet_count; if(accel_bias[2] > 0L) { accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation } else { accel_bias[2] += (int32_t) accelsensitivity; } // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; data[3] = (-gyro_bias[1]/4) & 0xFF; data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; data[5] = (-gyro_bias[2]/4) & 0xFF; dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis for(ii = 0; ii < 3; ii++) { if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit } // Construct total accelerometer bias, including calculated average accelerometer bias from above accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) accel_bias_reg[1] -= (accel_bias[1]/8); accel_bias_reg[2] -= (accel_bias[2]/8); data[0] = (accel_bias_reg[0] >> 8) & 0xFF; data[1] = (accel_bias_reg[0]) & 0xFF; data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[2] = (accel_bias_reg[1] >> 8) & 0xFF; data[3] = (accel_bias_reg[1]) & 0xFF; data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[4] = (accel_bias_reg[2] >> 8) & 0xFF; data[5] = (accel_bias_reg[2]) & 0xFF; data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers // Output scaled accelerometer biases for manual subtraction in the main program dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; }