the lastest pca lib by Castle
Dependents: the-lastest-code mbed-test-i2c-PCA-biquad-peakdet
Revision 0:8670ef66c0e3, committed 2019-11-25
- Comitter:
- castlefei
- Date:
- Mon Nov 25 14:26:29 2019 +0000
- Commit message:
- PCA lib by Castle; ;
Changed in this revision
pca.cpp | Show annotated file Show diff for this revision Revisions of this file |
pca.h | Show annotated file Show diff for this revision Revisions of this file |
diff -r 000000000000 -r 8670ef66c0e3 pca.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pca.cpp Mon Nov 25 14:26:29 2019 +0000 @@ -0,0 +1,72 @@ + +#include "pca.h" +#include <Eigen/Dense.h> + +using namespace Eigen; + + /* + * Normalize the Matrix X + */ + MatrixXd PCA::featurnormail(MatrixXd &X) +{ + //I don't know why to use the transpose + //compute the mean of every dimension + MatrixXd X1 = X.transpose(); + MatrixXd meanval = X1.colwise().mean(); + + //normalization + RowVectorXd meanvecRow = meanval; + X1.rowwise() -= meanvecRow; + + return X1.transpose(); +} + + /* + * Compute the Covariane Matrix of X, put to C + * C = 1/m * X * X.transpose + */ +void PCA::ComComputeCov(MatrixXd &X, MatrixXd &C) +{ + + C = X*X.adjoint();//same as XT*X a + //translate to array + C = C.array() / X.cols(); +} + + +/* + * Compute the eigenvalue and eigenvector of C + * val = (first eigenvalue) --smallest --not important + * . + * . + * . + * (last eigenvalue) --largest -- important + * + * vec = (first eigenvector, ... , last eigenvector) + * not important important + */ +void PCA::ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) +{ + //SelfAdjointEigenSolver will sort the values automatically + SelfAdjointEigenSolver<MatrixXd> eig(C); + vec = eig.eigenvectors(); + val = eig.eigenvalues(); +} + +/* Compute the dimension need to include enough information of raw data. + * form large index to small index, since the val is sorted from small to large. + * in some cases, just decide the number of dimension, instead of compute it. + */ +int PCA::ComputDim(MatrixXd &val) +{ + int dim; + double sum = 0; + for (int i = val.rows() - 1; i >= 0;--i) + { + sum += val(i, 0); + dim = i; + if (sum / val.sum()>=0.8)//80% of the information + break; + } + return val.rows() - dim; +} \ No newline at end of file
diff -r 000000000000 -r 8670ef66c0e3 pca.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pca.h Mon Nov 25 14:26:29 2019 +0000 @@ -0,0 +1,24 @@ +#ifndef PCA_H +#define PCA_H + + +#include <Eigen/Dense.h> + + +using namespace Eigen; + +class PCA { + +public: + MatrixXd featurnormail(MatrixXd &X); + void ComComputeCov(MatrixXd &X, MatrixXd &C); + void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val); + int ComputDim(MatrixXd &val); + + + //MatrixXd acc_raw(3,0); + }; + + + +#endif //PCA_H \ No newline at end of file