the lastest pca lib by Castle
Dependents: the-lastest-code mbed-test-i2c-PCA-biquad-peakdet
Diff: pca.cpp
- Revision:
- 0:8670ef66c0e3
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pca.cpp Mon Nov 25 14:26:29 2019 +0000 @@ -0,0 +1,72 @@ + +#include "pca.h" +#include <Eigen/Dense.h> + +using namespace Eigen; + + /* + * Normalize the Matrix X + */ + MatrixXd PCA::featurnormail(MatrixXd &X) +{ + //I don't know why to use the transpose + //compute the mean of every dimension + MatrixXd X1 = X.transpose(); + MatrixXd meanval = X1.colwise().mean(); + + //normalization + RowVectorXd meanvecRow = meanval; + X1.rowwise() -= meanvecRow; + + return X1.transpose(); +} + + /* + * Compute the Covariane Matrix of X, put to C + * C = 1/m * X * X.transpose + */ +void PCA::ComComputeCov(MatrixXd &X, MatrixXd &C) +{ + + C = X*X.adjoint();//same as XT*X a + //translate to array + C = C.array() / X.cols(); +} + + +/* + * Compute the eigenvalue and eigenvector of C + * val = (first eigenvalue) --smallest --not important + * . + * . + * . + * (last eigenvalue) --largest -- important + * + * vec = (first eigenvector, ... , last eigenvector) + * not important important + */ +void PCA::ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) +{ + //SelfAdjointEigenSolver will sort the values automatically + SelfAdjointEigenSolver<MatrixXd> eig(C); + vec = eig.eigenvectors(); + val = eig.eigenvalues(); +} + +/* Compute the dimension need to include enough information of raw data. + * form large index to small index, since the val is sorted from small to large. + * in some cases, just decide the number of dimension, instead of compute it. + */ +int PCA::ComputDim(MatrixXd &val) +{ + int dim; + double sum = 0; + for (int i = val.rows() - 1; i >= 0;--i) + { + sum += val(i, 0); + dim = i; + if (sum / val.sum()>=0.8)//80% of the information + break; + } + return val.rows() - dim; +} \ No newline at end of file